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1 Introduction

The basic idea is simple. Define θ =
∑
n∈Z q

n2

= 1 + 2q+ 2q4 + . . .. The idea is that for κ > 0 an
odd integer, we decree that θκ is a weight κ/2 modular form of level 4 and “with trivial character”,
and we basically define an arbitrary modular form of weight κ/2 to be a holomorphic function
which transforms under (a congruence subgroup of) Γ0(4) in the same way as θκ does. This leads
to a solid analytic theory, with Hecke operators and so on (although the Hecke operator story is
rather different in the half-integral weight case). A very interesting observation of Nick Ramsey
is that one can also build an algebraic theory: the idea is that θ4 is classical, so defines a section
of a sheaf, and hence a divisor D, and D/4 is a Q-divisor but one can still talk about sections of
κD/4. One can go on to define p-adic half-integral weight forms (this was also done by Ramsey)
and so on. Shimura and Shintani established an extraordinary connection between forms of weight
κ/2 and forms of weight κ−1—the “Shimura lift” and the “Shintani lift” being essentially inverse
operators between eigenforms on these spaces.

In these notes I’ll build the theory from the ground up and then talk about more recent work.

2 Definitions (the analytic case).

A lot of the ideas here appear to be due to Shimura (Annals 97, 1973, pp 440–481).

Let H denote the upper half plane. Define θ : H → C by θ(z) =
∑
n∈Z q

n2

, with q = e2πiz as
usual. Note that θ2 is a weight 1 modular form on Γ1(4) with character χ4 (primitive of level 4),
and hence for γ =

(
a b
c d

)
in Γ0(4) and z ∈ H we have θ2(γz) = χ4(d)(cz + d)θ2(z). In particular,

if we make the important definition (for γ ∈ Γ0(4) and z ∈ H):

j(γ, z) := θ(γz)/θ(z),

then we see that j(γ, z)2 = χ4(d)(cz+d). There is an explicit formula for j(γ, z) in Serre-Stark [1]
on page Se-St-3. It involves the quadratic residue symbol (c/d) (if c 6= 0), a 4th root of unity which
depends on d mod 4, and an explicit branch of the square root function too. I guess the terrifying
thing is not so much the 4th root of unity but the fact that it involves a quadratic residue symbol
and hence is somehow not “controlled” in any way by a congruence subgroup.

Convention: throughout these notes, κ will be a positive odd integer, and N will be a positive
integer multiple of 4. We will be considering modular forms of weight κ/2 and level N . The theory
for weight in Z + 1

2 is sufficiently different from that of weight in Z that we specifically exclude
weight Z here. And for weight in Z + 1

2 the level must, by definition, always be a multiple of 4.

It is convenient to define the following extension G of GL+
2 (R) thus: an element of G is a

pair (γ, φ) with γ =
(
a b
c d

)
∈ GL+

2 (R) (that is, in GL2(R) and with positive determinant) and
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with φ : H → C holomorphic and such that φ(z)2 = t. det(γ)−1/2(cz + d) with t = t(γ, φ) ∈ C
independent of z and satisfying |t| = 1. In fact let T denote {t ∈ C : |t| = 1}. Note first that for
any γ ∈ GL+

2 (R) the function z 7→ cz + d on the upper half plane will have a holomorphic square
root, so the map G → GL+

2 (R) is surjective, and the fibre above γ ∈ GL+
2 (R) will be (typically non-

canonically) isomorphic to T (because any holomorphic function whose square is constant will be
constant). Moreover G can naturally be made into a group by (γ, φ)(δ, ψ) = (γδ, z 7→ φ(δz).ψ(z)).
One checks that the latter is in G and that multiplication does indeed make G into a group. Let
P : G → GL+

2 (R) denote the projection. Then the kernel of P is canonically T, and this kernel is
in the centre of G.

My suspicion is that if we restrict furthermore to t = ±1 then we would get the metaplectic
cover of GL+

2 (R).
So here’s a nice definition: for f holomorphic on H and ξ := (γ, φ) ∈ G, define f |κξ(z) =

f(γz).φ(z)−κ. One checks that this is an action of G on the set of all holomorphic functions on H.
It leads naturally to a definition of a modular form of level Γ for Γ a discrete subgroup of G (not
of SL2(R)!). If G0(4) is the pre-image of Γ0(4) in G then the map G0(4) → Γ0(4) has a splitting,
given by sending γ to γ∗ := (γ, j(γ, z)). Hence we may talk about functions f such that f |κγ∗ = f
for all γ ∈ Γ, assumed to be a congruence subgroup of Γ0(4); one checks easily that in this case
the condition just says that

f(γz) = f(z).j(γ, z)−κ,

where j(γ, z) = θ(γz)/θ(z) as before. For such a form to be a modular form, it must be “holo-
morphic at the cusps”, which means the usual thing: for s in Q∪{∞} choose ρ ∈ SL2(Q) sending
∞ to s, lift to ρ ∈ G, and then demand that f |κρ (which will be invariant under z 7→ z + h for
some h > 0) has a q-expansion with no terms of negative degree. The same trick will enable one
to define cusp forms.

So there’s the definiton: for N a multiple of 4 and κ odd, a modular form of weight κ/2 and
level Γ1(N) is a holomorphic function f on H with f |κγ∗ = f for all γ ∈ Γ1(N), and such that f
is holomorphic at the cusps. Let Mκ/2(Γ1(N)) denote such things and let Sκ/2(Γ1(N)) denote the
subspace of cusp forms. Note that (Z/NZ)∗/ ± 1 acts naturally on these things (because Γ1(N)
is normal in Γ0(N) and Γ0(N) also lifts to G) and if, for χ an even Dirichlet character of level
N , we define Mκ/2(Γ1(N), χ) to be the f ∈Mκ/2(Γ1(N)) with f |κγ∗ = χ(d)f then Mκ/2(Γ1(N))
becomes the direct sum of the Mκ/2(Γ1(N), χ) and similarly for the cusp forms.

3 Examples.

Visibly θκ is an example, but it’s not cuspidal. Slightly terrifyingly, if f ∈ Mκ/2(Γ1(N)) and
t ∈ Z>0 then z 7→ f(tz) is in Mκ/2(Γ1(Nt)) (unsurprising so far) but it will in general have a

different character to f ! This is because for γ =
(

a b
Ntc d

)
∈ Γ1(Nt) and γ′ =

(
a tb
Nc d

)
∈ Γ1(N), it is

not in general the case that j(γ, z) = j(γ′, tz); the explicit formula for j involves some quadratic
residue symbol which changes, basically by the quadratic character associated to the positive
integer t (note that this character is even and, if t is prime, will have conductor t for t congruent
to 1 mod 4 but conductor 4t for other primes).

More general theta series are examples too: if ψ is even and primitive of conductor r, then
θψ :=

∑
n∈Z ψ(n)qn

2

is in M1/2(Γ1(4r2), ψ) (proposition 2.2 of Shimura’s Annals paper). The
key input is in some sense Poisson summation, which gets you from z to −1/z—this is all part
of the general “yoga of theta series”. Note that θψ isn’t the twist of θ by ψ! That would be∑
ψ(n2)qn

2

. Note also that Serre and Stark proved that the weight 1/2 forms are spanned by
these more general theta series and their associated oldforms θψ(tz).

Which primitive even Dirichlet characters are the primitive character associated to the square
of a Dirichlet character? One checks that the answer is the “totally even” Dirichlet characters,
that is, those ψ whose prime-power components ψp are all even. If ψ is totally even then θψ is
(closely related to) a twist of θ, and hence one would not expect it to be cuspidal. However, if ψ
is even but not totally even, then θψ turns out to be a cusp form (the proof of this in Serre-Stark
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is analytic in nature, involving checking that the L-functions associated to these guys and their
twists have no pole at s = 1/2).

The two cuspidal examples of weight 1/2 and smallest level are:
1) ψ of conductor 12, defined by ψ(n) = 1 for n = ±1 mod 12 and ψ(n) = −1 for n = ±5

mod 12, giving rise to

θψ =
∑

n≡±1 (12)

qn
2

−
∑

n≡±5 (12)

qn
2

= 2(q − q25 − q49 + q121 + q169 − . . .)
= 2η(24z)

with η(z) = q1/24
∏
n(1− qn).

2) ψ of conductor 15, the product of odd characters of conductor 3 and 5, giving

θψ = 2(q − iq4 − q16 + iq49 + iq64 + . . .)

and its Galois conjugate (the above is associated to the character ψ with ψ5(2) = i). This has
level 900 and character ψ.

Non-cusp forms are much easier to stumble upon. For example θ itself has weight 1/2 and
level 4, and θ(2z) has level 8 and character of conductor 8 associated to Q(

√
2) (the one with kernel

±1 mod 8), and there’s an even character of conductor 5 giving a non-cusp form of level 100 (note
that this form is a twist of θ).

4 Interlude: zeros of θ

This is just some classical mathematics. Note that the sheaf ω exists on Y1(4) because it’s the
solution to a moduli problem, but Y1(4) has an irregular cusp (the middle one) and hence only ω2

is guaranteed to exist on X1(4), and ω2 will have degree 1 and θ4 will be a section of it. The fact
that it has degree 1 means that it will have a unique zero somewhere. Where is this zero?? It’s
at a cusp! I know this because I just computed ∆/θ4, which is either a level 4 weight 10 modular
form (if the zero is at a cusp), or has a pole on H (if the zero is on H), and lo and behold I can
find a level 4 weight 10 modular form whose q-expansion agrees with ∆/θ4 up to O(q100), which
is proof enough for me (use the Sturm bound).

Indeed, it seems to me that if q is a real number with |q| < 1 and q tends down to −1 then
1 + 2(q+ q4 + q9 + q16 + . . .) is tending to zero, which is evidence for θ having a zero at the middle
cusp. Indeed, θ2 is a section of a sheaf which has degree 1/2 and only one “magic point” (the
middle cusp), so if θ4 has a simple zero then θ2 had better have a zero at the magic point.

Note that X1(4p), for p any prime (including p = 2), has no magic points and hence ω exists
on X1(4p). Where are the zeros of θ2 on X1(4p)? And what are their orders of vanishing? Hmm,
a back-of-an-envelope calculation seems to suggest that X1(8) has two “middle cusps” but (under
the natural degeneracy map) only one of them maps to the middle cusp of X1(4). So probably
the ramification degree is 4 at this cusp and θ2 has a zero of order 2 at one of the middle cusps
of X1(8). Indeed, the stabiliser of 1/2 in SL2(Z) is

(
u−2h −4h
h 2h+u

)
with h ∈ Z and u = ±1, so the

stabilisers in Γ1(4) and Γ1(8) are cyclic, but for Γ1(4) the generator has trace −2 and u = −1,
and for Γ1(8) it’s the 4th power of this.

But where is this going? I was hoping to be able to construct half-integral weight modular
forms by dividing cusp forms by θ—but the problem is that, when considered as a form of high
level, θ will have zeros of big degrees at random middle cusps, so life isn’t so easy. So perhaps this
isn’t going anywhere.

5 Hecke operators.

One might hope that the general yoga of Hecke operators applies. One has to be a little careful
though. We’re thinking of levels as discrete subgroups of G, and so the kind of calculation we
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need to do is: what is the commensurator of Γ0(4) in G? And things like: if γ ∈ GL+
2 (Q), does

a random lift of γ to G give us a legal (i.e. no problems with commensurability) and interesting
(i.e. not trivially zero) Hecke operator?

Of course the general yoga is: if f ∈ Mκ/2(Γ1(N)) and ξ ∈ G such that ξΓ1(N)∗ξ−1 is
commensurable with Γ1(N)∗ then we’ll get a Hecke operator.

Shimura shows the following. Say α ∈ GL+
2 (Q) and Γ is a congruence subgroup of Γ0(4).

Let ξ be an arbitrary lifting of α to G. Then for γ ∈ Γ ∩ α−1Γα we can compare γ∗ (a lifting
of γ to G) with (αγα−1)∗. Indeed, we get a natural map Γ ∩ α−1Γα → T defined by sending
γ to (αγα−1)∗.[ξ.γ∗.ξ−1]−1; this is easily checked to be in T. Indeed this natural map is a
homomorphism of groups. Shimura proves that if the image is finite then ξΓ∗ξ−1 is commensurable
with Γ∗, but also that if the image is not within the κth roots of unity then the resulting Hecke
operator is zero! This latter is just mucking about with group theory.

One deduces that for α =
(
m 0
0 n

)
with m and n positive integers, the resulting Hecke operators

exist (strictly speaking we must lift to G, and we do this by setting φ(z) = (n/m)1/4 with (n/m)
the ratio, not the quadratic character) but the image of the funny map above mentions quadratic
residue symbols (mn/d) so (because κ is assumed odd) will often give Hecke operators which
trivially act as zero. If mn is a square then one gets something interesting though, and if m and
n divide N then sometimes one gets interesting things too.

Before I start on Hecke operators, let me mention that the matrix
(

0 −1
N 0

)
also gives something

non-zero on Mκ/2(Γ1(N)) and changes a character to its complex conjuage as in the usual story.
OK so what about the analogues of Tp? Here’s the story at primes dividing the level. If m

is a positive integer such that (a) all primes dividing m also divide N , and (b) the conductor of
Q(
√
m) divides N [so for m = p prime we are demanding p|N and furthermore if p = 2 we want

8|N ] then the Hecke operator associated to
(
1 0
0 m

)
acts on Mκ/2(Γ1(N)). Warning: it doesn’t

preserve characters! It sends a form of character χ to one of character χ.(m/.). On q-expansions
it sends

∑
anq

n to
∑
anmq

n.
Now what about away from N? Let n be a positive integer, and let Tn2 denote the Hecke

operator associated with
(
1 0
0 n2

)
. Shimura does the group theory to verify that Tm2 and Tn2

commute if either m and n are coprime, or if all prime factors of m also divide N .
Shimura now computes what these do to q-expansions: if f =

∑
n≥0 anq

n is in Mκ/2(Γ1(N), χ)
and if p is prime then Tp2f is also in Mκ/2(Γ1(N), χ) (so Tp2 is preserving characters), and
Tp2f =

∑
n≥0 bnq

n with, writing λ = (κ− 1)/2 ∈ Z,

bn = anp2 + χ1(p)(n/p)pλ−1an + χ(p2)pκ−2an/p2

where a(n/p2) := 0 if p2 doesn’t divide n, and with the middle term vanishing by definition if
p = 2 and, for odd p, we have χ1(p) = χ(p)(−1/p)λ.

The proof is of course a gory double coset computation. There are p2 + p single cosets in the
double coset if p doesn’t divide N . If p does divide N (for example if p = 2), then note that Tp2
is just “U2

p” on q-expansions, so it’s (Tp)
2).

Here are some slightly simpler formulas for bn above: if n is prime to p then

bn = anp2 + χ(p)(−1/p)λ(n/p)pλ−1an,

if p divides n once then

bn = anp2

and if p divides n at least twice then

bn = anp2 + χ(p2)pκ−2an/p2 .

For example, on weight 1/2 modular forms of level 4 and trivial character and p odd we see
that bn = anp2 + (n/p)p−1an + p−3/2an/p2 and we check that Tp2 has eigenvalue 1 + p−1 on θ.
However T2 has eigenvalue 1.
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More generally, let’s compute the coefficient of q1 in Tp2( 1
2θψ) (the half to make a1 = 1). By

the above formulae, for p > 2 prime to N = 4r2, it’s ap2 +ψ(p)p−1 = ψ(p)(1 + p−1). So it’s going
to be an eigenform with eigenvalue ψ(p)(1+p−1). Note that if ψ is totally even then θψ is cuspidal
but this eigenvalue looks quite Eisensteiny!

In particular, for p >= 5 the eigenvalue of Tp2 on the interesting-looking cusp form η(24z) is
going to be quite dull! In fact this isn’t a surprise: see the next section.

6 Interlude: old and new.

This whole notion is much more messy in the half-integral weight case. Serre and Stark do some
calculations; I’ll summarise them and then do some more. If p divides N/4 and χ is a Dirichlet
character of level N then the “oldforms of the first kind” in Mκ/2(Γ1(N), χ) only exist if χ is
definable mod N/p, in which case they’re the image of the elements in Mκ/2(Γ1(N/p), χ) which
are eigenforms for all but finitely many of the T`2 , and the oldforms of the second kind only exist
if χ.chip is definable mod N/p, in which case they’re the f(pz) at level N/p and character χ.chip,
with f an eigenform for all but finitely many of the T`2 . The oldforms are the space spanned by
all the oldforms of all kinds as p varies. The newforms are the space spanned by eigenforms for
all but finitely many of the Tp2 that aren’t in the oldforms. What a palaver!

I need to figure out twisting. OK I figured it out. If f has level N and character χ, and ψ has
level r with r prime to N , then g := f ⊗ ψ has level Nr2, character χ.ψ2, and if Tp2f = λpf then
Tp2g = λp.ψ(p2)g.

Note in particular the following rather scary thing: say f has level prime to ` and ` is odd.
Then I can think of three forms of level N`2 with the same Tp2 -eigenvalue for all p away from N`2,
namely f(z), f(`2z) and f ⊗ (./`) (the twist by the Dirichlet character of conductor `). Actually
I guess this isn’t so scary—we get three forms in the integral weight setting too.

So now the natural question is as follows: say f has level N and is an eigenvector for Tp2 for
all primes p. Now consider the space spanned by A := f(z), C := f(`2z) and B := f ⊗ χ`.

The first question is: what is the dimension of this space?? One would imagine that in general
it’s 3. For example, for the weight 5/2 form below (η(24z)5) the dimension is indeed 3. But in fact

I just found an example when it’s only 2: if f = θψ =
∑
n ψ(n)qn

2

then A = f , B =
∑
`-n ψ(n)qn

2

and hence A = B + ψ(`)C. Note that θψ could be cuspidal in this calculation.
Let’s assume the space is 3-dimensional. If Tp2f = λpf then this 3-dimensional space will have

Tp2 acting on it via λp for all p away from p = `. But how does U`2 act?
Well, set A = f , B = f ⊗ (./`) and C = f(`2z). Then the formula for how T`2 acts on

q-expansions gives immediately that

λ`f = T`2f = U`2f + χ(`)(−1/`)λ`λ−1B + χ(`2)`κ−2C

and hence the matrix representating U`2 on the 3-d space with basis A, B, C is λ` 0 1
−χ(`)(−1/`)λ`λ−1 0 0
−χ(`)2`κ−2 0 0


This matrix has one eigenvalue zero (eigenvector B) and other eigenvectors given by the roots of
X2−λ`X+χ(`)2`κ−2—so the eigenforms have U`2-eigenvalue given precisely by the U`-eigenvalues
of the three oldforms at level N`2/2 in the Shimura lift.

Now let’s do the case of θψ. We see via an easy calculation that we lose the `−1ψ(`) eigenvalue.
While we’re here, let’s go back to the general case but do level N`4. Then A, B and C above,

plus B(q`
2

) and C(q`
2

) are all in, and if A, B, C are linearly independent then thinking about
coefficients of qn with n a multiple of `2 convinces me that these five forms span a 5-dimensional
space at level `4. However we can now see a 2-dimensional space in the kernel of Up2 , because the
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matrix representing Up2 at level p4 is 
λ` 0 1 0 0
α 0 0 1 0
β 0 0 0 1
0 0 0 0 0
0 0 0 0 0


and both B and A− λC − αB(q`

2

)− βC(q`
2

) are in the kernel! This makes me wonder whether
Nick Ramsey’s eigencurve isn’t actually quite isomorphic to the Coleman-Mazur eigencurve.

7 What Serre and Stark do.

In their paper, Serre and Stark prove that the weight 1/2 modular forms are spanned over C by

theta series
∑
n∈Z ψ(n)qtn

2

with ψ even and primitive. They do this by showing that formulae
of Shimura regarding how Hecke operators act on q-expansions implies that if f is an eigenform
for Tp2 for all p not in a finite set S (containing all the divisors of N) then there’s some Dirichlet
character ψ such that the eigenvalue of Tp2 will be ψ(p)(1 + p−1) for all p not in S. They go on
to show that this is enough via a straightforward argument (and Deligne gives a second approach
to get the result in an appendix).

In fact Serre and Stark really find bases for all spaces of weight 1/2 modular and cusp forms,
so one can get explicit formulae for dimensions.

Here are some examples of conclusions one can draw from their work:
1) You’ll not find any interesting eigenforms in weight 1/2; the eigenvalue of Tp2 will be

ψ(p)(1 + p−1) for some Dirichlet character ψ.
2) (an example in Serre-Stark). If s is squarefree (and it could be even), and the product of h

primes, and N = 4s, then a basis for M1/2(Γ1(N)) is given by the θ(tz) =
∑
n q

tn2

for t running

through the 2h divisors of N . Each θ(tz) is an eigenform, with character χt, the primitive Dirichlet
character associated to Q(

√
t)/Q. So, for example, if t = 1 then χt = 1, if t = 2 then χt is even

and has conductor 8, if t is a prime congruent to 1 mod 4 then χt has conductor t and is even and
of order 2. and if t is a prime congruent to 3 mod 4 then χt has conductor 4t. Note that distinct
χt give distinct characters, so M1/2(Γ1(N), χt) is 1-dimensional for each of the 2h χt and is zero
for all the other Dirichlet characters of level N . Note also that S1/2(Γ1(N)) = 0: no cusp forms
of level N .

8 Interlude: what Cohen and Oesterlé do in the next paper
in Antwerp 6.

Cohen and Oesterlé use Riemann-Roch to compute dimensions of spaces of modular forms. Their
formulae work for half-integral weights. Hence they give explicit formulae for

dim(S1/2(Γ1(N), χ))− dim(M3/2(Γ1(N)), χ))

and

dim(S3/2(Γ1(N), χ))− dim(M1/2(Γ1(N)), χ))

Because Serre and Stark compute the dimensions of M1/2(Γ1(N)), χ) and S1/2(Γ1(N), χ) it’s
possible to compute the dimensions of M3/2(Γ1(N)), χ) and S3/2(Γ1(N), χ).

In fact there seems to be a typo in Cohen-Oesterlé: their table after Theorem 2, the one
giving the value of some constant ζ involved in the formula—in the “non (C)” case I think that
“k − 1/2 ∈ Z” should say “k − 1/2 ∈ 2Z and similarly k − 3/2 ∈ Z should be replaced by
“k − 3/2 ∈ 2Z”.
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Here are examples of conclusions. If p is an odd prime, and N = 4p, then what are the
dimensions of the weight 3/2 modular forms of level N and character χ?

Well, as we saw above, S1/2(Γ1(4p), χ) is always zero, and M1/2(Γ1(4p), χ) is also zero unless
χ is either trivial, or is equal to χp (the character associated to Q(

√
p), which is even, has order 2,

and conductor p (resp. 4p) for p ≡ 1 (resp. p ≡ 3) mod 4.
Now Cohen-Oesterlé in this case says that for any even Dirichlet character, we have

dim(Sk(Γ1(4p), χ))− dim(M2−k(Γ1(4p), χ)) = (k − 1)(p+ 1)/2− ζ

where ζ is the following thing:
if p ≡ 3 mod 4 then ζ = 2.
If p ≡ 1 mod 4 then:
*) ζ = 3/2 if (k ∈ 1/2 + 2Z and χ2 is trivial), or if (k ∈ 3/2 + 2Z and χ2 is non-trivial), and
*) and ζ = 5/2 in the other cases (k ∈ 1/2 + 2Z and χ2 non-trivial, or k ∈ 3/2 + 2Z and χ2

trivial).
So, for example (setting k = 1/2), if χ is even we have

dim(M3/2(Γ1(4p), χ)) = (p+ 1)/4 + ζ

with ζ = 2 for p = 3 mod 4, and for p = 1 mod 4 we have ζ = 3/2 if χ2 is trivial (i.e. if χ is
“totally even”) and ζ = 5/2 if χ2 is non-trivial.

And (setting k = 3/2) we have

dim(S3/2(Γ1(4p), χ))− dim(M1/2(Γ1(4p), χ)) = (p+ 1)/4− ζ

where now ζ = 2 if p = 3 mod 4, ζ = 3/2 if χ2 is non-trivial, and ζ = 5/2 if χ2 is trivial. Note
also that the dimension of M1/2(Γ1(4p), χ) might be 0 or (if χ is trivial or equal to χp) 1.

So, for example, if p = 3 mod 4 then the space of modular forms of level 4p, weight 3/2 and
character χ (assumed even) has dimension (p + 9)/4, and the space of cusp forms has dimension
(p − 7)/4, unless χ is either trivial or χp, in which case it has dimension (p − 3)/4. Note that
in the case p = 3 every even Dirichlet character of level 12 is either trivial or χ3, so none of our
spaces have negative dimension!

I wonder if there is an “explicit formula” for, say, the cuspidal eigenforms in weight 3/2, trivial
character and level 4p with p = 3 mod 4; this space has dimension (p− 3)/4. On the other hand
I guess there aren’t explicit formulae for the level p weight 2 eigenforms, and their dimension is
also pretty regular. . . .

9 A computer experiment to try and find an interesting
eigenform.

Let’s start with the cusp form η(24z) of weight 1/2 and level 576, and let’s cube it. We get a form
f = q3− 3q27 + 5q75− 7q147 + . . .. Now let’s hit this with T25. To O(q962) we get 6f . That’s good
enough for me! Now let’s try T49. We get −8f . Now T121. We get −12f . And T132 seems to have
eigenvalue 14. So in fact it seems to me that f3 is an eigenvector! Note also that it “looks old”
doesn’t it: we could have taken a factor of 3 out. Then presumably we would have got something
of level 192 and trivial character, and the signs of the eigenvalues of Tp2 look to me like they are
to do with p mod 4.

So still no interesting eigenform! Let’s go to η(24z)5. Aah geez this still looks like it’s an
eigenvector for Tp2 for all p ≥ 5! Let ωp denote the eigenvalue. It seems to me that these are the
ωp:

5:-6

7:16

11:12
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13:38

17:126

19:-20

23:168

29:-30

31:88

37:254

41:-42

Now those numbers look interesting! And we spot a level 144 weight 4 newform with Tp-
eigenvalue ωp: indeed the following is the q-expansion of a level 144 weight 4 trivial character cusp
form:

q - 6*q^5 + 16*q^7 + 12*q^11 + 38*q^13 + 126*q^17 - 20*q^19 + 168*q^23 - 89*q^25

- 30*q^29 + 88*q^31 - 96*q^35 + 254*q^37 - 42*q^41 + 52*q^43 - 96*q^47 -

87*q^49 - 198*q^53 - 72*q^55 - 660*q^59 - 538*q^61 - 228*q^65 - 884*q^67 +

792*q^71 + 218*q^73 + 192*q^77 + 520*q^79 - 492*q^83 - 756*q^85 - 810*q^89 +

608*q^91 + 120*q^95 + 1154*q^97 + O(q^100)

So some kind of miracle has occurred: the Tp2-eigenvalue of some weight 5/2 form is also the
Tp-eigenvalue of a weight 4 form! This is a special case of Shimura’s theorem.

10 What Shimura did.

So Shimura came up with the following extraordinary thing. Say κ ≥ 3 is odd, χ has level N (a
multiple of 4) and f is non-zero of level N , weight κ/2 and character χ. Say f is an eigenform
for Tp2 for all primes p with eigenvalue ωp. Then there’s also a modular form of weight κ − 1
and character χ2 with Tp-eigenvalue ωp for all p (at least away from the level); the level of this
“Shimura lift” is N/2 (a theorem of Niwa and Cipra).

Conceptually it looks to me, very vaguely, that the following is what is happening: attached
to a weight κ/2 eigenform there is some kind of “Galois representation” with H-T weights 0 and
κ/2 − 1. Its symmetric square has H-T weights 0, κ/2 − 1 and κ − 2; the non-integral part is
somehow removed by some fudge factor, and the eigenvalue of Tp2 is the trace on what is left; so
by Fontaine-Mazur you expect a weight κ− 2 form.

What is so weird though is—why does one expect the symmetric square to be reducible?? I
guess that in some sense the Serre-Stark theorem is an instance of this: the only eigenforms one
sees have Tp2 -eigenvalue ψ(p)(1 + p−1).

11 Very vague musings.

Maybe to a weight κ/2 eigenform one might hope to attach a Galois representation to GL2(Qp)

of some group G which is a central extension of Gal(Q/Q) by some group {1, z} of order 2? At
the very least G would have to have a character of the form “square root of cyclotomic”. And
the H-T weights of the Galois rep would be 0 and κ/2 − 1. So the symmetric square would be
3-dimensional and perhaps would for some reason contain a 1-dimensional factor and the resulting
2-dimensional quotient would have HT weights 0 and κ− 2, giving us the classical form.

But I can’t figure out how to make this rigorous. If {1, z} were a normal subgroup of G then
it would be central automatically, and now if G had a character ξ which was the square root of
cyclo then for an irreducible 2-d rep of G which was non-trivial on z, z would have to act via −1
so twisting by ξ would now give us a classical rep again. Hmmph.

Given a 2-dimensional representation of Gal(Q/Q) we somehow want to add a 1-dimensional
representation and then hope that the resulting thing is Symm2 of some 2-d rep of some bigger
group. I can’t see how this could work.
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12 Eisenstein series.

I don’t know a general reference, but I know the story for level 4. From the formulae in Cohen-
Oesterle we see that the dimension of the Eisenstein space in weight k/2, for any k ≥ 5, is 2.
Moreover Shimura (in Antwerp 1) writes down two Eisenstein series. He computes the q-expansion
of one, and leaves the other one as an exercise for the reader. I’ll do the exercise. The first
Eisenstein series, up to a non-zero constant depending on k, is

∑
n≥0 anq

n, with an some ghastly
mess, but ar2t for any r ≥ 1 and t squarefree basically “only depends on at”, and for t > 0
squarefree we have

at = tk/2−1L((k − 1)/2, φt)

with φt the Dirichlet character m 7→ (t/m) if k is 1 mod 4 and m 7→ (t/m)(−1/m) if k is 3 mod 4
(note that this character is even if k = 1 mod 4 and odd if k = 3 mod 4, so we’re evaluating
the L-functions of even Dirichlet characters at positive even integers, and the L-functions of odd
Dirichlet characters at positive odd integers, which is as it should be. Note that I’ve taken out
more fudge factors than Shimura because I’m not interested in powers of π (that depend only on
k) floating around.

The other Eisenstein series, we’ll have to do ourselves. Here’s the definition: the following sum
is over n,m ∈ Z with n > 0 odd and (m,n) = 1, and it’s (up to a constant depending only on k)

Fk(z) =
∑
m,n

(−m/n)εkn(−n/z + 4m)−k/2z−k/2

with εn = 1 for n = 1 mod 4 and i for n = 3 mod 4, and the −k/2th power being computed as
the −kth power of the square root, with the square root taken to have either positive real part,
or zero real part and positive imaginary part. Now one has to perform a gory calculation. The
product of the square roots might not be the square root of (−n + 4mz) because the product of
the square roots is certainly in the upper half plane, whereas the square root of −n + 4mz is in
the lower half plane for m < 0. What one does is rewrites the sum as three sums: m = 0, m > 0
and m < 0. The m = 0 sum only involves n = 1 and hence gives us (−1/z)−k/2z−k/2, which
is ((−1/z)1/2z−1/2)−k and the product of the square roots is in the upper half plane and it’s a
square root of −1, so it’s i, and we get i−k (which will be ±i depending on k mod 4).

The sum for m > 0 we evaluate as (the sum over m,n > 0 with n odd and (m,n) = 1∑
m,n>0

(−m/n)εkn(−n+ 4mz)−k/2.

The sum for m < 0 we evaluate similarly (note now that the product of the square roots is
minus the square root of the product) and, after changing variables n 7→ −n and m 7→ −m we get∑

m>0,n<0

(m/− n)(−1)εk−n(n− 4mz)−k/2.

Now in this second sum we have (n− 4mz)1/2 = (−n+ 4mz)1/2i−1 and subbing this in we get∑
m>0,n<0

(m/− n)(−1)ikεk−n(−n+ 4mz)−k/2.

Now we can put it all back together and get i−k plus∑
m>0,n∈Z,(m,n)=1

cm,n(−n+ 4mz)−k/2

where cm,n is zero if n is even, (−m/n)εkn if n > 0 is odd, and (m/− n)(−1)ikεk−n if n < 0 is odd.
Now a miraculuous calculation shows that cm,n only depends on n modulo 4m (even allowing sign
changes for n) and hence we can rewrite as

ik +
∑
m>0

 ∑
n∈Z,(n,m)=1

cm,n(−n+ 4mz)−k/2
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and setting n = r + 4mh with 0 ≤ r < 4m we get

ik +
∑
m>0

∑
0≤r<4m

cm,r
∑
h∈Z

(−r − 4mh+ 4mz)−k/2

and we can do the sum over h (it’s in Shimura) and we get

c+
∑
m>0

∑
0<r<4m

cm,rm
−k/2

∑
n≥1

nk/2−1e2πin(z−r/4m)

(up to a constant depending only on k) so it’s
∑
n≥0 anq

n with, for n > 0 (and the sum over odd
r only)

an = nk/2−1
∑
m>0

m−k/2
∑

0<r<4m

(−m/r)εkre−2πinr/4m.

This will no doubt have something to do with L-functions :-/
One thing is for sure though, and that’s that the Eisenstein series that Shimura does bash out

has special values of L-functions showing up in its coefficients.
Cohen noted in 1975 (although maybe it was well-known before then) that using the functional

equation we can switch to the other side of the L-function; for example he checked that for every
integer r ≥ 2 there was a weight r + 1

2 modular form of level 4 such that the coefficient of qn, for
n = (−1)rD with D the discriminant of a quadratic field, was L(1 − r, χD). So we get one form
which encodes L(1− r, χD) for all D.

13 Waldspurger.

I’ve not seen Waldspurger’s paper “Sur les coefficients de Fourier des formes modulaires de poids
demi-intier” yet, but judging from what Tunnell says about it, Waldspurger takes these L-function
observations up a level by doing an analogous thing with cusp forms! His result, vaguely speaking,
is that if f has weight k/2 and is an eigenform, and F is its Shimura lift to weight k − 1, and if
F is now cuspidal, then the L-functions of quadratic twists of F , evaluated at the central point,
are all (up to harmless factors) squares of Fourier coefficients of f !

For example the special values at 1 of quadratic twists of an elliptic curve seems to be related
in quite a concrete way to the coefficients of a weight 3/2 modular form whose Shimura lift is
the weight 2 form attached to the curve in question. In an Inventiones paper from 1983, Tunnell
observed that Waldspurger’s generalisation could be concretely applied to E : y2 = x3 + x, giving
an explicit weight 3/2 modular form such that the coefficient of qd was some explicit constant
times L(Ed, 1) where E is the twist of E by d (probably d has to be odd and squarefree, but he
has another form which works when d is even). As a result he got a very computationally effective
way of proving that a number wasn’t a congruent number (because Coates-Wiles shows that if the
L-function is non-vanishing then the curve has rank zero) and furthermore, if the curve has rank
zero, he gets a conjectural formula for the Tate-Schaferevich group of the curve that again is very
computationally efficient.

14 More on Tunnell’s forms.

Let’s compute all the weight 1/2 and weight 3/2 forms for all levels dividing 128, and character
either trivial or even of conductor 8 (these are the only two even characters that square to the
identity).

First note that my weight 1 computations indicate that there are no weight 1 forms (of any
character at all) of level 2n for n < 7, and at level 27 = 128 there is one, with character the odd
character of conductor 8.

Now for N = 2n, 2 ≤ n ≤ 7, there are no weight 1/2 cusp forms of level N , and the number of
Eisenstein series in weight 1/2 and trivial character in level 4, 8, 16, 32, 64, 128 is 1, 1, 2, 2, 3, 3 (these
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being θ, θ(4z) and θ(16z), the point being that there’s no room for any θψ(qt) for ψ non-trivial
and even, because the conductor of ψ would have to be at most 4), and the number of Eisenstein
series of weight 1/2 and even quadratic character is always 1 (it’s θχ for χ the character) apart
from the cases N = 32, 64, 128 and even character of conductor 8 where the answer is 2,2,3 resp.
(the extra forms are θχ(4z) and θχ(16z)).

Note in particular that we understand all the Hecke eigenvalues of these forms too (because
we’re in weight 1/2 so everything is a theta series).

So that’s weight 1/2 out of the way. Now let’s plough up weight 3/2, starting at level 4 (and
trivial character). Here there’s only one form (θ3) and its T4-eigenvalue is 1 and its Tp2 -eigenvalue
is (1 + p) for p odd (look at the constant coefficient!).

At level 8 there are two modular forms of trivial character (θ3 and θ22θ). Now f := θ3 is an
eigenform for all Tp2 , but if g := θ22θ then T4g = f , T9g = 4g, T25g = 6g and so on, so we have a
2-dimensional eigenspace for all the good Tp2 , and a new eigenvalue of zero for T22 , so indeed it
looks like we’re picking up the level 4 infinite slope Eisenstein oldform.

Let’s just stick to trivial character at the minute.
At level 16 with trivial character there are still no cusp forms, and there are four modular

forms, because now θ4 comes into play so we get θ3, θ2θ4, θθ24, and θ34 as well as θ4θ
2
2 and so on

(there are six combinations but they only span a 4-dimensional space). Each seems to me to be an
eigenvector for Tp2 for p odd. Perhaps surprisingly, T4 sends each of these six things to θ3, hence
multiplicity 1 is in some sense failing: each Tp2 (including p = 2) is simultaneously diagonalisable,
all the Tp2 for p > 2 are scalar p+ 1 and T2 has rank 1 and a 3-dimensional kernel.

At level 32 with trivial character: still no cusp forms, but now six modular forms. We’re
allowed to use θ8 now; there are ten products of theta series and these generate a 6-dimensional
space, so that’s it. Again Tp2 acts as p+ 1 for p > 2.

At level 64 with trivial character something happens! There’s a 10-dimensional space of mod-
ular forms and a 1-dimensional space of cusp forms! The obvious products of θt (t = 1, 2, 4, 8, 16)
span a 10-dimensional space so that’s all the forms; for the first few p odd we see computationally
that Tp2 has eigenvalue p+ 1 ten times if p = 1 mod 4, but only nine p+ 1 eigenvalues for p = −1
mod 4; the tenth eigenvalue is p− 1. This is the cusp form, surely: it’s a theta series, it’s half of
−θ.θ24 + θ34 + 2θ16θ4θ− 2θ16θ

2
4 which comes out magically to be

∑
χ−1(n)nqn. So there’s our first

cusp form but it’s not very interesting.
Note that because of our bounds on N (N divides 128) this is the only weight 3/2 theta series

we’ll see (they have level 4r2 in general, where r is the conductor of an odd character).
Finally level 128; there are 16 modular forms of which three are cusp forms. I can think of 27

theta series of the form θrθsθt with r, s, t ∈ {1, 2, 4, 8, 16, 32} with an even number of them not
powers of 4; all such things are level 128 trivial character forms. They span a space that looks
like it’s 16-dimensional though, which is good.

This space (the 16-dimensional space) seems to break up into four generalised eigenspaces.
The least interesting is 12-dimensional, Tp2 = 1 + p for all odd primes p < 40 and T4 is nilpotent,
with 7-dimensional kernel, (T4)2 has 11-dimensional kernel, and (T4)3 = 0. Next we have a 2-
dimensional space on which all Hecke operators appear to act via scalars and the scalar is that
of the elliptic curve X0(32) (that is, T4 = 0, T9 = 0, T25 = −2 and so on) so no doubt these
lift to X0(32). Next we get a 1-dimensional eigenspace spanned by the weight 3/2 theta series∑
n ψ(n)nqn

2

with ψ of conductor 4; this is surely cuspidal and has T4 = 0 and Tp2 = ±(1 + p)
depending on p mod 4. Finally we have θ3 with T4 = 1 and Tp2 = (1 + p) for all odd p.

Note that the weight 2 level 64 newform (which is a twist of X0(32) by either character of
conductor 8) doesn’t come from weight 3/2 and level 128 and trivial character.

********************
Now let’s move onto even character of conductor 8. [come back to this one day?]
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