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1 Introduction

Ambrus Pal is (Jan-Mar 2008) giving some lectures on model theory. I don’t know the basic
definitions and facts though! So here are some notes containing the basic facts and possibly more.

2 Definitions.

A language L is:
(i) a set F of “function symbols”, and a positive integer nf for each f ∈ F
(ii) a set R of “relation symnols”, and a positive integer nR for each R ∈ R, and
(iii) a set C of “constant symbols”.
For example the “language of rings” might be the language with F = {+,−, .} with n+ =

n− = n. = 2, R empty, and C = {0, 1}. Note that there are other ways to do it! Later on, when
we get to theories (that is, axioms) we will see that we can either make minus (−) part of the
language, as we just did above, or we can bung in an axiom stating that everything has an additive
inverse, and hence we can “deduce” the minus function from the axioms. Sometimes innocuous
changes like this really make a difference (for example, although I haven’t explained any of what
this means yet, we’ll see later that something called “quantifier elimination” might be false in one
theory and true in a completely equivalent theory with “more language and less axioms”). But
for sanity’s sake we have to choose once and for all what we are talking about, and Ambrus in
his course choses the following: the language of rings will have F = {+,−, ., 0, 1}, the language of
groups will have F = {1, .} (1 the identity constant, . the multiplication function with n. = 2, but
no inverse function: we will assert existence of inverses as part of the axioms) and the language
of orderings will just be one relation F = {<}.

An L-structure, typically denoted, M is the following things:
(i) a non-empty set M , the underlying set of the structure,
(ii) a function fM : Mnf →M for each f ∈ F ,
(iii) a relation, that is, a subset RM ⊆MnR , for each relation-symbol R, and
(iv) an element cM ∈M for each constant-symbol c.
Examples: in the language of groups sometimes people write 1G for the identity element of G;

here we would say that G was the group, G was the underlying set, and write 1G for the identity
element.

Note: if L is the language of rings then an L-structure is not necessarily a ring! We have no
axioms yet. An L-structure is just a set S with two distinguished elements 0 and 1 and three
completely random functions +,−, ∗ : S2 → S that can be anything.

An L-embedding η :M→N between two L-structures is an injection M → N with commutes
with the function-symbols and constant-symbols in the obvious way, but there’s a “catch”: it must
also have the property that (m1,m2, . . . ,mnR) ∈ RM if and only if (η(m1), η(m2), . . . , η(mnR)) ∈
RN . Initially this surprised me, but perhaps if for every relation you also adjoin its “opposite”
then you can see that this makes sense. Something that also surprised me was that the definition
only allowed injections—but if you regard “equals” as a relation then the if and only if part of the
definition forces the map to be an injection!
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A bijective L-embedding is called a L-isomorphism.
If M ⊆ N and η is the inclusion and η happens to be an L-embedding, we say M is a

substructure of N and N is an extension of M.
A word in L is just a finite string of symbols built using the elements of F ∪R∪ C, countably

infinitely many variable symbols v1, v2, . . ., the symbols =, ∨, ∧, ¬, ∀, ∃, ( and ), and a comma.
A term is, vaguely, a word that can be interpreted as an element of an L-structure, possibly
after substitution of variables. More formally, the set of terms of a language is the smallest set
containing all the constant-symbols, all the variables, and such that if t1, t2, . . . , tnf are terms
then f(t1, t2, . . . , tnf ) is a term for all function-symbols f . If a term t mentions only the variables
v1, v2, . . . , vd then given a structure M and elements m1,m2, . . . ,md in that structure, there’s an
obvious way of evaluating the term at these elements (formally one makes a recursive definition,
recursing on length of term); we call the resulting function tM.

An atomic formula is a word which is either of the form
(i) t1 = t2, with t1 and t2 terms, or
(ii) R(t1, t2, . . . , tnR) for R a relation-symbols and the ti terms.
The set of formulae for a structure L is the smallest set of words containing the atomic formulae

and such that
(i) if φ is a formula then so is ¬φ
(ii) If φ and ψ are formulae then so is φ ∧ ψ and φ ∨ ψ
(iii) If φ is a formula then so is ∀viφ and ∃viφ.
The set of formulae can be built recursively, and hence one can do “induction on length of

formula”.
A variable v occurs freely in a formula if it’s not inside an ∃v or ∀v quantifier; otherwise it’s

bound. A crappy example of a formula in the language of rings is v = 0 ∨ ∃v v.v = 1 and this
is a bit rubbish because v occurs both as a free and a bound variable; Marker’s book restricts to
formulae in which no variable occurs in both a free and a bound way in any subformula.

Note that we’re quantifying over elements of the structure, not subsets. This is first order
logic!

A sentence is a formula with no free variables.
If φ is an L-formula with free variables in the set (v1, v2, . . . , vd), if M is an L-structure,

and if a1, a2, . . . , ad ∈ M then by induction on length of formula one can give a truth-value to
φ(a1, a2, . . . , ad). If φ(~a) turns out to be true inM we writeM |= φ(~a), pronounced “φ(~a) is true
in M” or “M satisfies φ(a)”. If φ is a sentence then we just write M |= φ. Note that for every
sentence and for every L-structure M, either M |= φ or M |= ¬φ.

A theory, or an L-theory, is just a set of sentences in the language L. We say that an L-structure
M is a model for the theory T if M |= φ for all φ ∈ T , and we write M |= T .

Finally we can do mathematics: for example ring theory is the set of all structure for the
language of rings which are models for the theory which consists of the axioms for a ring. And so
on.

The full theory of an L-structureM is the set of all L-sentences φ such thatM |= φ. This set
is called Th(M) and note that for every φ, precisely one of φ and ¬φ will be in Th(M).

Two L-structures M and N are elementarily equivalent, denoted M ≡ N , if they have the
same theory, that is, if the L-sentences that are true forM coincide with the L-sentences that are
true for N . This is a much much weaker notion than that of isomorphism. For example I suspect
that in the theory of fields, Q and C will be elementarily equivalent. On the other hand an easy
formula induction shows that isomorphic L-structures are elementarily equivalent.

Examples of theories: if L is the language of orderings then examples of theories are complete
orderings (I call these “total orderings”), dense orderings without endpoints, discrete orderings
with a bottom but no top, and so on. If L is the language of groups then examples of theories are
the theory of abelian groups, or the theory DAG of non-zero torsion-free divisible abelian groups
(note that the natural thing to do here is to use infinitely many axioms: ∀x(x+x+x+x+· · ·+x) =
0 → x = 0 with n terms in the sum, for n = 1, 2, 3, . . .. Note that there doesn’t seem to be a
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“theory of torsion abelian groups”!1 Finally, if L is the language of rings, then examples of theories
are the theory of rings, of commutative rings, of integral domains, of fields, the theory ACF of
algebraically closed fields (again you need infinitely many axioms, one for each “degree”, the nth
one saying that any polynomial of degree n has a root), the theory ACF0 of algebraically closed
fields of characteristic 0, or the theory ACFp of algebraically closed fields of characteristic p (with
p a prime). It’s an exercise to check that all these can be axiomatised. Note however that if L
is the empty language and one attempts to develop the theory of topological spaces, one is in
trouble, because you can’t write out the axioms for a topological space using these (first-order)
formulae that we have just defined: you need to quantify over subsets, which we’re not allowed to
do. I don’t know whether this observation is “profound” or not though; I’m not really sure what
to make of it, to be honest!

3 Filters.

A filter on a set I is a subset F of the power set of I with the empty set not in F , and if s, t ∈ F
then s ∩ t ∈ F , and if s is in F and s ⊆ u then u ∈ F . An ultrafilter U is a maximal filter; this
has the property that for any subset J of I, exactly one of J and I\J is in U .

4 The compactness theorem.

If L is a language and T is an L-theory, say that T is satisfiable if there’s an L-structure M such
that M |= T .

Theorem 1 (Compactness theorem.). T is satisfiable iff all finite subsets of T are satisfiable.

Before I start the proof I need to explain a fundamental construction. If I is an index set
and {Xi : i ∈ I} is a collection of sets indexed by I, and U is an ultrafilter on I, then define an

equivalence relation on
∏
iXi by (ai)(̃bi) iff {i : ai = bi} ∈ U . This is an equivalence relation

(easy) and the set of equivalence classes is denoted (
∏
iXi)/U .

The fundamental construction in the proof of the compactness theorem is the following. If L is
a language and {Mi : i ∈ I} is a collection of L-structures, and U is an ultrafilter on I, then there’s
an ultraproduct

∏
iMi/U whose underlying set is

∏
iMi/U , and where the functions, relations

and constant-symbols are defined in the obvious way: for example, if n = nf and (a1, a2, . . . , an) ∈∏
iMi/U then choose representatives (ari )i∈I for ar, 1 ≤ r ≤ n, and define f

∏
iMi/U (a1, a2, . . . , an)

to be (fMi(a1
i , a

2
i , . . . , a

n
i ))i∈I , and check that this is well-defined. Relations: say the relation is

true on (a1, . . . , an) iff the set of i for which it’s true on the ith chunk, is in U .
Let M be

∏
iMi/U . Say φ is a formula with n free variables. Say a1 = (a1

i )i∈I and so on are
elements of

∏
iMi. The basic fact is:

Lemma 2 (Los Lemma). M |= φ(a1, a2, . . . , an) iff {i : i ∈ I,Mi |= φ(a1
i , a

2
i , . . . , a

n
i )} ∈ U .

The proof of the Los Lemma is easy formula induction. Usually one only uses the Los Lemma
for sentences but formula induction doesn’t work for sentences! The only time one uses the ultra-
ness of the filter is when proving the induction step for ¬.

The proof of the compactness theorem now goes as follows: Say all finite subsets have a model.
Let I denote the set of finite subsets of T . For each i ∈ I let Mi denote a model for the elements
of i. If φ ∈ T let φ̂ denote the subset of I consisting of i with φ ∈ i. Let F denote the subset of
the power set of I consisting of the φ̂ for φ ∈ T . One checks without too much trouble that F
extends to an ultrafilter U on I. Now

∏
iMi/U is a model for all of T by the Los Lemma.

1Indeed, jumping ahrad a little, if one considers the ultraproduct of the finite cyclic groups C1, C2, C3,. . . ,
then this will satisfy the statement “n.1 6= 0” for every n, so the property of being torsion isn’t preserved under
ultraproducts and hence isn’t axiomatisable in this way.
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5 Applications of the compactness theorem.

By a graph I mean a set V and a symmetric binary relation E on V . The theorem (apparently
due to Erdos and de Bruijn) is that a graph has a k-colouring (k some positive integer) iff all finite
subsets have a k-colouring. The proof goes like this. Fix k ≥ 1. let L denote the language with
no functions, a constant cv for each element v of V , and k + 1 relations: one binary one called E
and k unary ones called R0, R1,. . . ,Rk−1. Let T be the following set of axioms: for each v, w ∈ V
with vEw in the graph, bung in an axiom cvEcw. Now bung in an axiom saying that for all x,
exactly one of R0(x), R1(x), . . . , Rk−1(x) is true, and bung in another one saying that for all x
and y, if xEy and Ri(x) is true, then Ri(y) is false. A finite subset of these axioms only mentions
finitely many vertices of the graph, so it has a model. So there’s a model for all the axioms and
this is a colouring; for each v just associate the colour i where i is the unique i such that Ri(cv).

A shocking application is:

Theorem 3. (super-weak going up) If T is an L-theory and T has an infinite model then T has
models of arbitrarily large cardinality.

Note that one needs the assumption: for example if L is the empty language then there’s an
axiom which says “any model satisfying me has 3 elements”.

Proof. For a cardinal κ just bung in a constant-symbol for every element of κ, call the resulting
language L′, and consider the L′-theory which is the full theory ofM (our infinite model) and the
extra axioms cα 6= cβ for all α 6= β ∈ κ.

Note: There are much better going up theorems. This one is “super-weak” because (a) given
a model it produces a new one but the new one might not be elementarily equivalent to the first
one, and (b) we don’t get precise bounds on cardinalities. The best going up theorem (later on)
is a much stronger statement about T having models which are elementarily equivalent to a given
model and which have exactly some cardinality.

6 Elementary embeddings, elementary equivalence, and go-
ing up and going down.

Say that an embedding η :M→N is an elementary embedding if for every formula φ with n free
variables, and for every ~a ∈ Mn, M |= φ(a) iff N |= φ(η(a)). In words, every formula in N that
only mentions stuff in M will be true in N if and only if it’s true in M . Notation: M≺ N .

Non-example: Z injects into Q in the theory of rings, but it’s not an elementary embedding
because ∃x : x + x = 1 is true in Q and makes sense within Z but isn’t true in Z. Similarly
¬(∃x : x+ x = 1) is false in Q and makes sense within Z but is true in Z.

Of course if M ≺ N then M ≡ N ; this is just a special case: M ≡ N just means that a
sentence (that is, a formula with no free variables at all) is true in M iff it’s true in N .

Here’s a terrifying example of two structures M ⊆ N with M ≡ N (indeed M ∼= N !) but
M 6≺ N . Take the language of orders and let M be Z≥1 considered as a subset of Z≥0. If φ(x) is
the sentence (∃y)(y < x) then φ(1) is true in Z≥0 but not in Z≥1. Another example: 2Z ⊂ Z in
the language of groups. This is related to the notion of “model completeness”, which is mentioned
later on in these notes.

Notation: IfM≺ N we sayM is an elementary substructure of N and that N is an elementary
extension of M.

Here’s a neat trick: enlarging our language a bit. Say M is a L-structure; let LM denote
the language L plus an extra constant cm for each m ∈ M . Of course, M is, in a natural way,
a LM-structure! Let Diag(M) denote the set of all sentences φ of LM such that M |= φ as a
LM-structure. This set Diag(M) is called the elementary diagram of M, or just the diagram of
M. I suspect that the point of this notion is:
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Lemma 4. Let N be an LM-structure such that N |= Diag(M). Then there’s an elementary
L-embedding M→N .

Proof. The obvious thing works: send m ∈ M to (cm)N . Everything is either immediate or
almost immediate. An example of an almost-immediate thing: the map is injective because if
m, r ∈ M are distinct then M |=LM cm 6= cr and hence cm 6= cr ∈ Diag(M), so it’s true in N .
Another one: if R is a relation and ~m = (m1,m2, . . .) a vector of the appropriate length then
RM(~m) is true iff M |= R(cm1 , cm2 , . . .) (which is a sentence in LM) and this is true if and only
if R(cm1

, cm2
, . . .) ∈ Diag(M), because Diag(M) is a full theory : either a sentence is in, or its

negation is. Note also that you need formula induction to verify that for a formula φ of L some
free variables and a vector ~m ∈ Mn, and with φ′ the corresponding sentence in LM, we have
N |=L φ(~m) iff N |=LM φ′.

As a consequence of this powerful trick (“beefing up languages”) we deduce

Theorem 5. (weak going up) IfM is an L-structure such that M is infinite, then for any cardinal
κ there’s an L-structure N with |N | ≥ κ and an elementary embedding M→N .

Proof. Apply the super-weak going up result to Diag(M) in LM.

It’s “weak” because it doesn’t get κ on the nose.
Now let’s go the other way.

Lemma 6. (weak going down) If N is an L-structure and X ⊆ N is a non-empty subset, and
κ = max{|X|, |L|+ ℵ0} then there’s a substructure M of N with X ⊆M and |M | ≤ κ.

Proof. Easy: build N recursively starting with N0, the constants and X, and then just throw in
at stage n+ 1 the images of the functions applied to stage n. The proof that the resulting gadget
isn’t too big is elementary cardinal arithmetic.

Note that if |X| ≥ |L+ℵ0 then this lemma guarantees that |M | = κ, because X ⊆M . However
the lemma is still “weak” because it doesn’t say that M is elementarily equivalent to N .

Now let me explain the Tarski-Vaught criterion. First note that if M is a sub-L-structure
of N then for any atomic formula with free variables v1, v2, . . . , vn, and for any ~m ∈Mn we have
M |= φ(~a) iff N |= φ(~a); an atomic formula is just a relation between terms so this is basically
trivial.

Now here’s a criterion for a substructure to be an elementary substructure.

Lemma 7 (Tarski-Vaught criterion). If M is a substructure of N then M is an elementary
substructure of N if and only if the following is true:

For all formulae φ with free variables u1, u2, . . . , un, v and for all ~a ∈ Mn, if (∃c ∈ N with
N |= φ(~a, c))), then (∃b ∈M with N |= φ(~a, b)).

Note that the TV criterion may as well be an iff, because if there is b ∈ M with N |= φ(~a, b)
then, setting c = b, we deduce that there is c ∈ N with N |= φ(~a, c).

Note also that in both cases we have N modelling things. We don’t seem to talk about M
modelling anything!

In words: to check a substructure is an elementary substructure all you have to do is to check
the “exists” part; you have to check that whenever there is c in N with φ(c) true, you can find b
in M with φ(b) true. This is exactly the problem with Z ⊂ Q; (∃x)(x+ x = 1) has a solution in
Q but not one in Z.

Proof. If M is an elementary substructure of N then the TV criterion is trivially true (apply
the definition of “elementary substructure” to the statement ∃xφ(~a)). The other way is formula
induction, the point being that ∧, ∨ and ¬ are easy, ∀ follows from ∃, so it suffices to deal with ∃.
Here’s the argument in full. We have a formula φ with n + 1 free variables u1, u2, . . . , un, x. By
formula induction (i.e., the inductive hypothesis) we know that for all ~a ∈Mn and b ∈M we have
M |= φ(~a, b) iff N |= φ(~a, b). Now assume the TV criterion, and choose ~a ∈Mn. We want to show
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that M |= ∃xφ(~a, x) iff N |= ∃xφ(~a, x). Here’s how we do it. By definition, M |= ∃xφ(~a, x) iff
there is b ∈M such that M |= φ(~a, b). By the inductive hypothesis this is true iff there is b ∈M
such that N |= φ(~a, b) (note that this latter iff is not vacuously true: φ(~a, b) doesn’t have any free
variables in but it might have lots of quantifiers, so changing universe is a big deal; we really are
using the inductive hypothesis here). By the TV criterion this is true iff there exists c ∈ N with
N |= φ(~a, c). And this is true iff N |= ∃xφ(~a, x). And that’s what we wanted!

Before we prove the best possible going-down we need to introduce a way of making the TV
criterion “concrete”, that is, we need to be able to get from c to b. If φ is a formula in a language L
and φ has free variables u1, u2, . . . , un, v, and ifM is an L-structure, then we say that f : Mn →M
is a Skolem function for ∃vφ if for all ~a ∈Mn, if M |= ∃vφ(~a, v) then M |= φ(~a, f(~a)). Of course
by the axiom of choice, such things always exist. So now we use this trick (due to Skolem) to
prove

Theorem 8. (Lowenheim-Skolem going down) If N is an L-structure and X ⊆ N is a subset
such that |X| = κ ≥ |L|+ ℵ0 then there exists M≺ N with X ⊆M and |M| = κ.

This is the proper “going down” theorem. We get an elementary embedding and a given
cardinality (assumed sufficiently large).

Proof. Let L′ denote the language L plus a new function-symbol f∃vφ for all L-formulae φ and for
all free variables v of φ. If φ has r + 1 free variables in all then set nf∃vφ = r. Note that |L′| ≤ κ
because there are only countably many variable symbols! Now if N is an L-structure then use
Skolem functions to make N an L′-structure. By “weak going down” there’s a sub-L′-structure
M with X ⊆ M and |M | = κ. Skolem’s observation is that, as L-structures, we have M ≺ N .
To verify this it suffices to use the TV criterion. Say φ is a formula with variables u1, u2,. . . ,un,v,
and ~a ∈Mn. Then ∃c ∈ N : N |= φ(~a, c)) implies that N |= φ(~a, fN∃vφ(~a)). But b := fN∃vφ(~a) ∈M !
So N |= φ(~a, b) and this is precisely TV.

Corollary 9 (going up theorem.). If T is an L-theory and if T has an infinite model then for all
κ ≥ |L|+ ℵ0, T has a model of size κ.

Proof. By weak going up, T has a model N with |N | ≥ κ. Take a subset X of N of size κ. By
going down there’s an L-structureM and an elementary embeddingM→N with |M | = κ. Now
M ≺ N implies M ≡ N , and hence M |= T .

7 Completeness and catagorical-ness.

An L-theory T is complete if any two models of T are elementarily equivalent! Non-example: the
theory of fields of characteristic zero, because the sentence ∃x : x2 = 2 is true in some and not
true in others. Trivial example: a full theory, for example Th(M) for some structure M (recall
that the full theory is just a list of every sentence which is true in M).

A sentence φ of L is a consequence of a theory T if, for all models M of T we have M |= φ.
I have a moral objection to this definition: a consequence of a bunch of sentences should be
something which one can prove from the sentences in some formal proof-theory type of way. But
Ambrus says that he doesn’t want to do any proof theory, and anyway, by the completeness
theorem, which he doesn’t want to do because he doesn’t want to do any proof theory, one can
formalise my definition and then prove that it’s equivalent to his definition.

Notation: if φ is a consequence of T then we write T |= φ. So “|=” is transitive: if M |= T
and T |= φ then M |= φ.

A useful remark is:

Lemma 10. An L-theory T is complete iff for all sentences φ, either T |= φ or T |= ¬φ.

6



Proof. If T has no models at all then T |= φ for all sentences φ and the lemma is true in this case.
So let’s assume T has models. If for all sentences φ either T |= φ or T |= 6 φ, then for any two
models M and N and any sentence φ, if M |= φ then, because M |= T , we can’t have T |= ¬φ,
so we must have T |= φ, and this means that N |= φ. Hence T is complete. Conversely, if T is
complete and has a modelM then for a sentence φ, eitherM |= φ, in which case all models for T
satisfy φ, and hence T |= φ, orM |= ¬φ in which case the same argument shows that T |= ¬φ.

If κ is a cardinal and L is a language, we say that an L-theory T is κ-categorical if any two
models of T of cardinality κ are isomorphic to each other! We’ll see examples of this later. In
words this says that “there’s at most one model of size κ”. I guess vector spaces will give examples
(use a standard basis argument), and so will algebraically closed fields of a fixed characteristic
(use a transcendence degree argument), for κ large enough. What I’m saying is that it’s not hard
to think of interesting categorical theories. There is also a really stupid class of examples: if a
language contains uncountably many constants and the theory contains sentences demanding that
all these constants are distinct, then clearly the theory is ℵ0-categorical, because there are no
countable models at all, and in general being κ-categorical is not going to be of much use at all if
|L| > κ. On the other hand, here’s an amazing consequence of going up and going down, which
shows how strong κ-categoricality is if κ ≥ |L| (which is true in all the sensible examples above):

Proposition 11 (Vaught’s test). If T is a satisfiable theory which is κ-categorical for some infinite
κ ≥ |L|, and such that every model of T is infinite, then T is complete!

This is kind of amazing because it seemed to me a priori to be hard to think of complete
theories.

Proof. Take two models M and N of T . We need to show that M≡ N . By assumption, M and
N are infinite. So by going up and going down we can find M′ with M′ ≡M and |M′| = κ, and
we can also find N ′ with N ′ ≡ N and |N ′| = κ. By κ-catagoricality we haveM′ ∼= N ′ and hence
certainly M′ ≡ N ′. So we’re home.

8 Back and forth.

This is a technique used to construct isomorphisms between models and hence verify κ-categorical-
ness.

Let ACF denote the theory of algebraically closed fields (in the language of rings). If p is a
prime then let ACFp denote the theory of alg closed fields of characteristic p, that is, add in the
extra axiom 1 + 1 + 1 + 1 + · · ·+ 1 = 0. Let ACF0 denote the theory of alg closed fields of char 0,
that is, add in infinitely many extra axioms ¬(1 + 1 + 1 + · · ·+ 1 = 0), one for each prime.

Theorem 12. The following theories are complete.
(i) Dense linear orderings without endpoints
(ii) DAG (Torsion-free divisible abelian groups of size greater than 1).
(iii) ACFp and ACF0.

Proof. Use Vaught’s test.
(i) First we need to check that every model is infinite. This is true because given x in a dense

linear ordering without endpoints, x isn’t an endpoint, so x < x1 < x2 < · · · .
So now it suffices to check that the theory is ℵ0-categorical. We use “back and forth”. Take

two countable modelsM and N . List the elements of M (say m1,m2, . . .) and N . We recursively
define subsets Xn ⊆ M and Yn ⊆ N and order-preserving bijections fn : Xn → Yn such that if
i ≤ n then xi ∈ Xn and Xi ⊆ Xn and such that the fi are compatible. This will be enough,
because the union of the fn will be the bijection we seek (easy check that it works).

Here’s the construction. Set X1 = {m1} and Y1 = {n1} and let f1 be the bijection. For the
induction step we have Xi and Yi; let X ′i be Xi ∪ {mi+1} (this might not be Xi+1) and extend fi
to an injection f ′i : X ′i → Y by the axioms: if mi+1 ∈ Xi then we do nothing; if it’s new and in
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the middle of Xi then use denseness of Y , and if it’s new and at an end then use no-endpoint-ness
of Y .

Now let Y ′i be the image of f ′i and let Yi+1 be Y ′i ∪ {ni+1}. The inverse of f ′i gives a bijection
Y ′i → X ′i and we extend this to an injection Yn+1 → M ; let the image be Xn+1 and let fn+1 be
the inverse of the induced bijection Yn+1 → Xn+1.

(ii) non-zero torsion-free DAGs. By torsion-freeness and divisible-ness these gadgets are easily
checked to be canonically Q-vector spaces. So now any models are infinite and if κ > ℵ0 then a
trivial argument involving counting bases shows that the theory is κ-categorical.

(iii) Ambrus claimed that ACFp and ACF0 were κ-categorical for any uncountable κ, which
is true by a transcendence basis argument. Ambrus tried to give a proof “by construction” but
it seemed to have a hole in it when κ was a limit cardinal. However it worked for ℵ1 and this is
all that one needs to deduce completeness. The idea was: given two algebraically closed fields of
cardinality ℵ1 and the same characteristic, enumerate all the elements, indexing by ω1, and then
construct recursively an isomorphism between ever-larger subfields a la the dense linear order
proof. The problem with the proof the way Ambrus presented it is that at limit ordinals one
wants to take unions and be sure that one doesn’t use up all of one field but not all of the other!
This problem doesn’t arise in ω1 though.

Homework. A total order is discrete if every element is either the top or has a unique successor,
and if every element is either the bottom or has a unique predecessor. Ambrus said that he thought
that the theory of discrete total orders with a min but no max is not κ-categorical for any κ > ℵ0.
I think that a proof of this might be: take the positive integers and then glue κ copies of Z on
the end; there’s one model. Now glue one more Z on the end and there’s a second model. I don’t
think these can be isomorphic: one has a cofinal set of the form x, s(x), s(s(x)), . . . (with s the
successor function) and the other doesn’t.

Theorem 13. (Ax) For any sentence in the language of rings, TFAE:
(i) ACF0 |= φ
(ii) C |= φ
(iii) Fp |= φ for infinitely many primes p
(iv) ACFp |= φ for all but finitely many p.

Proof. (i) implies (ii) trivially. Conversely (ii) implies (i) because ACF0 is complete—we just
proved this.

We’ll show (i) implies (iv) implies (iii) implies (i). The first and last arrow require a little work;
the middle one is trivial.

(i) implies (iv) uses

Lemma 14. If T is an L-theory and φ is an L-sentence with T |= φ then there’s a finite subset
S ⊆ T with S |= φ.

Proof. This is just the compactness theorem. If the lemma were false then apply the compactness
theorem to T ∪{¬φ} for an immediate contradiction: the negation of the conclusion of the lemma
implies that any finite subset of T ∪ {¬φ} has a model.

Using this lemma, (i) implies (iv) is easy: if ACF0 |= φ then there’s a finite subset S of ACF0

which models φ. But ACF0 is ACF union countably many axioms of the form 1+1+1+· · ·+1 6= 0,
and S will only mention finitely many of these axioms, so there’s N such that no axiom of the
form N = 0 is true in S, so any algebraically closed field K of characteristic p > N will have
K |= S and hence K |= φ. So ACFp |= φ for all p > N .

Finally we must show (iii) implies (i). But somehow this is trivial. We do it by contradiction.
Say φ is a sentence such that (iii) holds for φ but (i) is false for φ. By completeness of ACF0 and
a “useful remark” above, we must have ACF0 |= ¬φ. But then by (i) implies (iv) applied to ¬φ
we deduce that ACFp |= ¬φ for all sufficiently large p, and hence that Fp |= ¬φ for all sufficiently
large p, which contradicts (iii).
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9 Axiomatisation.

A class C of L-structures is axiomatisable if there’s a theory T such that M ∈ C iff M |= T . We
say T axiomatises C.

We say C is finitely axiomatisable if there’s a finite T that axiomatises it.
If one wants to prove that a certain axiomatisable theory is not finitely axiomatisable, here’s

a powerful approach which is a consequence of compactness:

Lemma 15. If the class of all models of a theory T is finitely axiomatisable then there’s a finite
subset S of T which axiomatises the class.

Proof. Take any finite set of sentences that axiomatises the class. Now ∧ them all together and
you get one sentence φ that axiomatises the class! IfM |= T thenM |= φ, by definition. So T |= φ
by definition. So by compactness there’s a finite subset S of T such that S |= φ (we proved this
earlier). The claim is that this S works and the proof is easy: if M |= T then certainly M |= S.
On the other hand if M |= S then M |= φ and hence M |= T !

Theorem 16. The following classes are axiomatisable but not finitely axiomatisable.
(i) The class of torsion-free abelian groups.
(ii) The class of fields of characteristic zero.
(iii) The class of algebraically closed fields.

Proof. (i) is axiomatisable: write down the axioms for an abelian group (finitely many) and then
just add an axiom phin : nx = 0 =⇒ x = 0 for every n ≥ 1. But if this class were finitely
axiomatisable then there would be a finite subset that did the job, and such a finite set would
only mention φn for a finite set of n, and if it didn’t mention φp for p prime then Z/pZ kills you.

(ii) Just the same: there are finite fields obeying any finite set of equations of the form n 6= 0
for n an integer.

(iii) Just the same. It suffices to show that for any prime p there is a field which is not
algebraically closed because it has an extension of degree p, but which has no extension of degree
1 < n < p. There’s an extension of Z/`Z which works, by Galois theory: its absolute Galois group
is Zp × H with H the product of all the other q-adic integers, q not p, so there’s a field whose
algebraic closure has Galois group Zp and this will do.

Remark 17. It is not the case in general that theories that have only infinite models will not
be finitely axiomatisable: for example atomless Boolean algebras, or (non-empty) total orders
without endpoints only have infinite models.

10 Boolean rings and algebras.

A Boolean ring is a commutative ring R with a 1 such that x2 = x for all x. If I is a maximal
ideal of R then R/I is a field with x2 = x and hence R/I = Z/2Z. If x ∈ R× then there’s a y
with xy = 1, so x = x2y = xy = 1 and hence R× = {1}. If 0 6= x ∈ R then 1−x isn’t 1 and hence
isn’t a unit, so there’s a maximal ideal containing 1 − x and this maximal ideal does of course
not contain x. Hence the intersection of all the maximal ideals is zero, and hence R injects into a
product of Z/2Zs. Conversely any subring of a product of Z/2Zs (for example the subring of the
countable product of Z/2Zs consisting of functions which are constant away from a finite set) is
a Boolean ring.

A Boolean algebra is a set X equipped with constants 0 and 1, binary operators ∧, ∨, and
a unitary operator ¬, and satisfying a bunch of axioms (each binary operator distributes over
the other, for example). It’s a rather tedious but completely elementary check to see that given a
Boolean algebra one can put a Boolean ring structre on it by defining x+y = (x∧(¬y))∨(y∧(¬x)),
and xy = xy, and in fact the categories of Boolean rings and Boolean algebras are isomorphic.
A basic example of a Boolean algebra is the set of subsets of a set, with ∧ being intersection, ∨
being union and ¬ being complement. The fact proved above that every Boolean ring embeds
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into a product of Z/2Zs just says that in fact any Boolean algebra is a subalgebra of a power set
algebra.

One can define a partial ordering on a Boolean algebra: x ≤ y iff xy = x. From the point of
view of sets this just says x ⊆ y. An atom in a Boolean algebra is x with x 6= 0 but y ≤ x implies
that either y = x or y = 0.

Finite Boolean algebras are all checked to be equal to power set algebras (one can embed it
into a power set algebra using maximal ideals and then use basic facts about coprime maximal
ideals to construct all the idempotents one needs). In particular all finite Boolean algebras of size
greater than 1 contain atoms (but this was clear anyway). More generally, a Boolean algebra B
is said to be finitely-generated if there’s a finite subset X of B such that B is the smallest sub-
Boolean-algebra of B containing X, and the theorem is that a finitely-generated Boolean algebra
is isomorphic to the power set of a finite set.

A useful fact is: if B is generated by the finite set G then the map from maximal ideals of
B to finite subsets of G given by sending I to {g ∈ G : g ∈ I} is an injection. Indeed, g 6∈ I
iff 1 − g ∈ I because the residue field is Z/2Z, and hence for I and J maximal ideals with the
same intersection with G, the induced maps B → Z/2Z agree on a generating set and hence agree
everywhere, so the kernels are the same.

Proposition 18. If B is a Boolean algebra generated by a set G then every b ∈ B can be written
as

b = c1 ∨ c2 ∨ . . . ∨ cn
for some n ∈ Z≥0, where each cj ∈ B is of the form

cj = d1j ∧ d2j ∧ . . . ∧ dij
where each dij is either in G or of the form ¬g for some g ∈ G.

Proof. For H ⊆ G write B(H) for the subalgebra of B generated by H. Then B = ∪HB(H)
where H runs through the finite subsets of G (because the union is a subalgebra containing G)
and hence WLOG G is finite. Hence WLOG B is the power set of a finite set. Any element of
B is a finite union of singletons, so it suffices to prove that any singleton is of the form cj above.
Well, we have B = P (X) generated by G, so, for x ∈ X, let Y ∈ B be the obvious intersection:
for each g ∈ G, throw in g if x ∈ g and ¬g if x 6∈ g. If we’ve recovered {x} then we’re done.
Clearly x ∈ Y . Now if z ∈ Y and z 6= x then, because the maximal ideals of B biject with X,
the maximal ideals corresponding to x and z do not coincide, so there’s some g ∈ G with either
x ∈ g and z 6∈ g or x 6∈ g and z ∈ g (the subsets of G separate the maximal ideals). But this is
impossible by definition.

Similarly every b ∈ B is an ∧ of some c′j , with the c′j ’s all the ∨s of d′ijs, each of which is either
in G or its complement is in G.

The theory of atomless Boolean algebras (which is easily shown to be finitely axiomatisable)
is ℵ0-categorical. In fact one can prove this using back-and-forth. The basic thing you need is of
course that if you have two atomless Boolean algebras X and Y , and finitely-generated subalgebras
A and B with a given isomorphism between them, and you choose x ∈ X with x 6∈ A, and let A′

denote the smallest subalgebra of X containing A and x, then there’s a subalgebra B′ of Y such
that the given isomorphism A = B extends to an isomorphism A′ = B′. The proof is this. We
know that A and A′ are finitely-generated Boolean algebras and are hence isomorphic to power
sets: say A = P (U) and A′ = P (U ′). The injection A → A′ sends orthogonal idempotents to
orthogonal idempotents and hence sends distinct elements of U to disjoint subsets of U ′. The
fact that 1 goes to 1 means that the subsets of U ′ cover U ′ and hence the injection A → A′ is
induced by a surjection U ′ → U . For every u ∈ U with more than one pre-image the corresponding
idempotent in B isn’t an atom, so choose something less than it and throw it in to B′; this way
one can build a B′ which naturally contains a copy of A′; now cut B′ down until it’s exactly A′.

An interesting remark is that the theory of atomless Boolean algebras is not κ-categorical for
any κ > ℵ0. But I don’t really understand why not.2 2

2Why not?
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11 Quantifier elimination.

If φ is a formula with free variables u1, u2, . . . , un, and if M is an L-structure then we write
M |= φ if for all ~a ∈Mn we have M |= φ(~a). If φ is a sentence then this new definition coincides
with the old. If φ is a formula as above then let its closure φ be the sentence ∀u1∀u2 . . . ∀unφ.
Then one checks M |= φ iff M |= φ.

Note however that ¬φ 6= ¬φ! In other words, for a random formula φ we might have M 6|= φ
and M 6|= ¬φ: this occurs when φ is “sometimes true, sometimes false”.

If T is a set of L-formulae and M is an L-structure then we say M |= T if M |= φ for all
φ ∈ T .

If T is a set of L-formulae and φ is an L-formula then we say T |= φ if for anyM withM |= T
we have M |= φ.

If T and Γ are sets of formulae then we write T |= Γ if T |= φ for all φ ∈ Γ.
We say that a set of formulae is satisfiable if there’s an L-structure M with M |= T .
Let me (KB, not Ambrus) go through these definitions again. If T is a set of formulae, let T

denote the set {φ : φ ∈ T}, that is, just replace every formula that has some free variables with its
closure. Ambrus noted thatM |= φ iffM |= φ. I think that the same sort of thing will be true for
these other notions. If T is a set of L-formulae and M is an L-structure then M |= T iff M |= φ
for all φ ∈ T iff M |= φ for all φ ∈ T iff M |= ψ for all ψ ∈ T iff M |= T . Similarly T is a set of
formulae and φ is a formula then T |= φ iff (M |= T =⇒ M |= φ) iff (M |= T =⇒ M |= φ) iff
T |= φ. Next, if T and Γ are sets of formulae then T |= Γ iff T |= φ for all φ ∈ Γ iff T |= φ for all
φ ∈ Γ iff T |= ψ for all ψ ∈ Γ iff T |= Γ. Finally, T is satisfiable iff T is satisfiable.

Lemma 19 (deduction lemma). If φ is a sentence (note: not a formula!) and if Γ is a set of
formulae such that Γ ∪ {φ} is not satisfiable then Γ |= ¬φ.

Proof. Trivial proof by contradiction. If the statement Γ |= ¬φ is false, then there’s M such that
M |= Γ and M 6|= ¬φ. But φ is a sentence, and hence M |= φ. So M |= Γ ∪ {φ}, contradicting
our assumption.

Lemma 20. If ∆ is a theory (i.e., a bunch of sentences in a language L) and if Γ is a set of
formulae, and if ∆∪Γ is not satisfiable then there is φ1, φ2, . . . , φn ∈ ∆ such that Γ |= ¬(φ1∧φ2∧
. . . ∧ φn).

Proof. Easy. If Γ ∪∆ is not satisfiable then by compactness there’s a finite subset φ1, φ2, . . . , φn
of ∆ such that Γ∪ {φ1, φ2, . . . , φn} is not satisfiable. So Γ∪ {φ1 ∧ φ2 ∧ . . .∧ φn} is not satisfiable.
So Γ |= ¬(φ1 ∧ φ2 ∧ . . . ∧ φn) by the previous lemma.

If L is a language and φ is a formula with free variables x1, x2, . . . , xn, and if c1, c2, . . . , cn are
constants not appearing in L, and if L′ is the language obtained from L by adding these n new
constants, then let φ(~c) denote the sentence in L′ obtained by substituting ci for xi.

Lemma 21. If Γ is a set of L-formulae and if φ and L′ are as above, and if Γ |=L′ φ(~c) then
Γ |=L φ.

Remark: Γ |=L φ iff Γ |=L′ φ.

Proof. IfM is an L-structure withM |=L Γ and if ~a ∈Mn then we need to show thatM |=L φ(~a).
But ifM′ is the L′-structure obtained fromM by defining (ci)

M′
= ai for all i ≤ n thenM′ |=L′ Γ

and hence by assumptionM′ |=L′ φ(~c), so by an easy formula inductionM′ |=L′ φ(~a), and hence
M′ |=L φ(~a).

Here’s the final lemma before we state the main theorem of this section. Say that a formula
ψ is open if it has no quantifiers. The big definition: an L-theory T has quantifier elimination if
for every formula φ there’s an open formula ψ with V (φ) = V (ψ) (i.e. the same free variables)
and such that T |= (φ ⇐⇒ ψ). Note: even though φ and ψ might have n > 0 free variables, the
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statement T |= (φ ⇐⇒ ψ) is super-strong: it says that for any ~a ∈ Mn, T |= (φ(~a) ⇐⇒ ψ(~a))
and hence φ(~a) is true in T if and only if ψ(~a) is.

An example: Cramer’s rule is an example of quantifier elimination! Cramer’s rule says that
a square matrix has an inverse if and only if its determinant is non-zero. The existence of an
inverse is n2 existence statements satisfying n2 equations; the determinant is just one assertion
about something being non-zero.

Stupid remark: if φ is a sentence, for example (∃x)(x = x), then the formula ψ above would
have to be an open formula with no free variables and hence with no variables at all. If furthermore
the language has no constants then there arguably are no possibilities for ψ at all. To fix this
one can demand that L always contains at least one constant, or one can drop the constraint that
V (φ) = V (ψ). Because we’re always demanding that our models are non-empty, we could always
demand that our theories have a constant element and this wouldn’t change anything we’ve said.

We have seen that completeness is a very desirable property; you can prove a theorem for
all models at once by just checking it for one special model that might have lots of extra nice
properties. It turns out that quantifier elimination sometimes implies completeness, so quantifier
elimination should also be thought of as a desirable property of a theory.

{22}
Lemma 22. Let T be an L-theory. Assume that for all open formulae φ with free variables
V (φ) = {u1, u2, . . . , un, x}, there’s an open formula ψ with V (ψ) = {u1, u2, . . . , un} and such that
T |= ((∃xφ) ⇐⇒ ψ). Then T has quantifier elimination.

I guess that this is somehow unsurprising: to remove all the quantifiers from a general formula
you “start in the middle”, removing the first ∃, and then work out.

Proof. Straightforward formula induction. If φ is atomic then it’s open so ψ = φ will do. If φ = ¬θ
then by induction there’s open α such that V (θ) = V (α) and T |= θ ⇐⇒ α. Now it’s not hard
to check that ψ := ¬α is open, V (ψ) = V (φ), and T |= φ ⇐⇒ ψ (but this last point does need
checking! The point is that if T |= θ ⇐⇒ α then for any model for T we have θ(~a) true iff α(~a)
true, so θ(~a) false iff α(~a) false.)

Now ∧ and ∨ are obvious. What’s left is ∃ and this is of course where we use the assumption.
If φ is ∃xθ then by induction there’s open α with T |= (θ ⇐⇒ α). By the assumption of the
lemma applied to α, there’s an open ψ with T |= ((∃xα) ⇐⇒ ψ). The claim is that ψ will do,
that is, that T |= (φ ⇐⇒ ψ). To prove this, take M with M |= T . Then M |= (θ ⇐⇒ α)
and M |= ((∃xα) ⇐⇒ ψ). We claim that M |= (φ ⇐⇒ ψ). To verify this, take an arbitrary
~a ∈Mn. We need to check thatM |= (∃xθ(~a, x)) iffM |= ψ(~a). Well,M |= (∃xθ(~a, x) if and only
if there’s b ∈ M with M |= θ(~a, b). This is true if and only if there’s b ∈ M with M |= α(~a, b).
And this is true if and only ifM |= ∃xα(~a, x). And this is true if and only ifM |= ψ(~a). So we’re
home.

So we’re working towards the proof of the “big theorem about quantifier elimination”. But to
even explain the statement of the theorem we need the notion of “algebraically prime models”.

Let T be an L-theory. Let T∀ denote the set of all L-sentences φ, where φ runs through the
open L-formulae such that T |= φ. Recall that T |= φ iff T |= φ. Vaguely, for a sentence to be in
T∀, it must be deducible from T , it can only have ∀s in, no ∃s, and all the ∀s must be at the very
beginning.

The theory T∀ is called the set of all universal consequences of T . By definition if M |= T
then M |= T∀. But the really neat thing about the definition is that the truth of T∀ is inherited
by substructures.

Lemma 23. If M⊆ N are L-structures and if N |= T then M |= T∀.

Proof. Choose ψ ∈ T∀. Then ψ = φ with φ an open formula and T |= φ. So if N |= T then
N |= φ, and φ has no quantifiers, so M |= φ, so M |= φ.

So here’s examples of this notion. If L = {0, 1,+,−, ∗} is the language of rings and T is the
theory of fields, then I claim that T∀ is the theory of integral domains. For if R is an integral

12



domain, then it is a subring of its field of fractions K, and K |= T and hence R |= T∀. So any
integral domain models T∀. Conversely if S is a ring and S |= T∀ then we need to check that S is
an integral domain, so we need to check 0 6= 1, that xy = yx and that xy = 0 =⇒ x = 0∨ y = 0.
So it suffices to check that these three statements are in T∀. Well, 0 6= 1 is certainly a consequence
of the theory of fields, and it’s an open formula, so 0 6= 1 ∈ T∀. Similarly xy = yx is true for all
fields and is an open formula, so ∀x∀yxy = yx is in T∀. Finally x = 0 ∨ y = 0 ∨ xy 6= 0 is true for
all fields, so again we’re done.

Similarly if L is the language of rings and T is the theory of algebraically closed fields, then
T∀ is again the theory of integral domains.

Similarly if L = {0, ∗} is the language of groups (let’s not throw in inverses into the language,
let’s make them part of the theory) and T is the theory of non-zero torsion-free divisible abelian
groups, then T∀ is the theory of commutative monoids with cancellation and no torsion (note
that for a monoid to have no torsion is just the infinitely many axioms (one for each n ≥ 1) that
nx = ny implies x = y). Note that {0} |= T∀ (because it’s a substructure of a non-zero torsion-free
divisible abelian group) but it’s not non-zero.

If T is a theory in a language L then we say that T has algebraically prime models if for every
model M of T∀ there’s a model N of T and an L-embedding η : M → N such that for every
L-embeddingM⊆ N ′ with N ′ |= T there’s an embedding (not assumed unique) N → N ′ making
the obvious diagram commute. We say that N is an algebraically prime extension of M.

As examples, the theory of fields has algebraically prime extensions (given an integral domain,
take its field of fractions) and in this case the morphism N → N ′ is unique. Similarly the theory
of algebraically closed fields has algebraically prime extensions, but here the algebraically prime
extension of an integral domain is an algebraic closure of its field of fractions, and in particular
the embedding N → N ′ (with notation as above) will not in general be unique.

As a final example, the theory of non-zero torsion-free divisible abelian groups has algebraically
prime models too: if M is a commutative torsion-free monoid with cancellation and K(M) is the
abelian group generated by M then K(M)⊗Q will be an algebraically prime extension of M , if
this is non-zero. If however it is zero then M = 0 and in this case Q is an algebraically prime
extension of M and again there is severe non-uniqueness in making the diagram commute.

Another definition: if M⊆ N are L-structures then we say M is simply closed in N (written
M ≺s N ) if for all open formulae φ with free variables u1, u2, . . . , un, x and for all ~a ∈ Mn, if
N |= ∃xφ(~a, x) then M |= ∃xφ(~a, x).

Note that if M ≺ N then (applying the definition of ≺ to the formula ∃xφ(~u, x)) we deduce
that M ≺s N . I think Ambrus said the converse was false though; ≺s is strictly weaker than ≺.
He didn’t give any examples though, and that’s a shame because my favourite example Z 6≺ Q also
has the property that Z is not simply closed in Q either, for the usual reasons: let φ be x+ x = 1
and set n = 0. Ambrus said, when I asked him, that he didn’t know an example offhand either.

The theorem which we’ll prove in this section is about a theory T in a language L which is
assumed to have a non-empty set of constant symbols. This is for the silly reason mentioned earlier
in the definition of quantifier elimination.

{24}
Theorem 24. If T is an L-theory (L assumed to have a constant) such that

(i) T has algebraically prime models, and
(ii) If M⊆ N and M |= T and N |= T then M≺s N .
Then T has quantifier elimination.

The proof is very long and we need sublemmas. However the sublemmas are all proved under
the same assumptions as the theorem and use notation which can only be defined using things
appearing in the theorem, so it’s probably best to formally begin the proof now. Of course the
strategy is to use Lemma 22. The mystery (to me, at this point) is how you’re going to use the
assumptions of the theorem to get rid of an ∃. I can’t make any more sensible comments because
I haven’t internalised the proof yet.

Proof. (of Theorem). We use Lemma 22. So let φ(~u, x) is an open formula with n+1 free variables.
Adjoin n new constants c1, c2, . . . , cn to L, to get a language L′. Here’s an elementary observation
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about L and L′.

Sublemma 25. Let U be an L-theory. (a) If U has quantifier elimination as an L-theory then U
has quantifier elimination as an L′-theory.

(b) If U has algebraically prime models as an L-theory then U has algebraically prime models
as an L′-theory.

Note: I made this up. I hope it’s OK. Perhaps the converse of the lemma is true too.

Proof. (a) Say φ′ is is an L′-formula. Replace each occurrence of a constant ci with a variable
xi, to get an L-formula φ. By QE for U , we know that there’s an open ψ with V (φ) = V (ψ)
and U |=L φ ⇐⇒ ψ. Let ψ′ be ψ(~c). Then V (φ′) = V (ψ′) and ψ′ is open. The claim is that
U |=L′ φ′ ⇐⇒ ψ′. To check this, let M be an L′-structure with M |=L′ U . Then M |=L U and
hence M |=L φ ⇐⇒ ψ. Hence M |=L φ(~c) ⇐⇒ ψ(~c). Hence M |=L′ φ′ ⇐⇒ ψ′, which is what
we wanted.

(b) Let U ′ denote U regarded as an L′-theory. If φ is an open L-formula with U |=L φ then φ
can also be regarded as an open L′-formula, and I claim that U ′ |=L′ φ, and this is because any
L′-structure which is a model for U ′ is naturally a L-structure and is naturally a model for U , so
it models φ in L, so it models φ in L′. Hence U∀ ⊆ U ′∀.

Now sayM′ is a model for the L′-theory U ′∀. LetM denote the obvious L-structure associated
toM′. Then clearlyM |=L U∀. Because U has algebraically prime models, there’s an L-model N
of U that containsM and is “universal” in the weak sense of the definition of algebraically prime.
Now N contains M which is an L′-structure, so N can naturally be made into an L′-structure N ′
(use the same constants as in M). My claim is that this model is an algebraically prime extension
ofM′. For if N ′′ is any extension ofM′ which is an L′-structure and a model for U ′, it’s a model
for U , so there’s a map N ′ → N ′′ of L-structures making the obvious diagram commute. I claim
that this is a map of L′-structures, and this is clear because the constants are in M′.

Let ∆ be the set of all variable-free formulas in L′: that is, no free variables and no bound
variables either! Note that if α ∈ ∆ then α is closed (that is α = α) and open (no quantifiers).

Sublemma 26. If L′ and φ are as above, and if T satisfies the assumptions of the theorem, and
if M and N are two L′-structures with M |= T and N |= T , and if furthermore

(i) M |= ∃xφ(~c), and
(ii) For all ψ ∈ ∆, if M |= ψ then N |= ψ.
Then N |= ∃xφ(~c).

Note that if T satisfies the assumptions of the theorem and if the theorem is correct, then T
will have quantifier elimination as an L-theory and hence as an L′-theory. Hence there’s an open
L′-sentence ψ with T |=L′ (∃xφ(~c)) ⇐⇒ ψ. Now ψ has no bound variables and no free variables,
so it has no variables at all, so it’s in ∆, and M |=L′ ψ, so by the assumptions of the lemma we
have N |= ψ, and hence N |= ∃xφ(~c). In particular the theorem implies the sublemma.

Proof. We are going to use the trick of writing down some kind of structure-theoretic analogue
of “the prime subfield of a field” (using the existence of algebraically prime models). First we
do the natural thing “without axioms”, which is purely formal. Indeed, one checks easily that
for a given L′-structure, the intersection of all the L′-substructures is a L′-structure, the smallest
L′-substructure of the original structure. Let M′ and N ′ denote the smallest sub-L′-structures
of M and N (of course, if M |= T there’s no reason to suspect that M′ |= T ). Now assumption
(ii) of the lemma is enough to deduce that M′ and N ′ are isomorphic as L′-structures. This is
because M ′ can be thought of as the set of “interpreted terms in M” in the obvious sense: an
element of M ′ is of the form tM with t an L′-term with no variables. So the obvious way to
attempt to define an isomorphism M′ → N ′ is to send tM to tN . One needs to check this is a
well-defined bijection and an isomorphism of L′-structures. But this is easy. For example to check
i is well-defined, note that tM1 = tM2 implies M |= (t1 = t2) and t1 = t2 is in ∆, so (ii) implies
N |= (t1 = t2), so tN1 = tN2 . The fact that the map is an injection is proved similarly, as is the
fact that it’s an embedding of structures and that it’s a surjection.
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Now by assumption T has algebraically prime models (as a L-theory and hence as a L′-theory).
Moreover, M |= T and hence M′ models T∀. So let M′′ be an algebraically prime extension of
M′. Because M′ ⊆ M and M |= T , we deduce, by definition of algebraically prime extension,
that we may assumeM′′ ⊆M. Also by definition, the isomorphismM′ = N ′ means that there’s
an L′-embedding M′′ → N . Define N ′′ to be the image of M′′ under this embedding. Now
N ′′ |= T because N ′′ ∼=M′′ and M′′ |= T by definition of an algebraically prime extension. Now
we can prove the lemma: By assumption M |= ∃xφ(~c). Now one of our assumptions about T
is that sub-T -models of T -models are simply closed (as L-structures). Hence M′′ ≺s M (as L-
structures). So by definition of simply closed,M′′ |=L ∃xφ(~c) (because φ is open by assumption).
Hence N ′′ |= ∃xφ(~c) (because M′′ and N ′′ are isomorphic). Hence N |= ∃xφ(~c) (use the x in
N ′′!).

Recall that we seek an open ψ(~u) such that T |= (∃xφ) ⇐⇒ ψ. Let’s introduce even more
notation: recall L′ was this new language with n extra constants and ∆ was the variable-free
formulas in L′. Let ∆′ denote {δ ∈ ∆|T ∪ {∃xφ(~c, x)} |= δ}. In words, ∆′ is the variable-free
formulas we can deduce from T and the assumption ∃xφ(~c). It’s visibly true that T∪{∃xφ(~c, x)} |=
∆′. Note also that ∃xφ(~c, x) isn’t in ∆′ because it isn’t in ∆. But the funny thing is

Sublemma 27. T ∪∆′ |= ∃xφ(~c, x).

In words, we’re saying that we can deduce the existence statement from T and a bunch of
statements which have no variables. The proof basically deduces it from the previous sublemma.

Proof. If T ∪∆′ has no models then the lemma is vacuously true. So let’s assume it has models.
Say M |= T ∪ ∆′. Let ∆′′ denote {δ ∈ ∆|M |= δ}. The claim is that T ∪ {∃xφ(~c)} ∪ ∆′′

is also satisfiable. In fact this is clear by compactness: if it weren’t true then there would be
δ1, δ2, . . . , δm ∈ ∆′′ with T ∪ {∃xφ(~c)} |= ¬(δ1 ∧ . . . ∧ δm). But then if δ := ¬(δ1 ∧ δ2 ∧ . . . ∧ δm)
then T ∪ {∃xφ(~c)} |= δ and δ ∈ ∆. So, by definition, δ ∈ ∆′. Now M |= ∆′ and hence M |= δ.
But M |= δi for all i too, and this is a contradiction. So the claim above is true and we can take
an L′-model N for T ∪{∃xφ(~c)}∪∆′′. Now for any δ ∈ ∆, either δ ∈ ∆′′ or ¬δ ∈ ∆′′ by definition
of ∆′′. If N |= δ then, because N |= ∆′′, we must have δ ∈ ∆′′. And hence M |= δ. We’ve just
shows that N |= δ implies M |= δ. So by the previous lemma, applied with M and N the other
way around, we may conclude that M |= ∃xφ(~c).

The nifty thing about this lemma is that it seems to say that if T is true, then ∃xφ(~c, x) is
equivalent to a possibly infinite bunch of variable-free formulas. We can now finally prove the
theorem; it’s going to follow from compactness. We have φ(~u, x) open and need to construct
ψ(~u) open with T |= (∃xφ) ⇐⇒ ψ. By the previous sublemma and compactness we may
find δ1, δ2, . . . , δm with T ∪ {δ1, δ2, . . . , δm} |= ∃xφ(~c). Now set δ = δ1 ∧ δ2 ∧ . . . ∧ δm. Then
T ∪ {δ} |= ∃xφ(~c). Now all the δi are in ∆′, and hence (by definition of ∆′) T ∪ {∃xφ(~c)} |= δi
for all i and hence T ∪ {∃xφ(~c)} |= δ. We deduce that T |=L′ (∃xφ(~c) ⇐⇒ δ). Recall that δ is a
variable-free formula in L′ and in particular has no quantifiers. So if δ′ is the L-formula obtained
by replacing all the ci with variables ui then δ′ is an open L-formula. Of course, to prove the
theorem, it suffices to show that T |=L ∃xφ ⇐⇒ δ′. But this is clear: given an L-model M for
T and ~a ∈Mn we make M an L′-structure in the obvious way and now everything is clear.

12 Logical equivalence.

In this rather short and easy section there’s a super result which enables us to “simplify” an open
formula, by finding one in a particularly nice form that’s “equivalent” to it.

Let L be a language and let M be an L-structure. An admissible equivalence relation on M
is an equivalence relation that respects the structure: that is, if f is a function of n variables and
~a,~b ∈Mn and ai ≡ bi for all i, then f(~a) ≡ f(~b), and similarly for relations (R(~a) iff R(~b)). This
is enough to ensure that M/ ≡ (the equivalence classes) has a unique natural L-structure, called
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the quotient L-structure. Natural examples: quotient groups, quotient rings and so on. But here
comes a really fun example!

Let L be a language, and say φ is a formula. We say that φ is a logical truth, and write |= φ, if
M |= φ for every L-structureM. If φ and ψ are formulae we say that they are logically equivalent
if |= (φ ⇐⇒ ψ). For example x = x is a logical truth.

Let W0 denote the set of open formulas for L. Then W0 is a structure for the language of
Boolean algebras (but not a Boolean algebra!). The language of Boolean algebras is two constants
0 and 1, and three operators ∧, ∨ and ¬, so we let W0 be a structure by letting 0 be ¬(x = x)
and and letting 1 be (x = x). Note that this is not a Boolean algebra: for example ¬¬φ is two
more characters longer than φ! But of course this is easily fixed:

Proposition 28. Logical equivalence is an admissible equivalence relation on W0 in the language
of Boolean algebras, and the quotient structure is a boolean algebra.

Proof. Obvious, basically.

Motivated by the “structure” of Boolean algebras, we make the following definitions. We say
that the conjunction of a bunch of formulas φ1, φ2, . . . , φn is φ1 ∧ φ2 ∧ . . . φn. We say that the
disjunction of them is φ1 ∨ φ2 ∨ . . .∨ φn. Finally, we say that an open formula φ is in conjunctive
normal form if it’s the conjunction of a bunch of open formulae each of which is the disjunction of
a bunch of formulae each of which is either an atomic formula or its negation. Similarly an open
formula is in disjunctive normal form if it’s the disjunction of a bunch of conjunctions of a bunch
of atomic formulae or their negations.

Theorem 29. Every open formula φ is logically equivalent to an open formula ψ with V (ψ) ⊆ V (φ)
and such that ψ is in conjunctive normal form.

Proof. If φ is open then take the atomic formulas that appear in φ and consider the subalgebra
of the Boolean algebra of open formulae modulo logical equivalence generated by these atomic
formulas. Now use standard results about Boolean algebras.

13 More on M ≺s N , and a practical test for quantifier
elimination.

I want to put together some results we’ve already proved in order to give a practical test to show
that a theory has QE! We already have Theorem 24. What are the hurdles in applying it? The
two hurdles are obviously checking the two assumptions of the theorem. In some cases we can
get algebraically prime models rather easily (for example I already explained how to get them for
ACF and DAG), so it’s the “simply closed” thing we need to deal with. Here’s a useful criterion
for checking simply-closedness, which uses the apparently innocuous previous section crucially.

{30}
Proposition 30. If M ⊆ N are L-structures, and if for every φ ∈ W0 which is the conjunc-
tion of things which are either atomic formulas or their negations, and for every x ∈ V (φ) =
{x, u1, u2, . . . , un}, and for every a ∈ Mn, we have M |= ∃xφ(x, a) if N |= ∃xφ(x, a). Then
M≺s N .

Proof. If ψ ∈ W0 is an arbitrary open formula with n+1 free variables including x, and if a ∈Mn,
then (by definition) we have to check that N |= ∃xψ(x, a) impliesM |= ∃xψ(x, a). To verify this,
choose φ in disjunctive normal form which is logically equivalent to ψ. Write φ = φ1∨φ2∨ . . .∨φm
with the φi all conjunctions. Say N |= ∃xψ(~a). We know |= φ ⇐⇒ ψ. It’s not hard to deduce
that |= ∃xφ ⇐⇒ ∃xψ. So N |= ∃xφ(~a). So there’s an i such that N |= ∃xφi(~a). So by
assumption M |= ∃xφi(~a). So M |= ∃xφ(~a). So M |= ∃xψ(~a) which is what we wanted.

We now put Proposition 30 and Theorem 24 together, to get a criterion for quantifier elimina-
tion which is frequently applicable in practice.
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{31}
Corollary 31. If L is a language with a constant, and if

(i) T has algebraically prime models, and
(ii) If M ⊆ N are L-structures and both models for T , and if for every open formula φ

which is the conjunction of things which are either atomic or the negation of atomic, with V (φ) =
{x, u1, u2, . . . , un}, and for every a ∈Mn, we have M |= ∃xφ(x, a) if N |= ∃xφ(x, a),

then T has QE.

This is just Proposition 30 and Theorem 24.
As I say, this result is actually “usable” in practice. Sometimes (i) is hard to check but

sometimes it comes for free. Our strategy in practice for checking that a given theory satisfies (ii)
is very “concrete”: for the relatively simple theories we’ll see in the next section we will in some
sense be able to completely explicitly write down the sets {x ∈ N : φ(x, a)} for a ∈Mn as above,
and observe that if such sets are non-empty then their intersections with M will also be non-empty.
We’ll see concrete examples of this in the next section. Note however that it’s crucial that we’re
only using one quantifier here! If k ⊆ K are two algebraically closed fields then the subsets of K
defined by polynomial equations with variables in k are easily checked to be non-empty in K iff
they have k-points. But the corresponding statement for kn and Kn is the Nullstellensatz! The
fact that we only have one variable in the corollary is very useful!

14 Examples of complete theories and theories with QE.

I was bigging up quantifier elimination in the last section; I was saying that it “almost implied
completeness”, and completeness is a Good Thing. But in some sense, what I’ve just said (QE
being close to completeness) is nonsense! Given a theory T there’s something called a conservative
extension of T , which is, vaguely speaking, defined by taking all the “functions which are implied
by the axioms” and actually turning them into functions in a new language and then constructing
a new theory T ′ in this beefed-up language such that models of T and T ′ basically coincide (we’ll
see an explicit example of this in a second, involving discrete total orders). It turns out that T ′

will then have quantifier elimination! So in fact, in some sense, quantifier elimination is very weak
because any theory at all is in some sense equivalent to one where QE holds. Moreover, I think
Ambrus also said that if T ′ is complete then T is complete.

But now let me try and explain why one might hope to use the notion of QE to prove complete-
ness sometimes. To show a theory is complete, we need to check that every sentence is either true
in every model or false in every model. But if a theory has QE then a sentence will be equivalent
to a formula with no variables at all. Now if one is lucky one can in some sense “write down”
all such formulae, and observe that each one is either visibly true in every model or visibly false
in every model; this happens for example in cases when you can isolate some kind of minimal
substructure of any model, and that the minimal substructures of all models are isomorphic; this
happens for example in ACF0 and ACFp. We’d already proved that these theories were complete
using Vaught’s test (the theories are ℵ1-categorical), but right now we’ll see an example of a the-
ory where Vaught’s test provably doesn’t apply, but which we can prove is complete via a QE
argument.

Let L be the language {<} of orderings and let T be the theory of total orderings which
have a bottom, no top, and are discrete (that is, every element has a unique successor, and every
element that isn’t the bottom has a unique predecessor). Now Vaught’s test won’t tell us anything
about completeness of T , because T is not κ-categorical for any infinite κ (consider the positive
integers, plus κ copies of Z, and that’s one model, and if you bung an extra Z on top then that’s
another model of the same cardinality but it’s not isomorphic to the first model, as one can see
by considering the quotient orders defined by the equivalence relation xỹ iff x = y + n for some
n ∈ Z [this can easily be made to make sense: the ordering is discrete].3 However, 3

Theorem 32. T is complete.

3Does this sound right?
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We won’t start the proof yet. We need to introduce this trick (basically, conservative ex-
tensions) first. We are going to use the theory of quantifier elimination to prove the theorem.
Unfortunately, T doesn’t have quantifier elimination! The standard example Z≥1 ⊆ Z≥0 shows
that substructures might not be simply closed, and this implies (as we’ll see later) that T can’t
have quantifier elimination (we’ll see in a few pages that QE implies model completeness, and T
isn’t model complete).

We fix this by basically finding a theory “equivalent” to T which does have QE. Let L′ denote
the language obtained from L by adding a constant 0 (bottom) and two unary functions S and P
(successor and predecessor). Now let T ′ denote the L′-theory obtained by taking T and then adding
in the three axioms “0 is the bottom”, “S is the successor function” and “P is the predecessor
function, except P (0) = 0”. Now any L-structure which is a model for T naturally becomes an
L′-structure which is a model for T ′, and conversely any L′-structure which is a model for T ′ is
naturally an L-structure which is a model for T ; the two theories are completely equivalent, in
some sense. But given a model, the sub-L-structures don’t coincide with the sub-L′-structures:
indeed Z≥1 isn’t a sub-L′-structure of Z≥0 because it doesn’t contain the “bottom” constant.
Now completeness of T ′ will imply completeness of T , because the two theories are sufficiently
“equivalent” to make this assertion trivial. And the trick is

Proposition 33. T ′ has quantifier elimination.

Proof. We use Corollary 31. Usually the hard thing to verify is the existence of algebraically prime
models. But in this case this is easy! Indeed, the cute observation is that T ′∀ |= T ′! Why is this?
Well, let’s look at what T ′ is. It is firstly the theory of total orders, so x < y ∧ y < z =⇒ x < z,
and x < y ∨ y < x ∨ x = y and furthermore “only one of these is true”, that is, ¬(x < y ∧ y < x)
and ¬(x < y ∧ x = y). Now each of these are axioms for total orders, and they’re open formulae,
so their closures are in T ′∀. Next are the axioms of T which said that there was a bottom and
no top and a successor and a predecessor-apart-from-when-you’re-at-the-bottom. Now these look
rather troublesome on the face of it. As an example, the “there is a bottom” axiom looks like
∃x∀y(x = y ∨ x < y) and the “there is a successor” axiom looks like ∀x∃y((x < y) ∧ (∀z(z <
x) ∨ (z = x) ∨ (z = y) ∨ y < z)). It doesn’t look like these axioms are in T ′∀. But let’s ignore
them for the minute and do the last axioms. The last axioms say that 0 is the bottom, S is the
successor function, and P is the predecessor. So the first is ∀x(0 = x)∨ (0 < x), which is going to
be in T∀, the second is that ∀x∀zx < S(x)∧ ((z < x)∨ (z = x)∨ z = S(x)∨S(x) < z), which is in
T ′∀, and the last is ∀x∀z(x = 0∧P (x) = 0)∨ ((P (x) < x)∧ (z < P (x)∨z = P (x)∨z = x∨x < z)).
So this is in T ′∀ too. And the messy axioms are logical consequences of these (because they assert
the existence of things and P and S and 0 give these things). So any model of T ′∀ satisfies all the
axioms of T ′ (because we just checked each one) and hence T ′∀ |= T ′. As a consequence we see
that T ′ has algebraically prime models for free!

So to apply Corollary 31 all we have to do is to check the second assumption. We basically do
it by “explicitly” writing down what {x ∈ N : φ(x, a)} can look like, for a ∈Mn. So say M⊆ N
are both models for T ′, and φ = φ1 ∧ φ2 ∧ . . .∧ φm is an open formula as in that corollary (so the
φi are either atomic or the negation of an atomic), and with V (φ) = {u1, u2, . . . , un, x}. We have
our model N , and it will contain the substructure N0 := {0, S(0), S(S(0)), . . .}. For c ∈ N define
the “closed half-lines” I+(c) := {b ∈ N : b ≥ c} and I−(c) := {b ∈ N : b ≤ c}. Say ~a ∈Mn.

Sublemma 34. Say ~a ∈Mn. If J := {b ∈ N : N |= φ(~a, b)} then there are finitely many ci ∈M
such that J =

⋂
i I±(ci) (the signs chosen appropriately), up to a finite error (that is, the two sets

might not be exactly equal but there’s only a finite number of elements of N in one but not in the
other), and this finite error is completely contained within N0.

Proof. WLOG φ is atomic (by our strong assumptions on φ earlier). If φ is of the form t1 = t2
for two terms then we can replace φ by the form ¬(t1 < t2) ∧ ¬(t2 < t1) so we can even assume
that φ is of the form t1 < t2 for t1 and t2 terms. Now ~a ∈ Mn and we need to consider
J = {b ∈ N : t1(~a, b) < t2(~a, b)}, with t1 and t2 built only from S and P and 0. But S and P are
unary, and 0 is nullary, so in fact t1 and t2 can only be of the form S(P (S(S(. . . (S(a)) . . .)))) or
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P (P (S(. . . (P (b)))) . . .), or S(P (S(S(P (. . . , P (P (S(0))))))) . . .) and so on. Now anything of the
form S(P (S(. . . P (a))) . . .) is still in M , so we may as well just replace it with some element of
M . Similarly anything of the form S(P (S(S(P (. . . (P (0)))))) . . .) is in M too. Finally anything
of the form P (P (S(. . . (P (b)))) . . .), well, you have to be a bit careful here, because for example
S(S((P (P (P ((b))))))) is usually b− 1, but if b ≤ 2 then it’s just 2. This is where the noise comes
in! One checks that the general term of this form is going to be of the form max{b + n,m} with
n ∈ Z and m ∈ Z≥0. So we have to check four cases:

(i) a1 < a2: either empty or the whole thing.
(ii) a1 < max{b + n,m}. For b + n > m, which happens for b sufficiently large, this is just

b+ n > a1 so it’s b > max{a1 − n, 0} and the right hand side is in M ,
(iii) a > max{b+ n,m}. Again for b sufficiently large this is just b < a− n
(iv) max{b + n1,m1} < max{b + n2,m2} and up to finite noise this is either everything or

nothing.

We now finish the proof that T ′ has quantifier elimination. Recall that we’re using Corollary 31.
Let φ be as in the statement of Corollary 31(ii) and say N |= ∃xφ(~a). Then there exists b ∈ N
with N |= φ(~a, b). We want to find b′ ∈ M such that φ(~a, b′). We’ve seen that up to a finite
amount of noise the set X := {b ∈ N : φ(a, b)} is an interval with endpoints in M . If X contains
elements of N0 then we’re home, because N0 ⊆ M . If it doesn’t but it’s non-empty then by our
structure theorem it must have a bottom element and this bottom element will be in M , so again
we’re home. We deduce that M |= ∃xφ(~a). Hence by Corollary 31 T ′ has QE.

Note that ACF is not complete: the statement 1 + 1 = 0 is true in some algebraically closed
fields but not in others. On the other hand ACF has quantifier elimination—we’ll see this later
on. So it’s not true that QE implies completeness in general. Indeed, as I mentioned, any theory
has what is known as a conservative extension, which satisfies QE.

In fact, in the example above, the (conservative) extension T ′ of T has QE and we’ll now use
this to show that T ′ is complete.

Lemma 35. T ′ is complete.

Proof. Given a sentence in L′ we need to check that it is either true in every model, or false in
every model. But by QE, the sentence will be equivalent (under T ′) to an open formula with no
variables and no quantifiers. Hence it suffices to show that every atomic formula without variables
is either true in every model or false in every model. But an atomic formula without variables
is either of the form t1 = t2 or t1 < t2 for t1 and t2 terms, and all terms will evaluate to one of
0, S(0), S(S(0)), . . .. HenceM |= φ iff Z≥0 |= φ, where Z≥0 is the minimal substructure ofM!

Ambrus says that essentially every reasonable countable complete theory has a unique minimal
substructure.

Finally we can prove that T is complete (recall this is the first theorem of this section: the
thing we’ve been aiming for).

Proof. Any L-sentence is an L′-sentence, so has a universal truth value for any model of T ′. But
any model of T is a model of T ′!4 4

We now turn to non-zero torsion-free divisible abelian groups (the theory we’re calling DAG).
We’ve already shown that the theory is κ-categorical for any uncountable κ. Hence the theory is
complete. But in fact we’ll also show

Theorem 36. DAG has QE.

4check this with Ambrus.
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Proof. We use Corollary 31 again. An easy algebraic argument (c.f. ACF∀ being the theory
of integral domains) shows that if we let the language of groups be L := {0,+}, that is, we
don’t throw in inverses, then the theory DAG∀ is just the theory of torsion-free monoids with
cancellation. Hence ACF has algebraically prime models. So it suffices to check condtion (ii)
of Corollary 31. So let φ be a conjunction of things which are either atomic or the negation of
atomics, if V (φ) = {x, u1, . . . , un}. if a ∈ Mn and if X = {b ∈ N : N |= φ(a, b)}, then we need
to check that X 6= ∅ implies X ∩M 6= ∅. We do this, as in the case of orderings, by explicitly
identifying what the possibilities are for X. Well, φ = φ1 ∧ φ2 ∧ . . . ∧ φm, and each φi(x, a) is an
evaluation of an atomic formula in the language of groups, so it can only be of the form nx = c
for some c ∈ M and n ∈ Z or nx 6= c for some c ∈ M and n ∈ Z. Any equation of the form
0.x 6= 0 or 0.x = c for some c 6= 0 will imply that X is empty, and any equation of the form
0.x = 0 or 0.x 6= c for some non-zero c will not change X at all, so we may assume that either
X is everything (in which case we’re done), or empty (in which case we’re done), or is defined by
finitely many formulae of the form n.x = c and n.x 6= c with n 6= 0. Now the equation nx = c has
a unique solution when n 6= 0, and hence if one of these equations is mentioned then either X is
empty or has one element, of the form c/n, which will be in M because c ∈ M . Finally if all the
equations are of the form nx 6= c with n 6= 0 then X will be the complement of a finite set in N ,
and hence will intersect M non-trivially because M is a model of DAG and is hence infinite. So
we’re done!

There was a typo in Ambrus’ notes on proof because Ambrus was preparing the lecture in a
CASLAT talk.

Corollary 37. DAG is complete!

Note that we already saw a proof of this, because DAG is ℵ1-categorical. But this is a totally
different proof now.

Proof. We need to check that every sentence in the language of groups is either true in every
non-zero torsion-free divisible abelian group, or false in all of them. By QE for DAG, DAG shows
that a given sentence is equivalent to a formula with no quantifiers and no free variables, and hence
with no variables at all. Now what could such a formula look like? Well, the only variable-free
terms in the language of groups are 0 and 0 + 0 and (0 + 0) + 0 and 0 + (0 + 0) and so on, and in
the theory of groups all of these evaluate to zero. So the only atomic formulae all look like things
like (0 + 0) + 0 = 0 + (0 + (0 + 0)), and all of these will be true, and so every formula is either
going to be equivalent in the theory DAG to either the statement 0 = 0 or the statement 0 6= 0,
and the first is always true and the second is always false!

Here’s a key concept that we have already implicitly used. Let M be an L-structure. We say
that a set X ⊆Mn is definable if there’s a formula φ with V (φ) = {u1, u2, . . . , un, v1, v2, . . . , vm}
and b ∈Mm such that X = {a ∈Mn :M |= φ(a, b)}. In this case we say that φ(u, b) defines x.

Noddy examples: any finite subset of Mn is definable, because if the finite set is {b1, b2, . . . , br}
then φ can be u = b1 ∨ u = b2 ∨ . . . ∨ u = br, where u = b1 is shorthand for (u1 = b11 ∧ u2 =
b12 ∧ . . . ∧ un = b1n). Similarly any cofinite subset is definable, because you can just stick a ¬ in
front of the previous example. In fact, while we’re at it, we may as well observe the obvious

Lemma 38. The definable subsets of Mn form a Boolean subalgebra of the power set of Mn.

Proof. The whole of Mn is defined by the formula u1 = u1 ∧ u2 = u2 ∧ . . . ∧ un = un. If X is
defined by φ and Y by ψ then X ∩ Y is defined by φ ∧ ψ, and so on, and it’s trivial.

Caveat 1: if you know the definable subsets of M you might not know much about the definable
subsets of M2. For example, I suspect that in the language of rings, the definable subsets of C,
the complexes, will be just the subsets which are either finite or cofinite. But the definable subsets
of C2 will contain loads of complicated affine curves, like y7 = x9 + 1 and so on.
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Caveat 2: in DAG, what are the definable subsets of Q2? This is an ill-defined question! If
M = Q then the line {(x, x) : x ∈ Q} is going to be a definable subset of M2 = Q2. But if
M = Q2 then we’ll see below that any definable subset of M = Q2 is either finite or cofinite.

Fun examples: in the language of rings, the set R≥0 is a definable subset of R, because it’s
defined by the formula φ(x) = (∃y : y.y = x). This is easy. But can one define Q≥0 in Q? Yes, but
one needs a theorem! φ(x) = (∃a∃b∃c∃dx = a.a+ b.b+ c.c+d.d) will work, but only because every
positive integer is the sum of four squares. Finally, is Z a definable subset of Q in the language of
rings? The answer is yes but this is a theorem of Julia Robinson! So in fact the definable subsets
of Q as a ring are rather subtle. But in a second we’ll see that the definable subsets of Q as a
DAG are all either finite or cofinite.

Note that the concept of definability can go much further, but we won’t take it much further.
For example a function is definable if its graph is definable, and one can check that if f and X are
definable then so is f(X) and f−1(X), and so on. If I knew enough algebraic geometry to know
what a constructible set was then I would now be able to prove a theorem of Chevalley, I think
Ambrus said.

We’ve seen that any finite or cofinite subset of M is definable. We’ll now show that in DAG
these are all the definable sets. In fact we’ll do better: we’ll even classify the definable subsets of
Mn. If M is a DAG then say that a hyperplane in Mn is a set of the form {a ∈Mn :

∑
i riai = b}

for some fixed r ∈ Zn and b ∈ M . For example, the hyperplanes in M are M (r = b = 0), the
empty set r = 0 and b 6= 0) and the 1-element sets (r = 1 and b arbitrary), and the hyperplanes
in Q2 contain things like x+ 2y = 7.

Proposition 39. The definable subsets of Mn are the Boolean algebra generated by the hyper-
planes.

Note the following trivial consequence:

Corollary 40. The definable subsets of M are precisely the sets which are finite or cofinite.

Proof. (of proposition). Say X is defined by φ(u, b). Now DAG has QE, so there’s ψ an open
formula with the same free variables as φ with DAG |= φ ⇐⇒ ψ. In particular X is defined by
ψ(u, b) too. Now an open formula is logically equivalent to one in conjunctive normal form, so X
is in the Boolean algebra generated by the subsets of Mn defined by atomic formulae. But DAG
is a theory in the language of groups, so the only atomic formulae are of the form t1 = t2 with the
ti terms, and the only terms look like b1 + u3 + b2 = u7 + u7 + b3 and so on, which in the theory
of DAG will be equivalent to terms defining hyperplanes. Conversely every hyperplane is clearly
definable so we’re done.

So Q as a group is easy but Q as a ring is very very complicated. In fact one corollary of
Gödel’s theorem is that there is no Turing machine which can tell you whether an arbitrary subset
of Q (as a ring) is definable or not.

We’ll now prove that ACF has QE (and note that ACF isn’t complete, because the statement
1 + 1 = 0 is sometimes true and sometimes not), and our proof will as ever be an application of
Corollary 31.

Theorem 41. ACF has QE.

Proof. Note first that M |= ACF∀ iff M is an integral domain, so ACF has algebraically prime
models (take the algebraic closure of the field of fractions). So as ever we just have to check
condition (ii) of Corollary 31. Say we have two algbraically closed fields M ⊆ N , and an open
formula φ which is the conjunction of things which are either atomic or the negation of atomic,
and V (φ) = {x, u1, u2, . . . , un}, and a ∈Mn. We need to check that if X is {x ∈ N : φ(x, a)} then
X is non-empty iff X ∩M is non-empty. So now we need to think a little about what the atomic
formulas look like in the language of rings, and we see that (after substituting the elements ai of
M for the variables ui) they are (equivalent to formulas) of the form P (x) = Q(x) with P and Q
in M [x]. So we are reduced to checking the following. Say Pi and Qi are in M [x] for 1 ≤ i ≤ r+s,
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and say X is {x ∈ N : Pi(x) = Qi(x), 1 ≤ i ≤ r} ∩ {x ∈ N : Pi(x) 6= Qi(x), r + 1 ≤ i ≤ r + s}.
Then X is non-empty iff X ∩M is non-empty. Well, the equalities are either always true (and can
hence be dropped), always false (in which case we’re done), or true for a non-zero finite number
of elements of N , all of which are in M , in which case we’re done. So we may as well assume
that there are no equalities at all. And the inequalities are also either always true (so drop them),
always false (so we’re done), or true away from a finite set, so again we’re done because M is
infinite.

Corollary 42. ACF0 and, for p a prime, ACFp, are complete.

Note that we proved this already: the theories are ℵ1-categorical so are complete by Vaught’s
test.

Proof. If M |= ACFp then the smallest substructure of M (in the language of rings) is Z/pZ.
Similarly if M |= ACF0 then the smallest substructure is Z. Now let v be either 0 or p. Then
ACFv ⊇ ACF and hence ACFv has QE (this follows trivially from the definition of QE; given a
formula φ just write down an open ψ with ACF |= (φ ⇐⇒ ψ); then ACFv models it too). So
we just have to check that every sentence with no variables at all has an “absolute truth value”
independent of every model. It suffices to check for atomic formulae, so it suffices to check that
terms are either always equal or always unequal, and the interpretation of these terms will always
be in Z or Z/pZ so at the end of the day the result is clear.

15 Model completeness.

An L-theory T is model complete if for every M ⊆ N (models of T ) we have M ≺ N . Non-
examples: the theory of rings (Z ⊆ Q) (because existsx : x+x = 1 causes trouble) and the theory
of orders (Z≥1 ⊆ Z≥0) (because ∃x : x < 1 causes trouble; note that we’re allowed to refer to 1
even though it’s not a constant). On the positive side we have

Proposition 43. If T has QE then T is model complete.

Proof. Let φ be a formula with n free variables x1, x2, . . . , xn and say a ∈Mn. We need to check
that N |= φ(a) iffM |= φ(a). Well, by QE we can find an open ψ(x1, . . . , xn) with T |= φ ⇐⇒ ψ.
In particular T |= φ(a) ⇐⇒ ψ(a). So in fact it’s now easy isn’t it. First, N |= φ(a) iff N |= ψ(a).
But the interpretation (i.e. the truth value) of ψ(a) inM and N coincides, because ψ is open, and
the interpretation of terms coincides and so on and so on (“the truth of open formulas is preserved
by extensions and substructures”). So N |= ψ(a) iff M |= ψ(a). And because M is a model of T
this is true iff M |= φ(a). And that’s what we wanted.

Hence ACF0 and ACFp and DAG are model complete. In particular this means that in the
language of groups Q ⊆ Q2 is an elementary embedding (whereas Z ⊆ Z2 isn’t, because one can
write down a sentence saying “there exists t such that every x is either twice something, or twice
something plus t”).

Corollary 44. The theory of discrete linear orders with a bottom but no top does not have quan-
tifier elimination!

Proof. Z≥1 ⊆ Z≥0 is not an elementary substructure, becasue if φ(y) is ∃x : x < y then φ(1) is
true in Z≥0 but and makes sense in Z≥1 but is not true in Z≥1.

Here’s an awesome application! The Nullstellensatz!

Theorem 45. Let K be an algebraically closed field, and let I be a proper ideal of K[x1, x2, . . . , xn].
Then there’s a point a in Kn such that f(a) = 0 for all f ∈ I.
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Proof. WLOG I is maximal (Zorn). Let L be the residue field and let L be an algebraic closure of L.
Choose a finite set of generators I = (f1, . . . , fr) for I. Then L |= ∃~x(f1(~x) = 0∧ . . .∧ fr(~x) = 0).
But by model completeness we know K ≺ L. So K models the above sentence too. And that’s
it!

I think that Ambrus said that one of Hilberts problems (the one about whether every f ∈
R[X1, X2, . . . , Xn] which maps Rn to the non-negative reals is automatically a sum of finitely
many squares of polynomials) can be answered affirmatively this way using model theory.5 5

16 Types.

A type is just a set Σ of formulas φ with V (φ) = {x1, x2, . . . , xn} (that is, each φ has exactly the
same free variables). Let M be an L-structure. We say that a ∈ Mn realises Σ if M |= σ(a) for
all σ ∈ Σ. We also say that M realises Σ. We say that M omits Σ if it doesn’t realise Σ.

We say that Σ as above is a complete type if (a) it can be realised in some L-structure, and
(b) it’s maximal with respect to sets with this property. I guess maximality will be equivalent to
the condition that for every formula φ with V (φ) = {x1, x2, . . . , xn}, either φ ∈ Σ or ¬φ ∈ Σ. So
it seems to me that an equivalent definition would be that a type Σ is a complete type if there’s
an L-structure M and a ∈ Mn such that Σ is the set of φ with V (φ) = {x1, x2, . . . , xn} with
M |= φ(a). We say that Σ formed in this way is the type of a. We say that a type is an n-type if
all of the formulae in it have n free variables.

Example: in the language {0,+} of groups, the statements ¬(x = 0), ¬(x+x = 0), ¬(x+x+x =
0) and so on, just say x is not torsion. Any element realising this type will be a non-torsion element.

Example: if we beef up the language of rings by adding in constants for every rational, so
L = {+,−, ∗} ∪Q then Ambrus says that the statements {f(x) 6= 0} as f runs through all the
non-constant elements of Q[x] gives us an (incomplete) type and all transcendentals in C satisfy
it. Because there are automorphisms of C that send an arbitrary transcendental to another one,
all the types associated to transcendentals are the same. In particular there are only countably
many types realised by C.

Example: in the language of ordered rings {+,−, ∗, 0, 1, <} the reals with its usual structure
have the following property: if x < y then there’s a rational r with x < r < y and if r = a/b
and b > 0 then bx < a and a < by, so the types of x and y are distinct. In particular there are
uncountably many types realised by R.

Proposition 46. Let T be a theory, and let Σ be a type in variables x1, x2, . . . , xn Then TFAE:
(i) T has a model which realises Σ
(ii) Every finite subset of Σ is realised in some model of T
(iii) if X is the set of all sentences of the form ∃x1∃x2 . . . ∃xn(φ1 ∧φ2 ∧ . . .∧φm) for m ∈ Z≥1

and the φi running through all the m-element subsets of Σ, then T ∪X is satisfiable.

This is easy. (i) iff (ii) is, I think, just compactness applied to some beefed-up language. I
think this is the hardest part of the proposition. (i) implies (iii) is trivial, because if a ∈M realises
Σ then a is a witness to the truth of all the elements of X. And (iii) also trivially implies (ii)
because the model for T ∪X will realise any finite subset of Σ.

In short, the compactness theorem is a machine which enables us to make models which realise
types. But making models which omit types is harder!

Definition: Let Σ be a type in (x1, x2, . . . , xn). A theory T locally omits Σ if there is no formula
φ with V (φ) ⊆ {x1, x2, . . . , xn} such that (i) T ∪ {∃xφ} (here x is a vector) is satisfiable, and (ii)
T |= φ =⇒ ψ for every ψ ∈ Σ.

Theorem 47 (Omitting types theorem). Let T be a satisfiable theory in a countable language,
and let Σ be a type in (x1, x2, . . . , xn). If T locally omits Σ then T has a model which omits Σ.

5check!

23



Before we start the proof, here’s a (counter-)example to show that the assumption of a count-
able language is necessary. If L is the language {ci : i ∈ ω} ∪ {dj : j ∈ ω1} (constants) then L
is uncountable, and if T is the L-theory which says that the interpretations of dj are pairwise
distinct, that is, the sentences ¬(di = dj) for all i < j ∈ ω1, then M |= T implies that |M | ≥ ℵ1.
So the 1-type Σ whose elements are just {x 6= ci : i ∈ ω} is never omitted by models of T : any
model will have an element which realises Σ. But T locally omits this type! Here’s why. Firstly,
observe that the standard argument (Corollary 31) shows that T has QE: indeed T∀ |= T so T has
algebraically prime models, the terms of L are just constants and variables, the atomic formulas
are all of the form x = x or x = y or x = c or c = c′ for c and c′ constants, so if M ⊆ N and
X is of the form {x ∈ N : φ(x, a)} for φ as in Corollary 31 then X is either empty, an element
of M , a constant, or the whole of N minus a finite set, and in every case it’s non-empty iff it
has non-empty intersection with M . So T has QE. Now let’s show that T locally omits Σ, by
contradiction. Say it didn’t. Then choose φ(x) with V (φ) ⊆ {x} with T ∪ {∃xφ(x)} satisfiable.
Next choose an open ψ with V (φ) = V (ψ) and T |= φ ⇐⇒ ψ. Then any model of T ∪ {∃xφ(x)}
will also model ∃xψ(x), so T ∪ {∃xψ} is also satisfiable. Moreover, if T |= φ =⇒ σ for every
σ ∈ Σ then T |= ψ =⇒ σ too. But Σ mentions infinitely many constants (all the ci) and the
claim is that ψ as above cannot model the statement x 6= ci under T if ψ doesn’t mention ci,
because an open formula is logically equivalent to one in conjunctive normal form so is in the
Boolean algebra generated by the constants and if it only mentions finitely many constants then
it’s in the Boolean algebra generated by these constants!

Before we embark on the proof of the theorem, let’s make some remarks about it. If L is a
countable language and T is an L-theory with a model N that omits Σ, then it has a countable
model M which omits Σ. For either N is countable (or finite), in which case we’re done, or N
is uncountable, in which case we can choose a countable elementary substructure M of N by
the going down theorem and the claim is that this still omits Σ. Indeed, if M realises Σ then
choose a ∈ M realising Σ; then M |= φ(a) for all φ ∈ Σ and hence (by definition of elementary
embedding) N |= φ(a) too.

The final remark before we prove the theorem is that if T is a complete and satisfiable theory,
and if Σ is a type, and if T has a model which omits Σ, then T locally omits Σ. Indeed, if T does
not locally omit Σ then there’s some formula φ with T ∪ {∃xφ} satisfiable and T |= φ =⇒ σ for
all σ ∈ Σ. Now T ∪ {∃xφ} satisfiable means there’s some model of T where ∃xφ is true (where
here x is a vector), and completeness of T means that T |= ∃xφ(x). So if T |= φ =⇒ σ then
for any model of T we just choose some a with φ(a) true and then σ(a) will also be true, so all
models of T realise Σ.

OK so finally let’s prove the theorem. We will be lazy and just do it for 1-types.

Proof. Let L′ denote L plus new constants {ci : i ∈ ω}. Then L′ is still countable. Let’s
assume that our stock of variables is countably infinite, but furthermore that there are countably
infinitely many variables in our stock that aren’t mentioned at all in T . Then certainly the set
of all sentences of L′ that don’t mention any of the bound variables in T is also countable! So
list them as {φi : i ∈ ω}. We have our satisfiable theory T , which we can view as a satisfiable
L′-theory, and we’re going to recursively build an increasing sequence of satisfiable L′-theories
T ⊆ T1 ⊆ T2 ⊆ . . ., with each Ti formed by taking Ti−1 and adding one new sentence. Let’s say
Ti−1 is T plus i−1 new sentences. Let θ be the conjunction of these new sentences. Now θ might of
course mention some of the cj . Let ψ(x, y) denote the formula which you get by changing ci (same
i as in Ti) to x and changing all the other cj to new variables yj . Recall we’re assuming that Σ is
a 1-type. Let Σ(ci) denote the set of sentences {σ(ci) : σ ∈ Σ}. By assumption, T locally omits Σ.
The claim is that T ∪ {θ} 6|= Σ(ci), and we check this by contradiction: by assumption T ∪ {θ} is
satisfiable, so T ∪ {∃x∃yψ(x, y)} (with x a variable and y a vector) is satisfiable. Moreover, we’re
assuming for a contradiction that T ∪ {θ} |= σ(ci) for all σ ∈ Σ, and hence T |= θ =⇒ σ(ci)
for all σ ∈ Σ. It follows that T |=L ∃yψ =⇒ σ, because for any L-model M of T we want to
check that for all a ∈M we have ∃yψ(a, y) implies σ(a), and we do this by noting that whenever
∃yψ(a, y) is true we can make M an L′-structure in the obvious way (let ci be a and let all the
other cj be the y’s) and then noting that θ has become true in M, and hence M |=L′ σ(ci), so

24



M |=L σ(a). But this is a contradiction! Because ∃yψ(x, y) shows that T doesn’t locally omit Σ.
So take a model of T ∪ {θ}. We’ve just seen that there must be some σ, say σ = σi ∈ Σ, such

that σi(ci) is false in the model. Hence T ∪ {θ,¬σi(ci)} is L′-satisfiable. We are finally ready to
define θi! There are three cases. First, we take a model of T ∪ {θ,¬σi(ci)}. Now we ask whether
φi is true or not in the model. If φi is false then we set θi = ¬σi(ci)∧¬φi. If φi is true then there
are two cases. If φi is not precisely of the form ∃tξi(t) then we let θi be ¬σi(ci) ∧ φi. Note that
in both of these cases the resulting theory Ti = Ti−1 ∪ {θi} is trivially satisfiable. The 3rd case
is the most interesting. Say φi is true and furthermore that φi happens to be of the form ∃tξi(t),
with V (ξi) = {t}, then choose p ∈ Z≥0 the smallest index such that cp is not mentioned in any of
θ, σ(ci) or φi, and let θi be the sentence ¬σi(ci) ∧ φi ∧ ξi(cp). Again it’s clear that the resulting
set Ti will be satisfiable. So by compactness Tω :=

⋃
i Ti will be satisfiable. Moreover, for every

L′-sentence ρ, either Tω |= ρ or Tω |= ¬ρ, because ρ is logically equivalent (after possible renaming
of bound variables) to one of the φi. In particular Tω is complete. Let M be a model.

The final claim is that the subset of M consisting of the interpretations of the ci is actually the
underlying set of an elementary substructure of M. Well, first let’s check that it’s a substructure
(that is, closed under constants and functions). For the functions we note that if f is a function
then we want to check that f(ci1 , ci2 , . . . , cir ) interprets to one of our named constants. But
M |= ∃t(t = f(ci1 , ci2 , . . .)) and this latter statement is one of our φi, so there will be some p such
that cp interprets to f(ci1 , . . .) because we will exactly be in that funny 3rd case. Similarly for
constants: ∃t(t = c), for c one of the original constants in L, will be one of the φi.

So the set of interpretations of constants is a substructureM0 ofM. To check it’s an elemen-
tary substructure we use Tarski-Vaught. So assume φ(u, x) is a formula with n+ 1 free variables
(vector u and variable x). Say a ∈Mn

0 and say that there’s c ∈M withM |= φ(a, c). We need to
find b ∈ M0 with M |= φ(a, b). Because a ∈ Mn

0 it’s just a bunch of constants! Let φ′ be φ with
a replaced by the relevant constants. Then M |= ∃xφ′(x). But Tω is complete, so Tω |= ∃xφ′(x).
Moreover that latter sentence appeared in our list! So again there’s some cp such that φ′(cp) is
true in M. And that is what we needed.

Finally, here’s an extension of the previous theorem. If L is a countable language and T is a
satisfiable theory which omits countably many types Σ1, Σ2, . . . . Then T has a countable model
which omits all of the Σi. The proof is “the same” but it’s messier.

16.1 Appendix: the point of types?

In a verbal conversation with Ambrus he pointed out the type {x > 1, x > 1+1, x > 1+1+1, . . .}
in the language of totally ordered groups, say. This type is certainly realised, and moreover any
finite subset of it is realised in Z, but it itself isn’t realised in Z, but it will be realised in an
ultraproduct of Z’s. Conversely, if Σ is a type and it’s realisable in an elementary extension of
a model M, then any finite subset of Σ will be realised in a model of the full theory of M, and
the full theory of M is complete! So the finite subset of Σ can be re-interpreted as a sentence
(∃xσ1 ∧σ2 ∧ . . .) which is true in an elementary extension ofM and is hence true inM itself. On
the other hand Σ might not be realised in M. This is a bit vague, but I’m not really on top of
types at the minute.

17 Saturated models.

Say M is an L-structure and A ⊆ M . Let LA denote the language L plus a constant ca for
each a ∈ A. Then M is naturally an LA-structure. Let SnA(M) denote the set of n-types for the
language LA which happen to be realised by a model of the full theory of M in LA. I’ll remark
that if Σ is such an n-type, then any finite subset of Σ will be, I think, realisable in M itself,
because the full theory ofM is a complete theory, so any finite subset can be recast as a sentence
∃x(σ1(x) ∧ σ2(x) ∧ . . .) which, if it’s true in an extension of M must be a consequence of the full
theory of M, as this theory is complete! Hence the sentence is true in M and hence any finite
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subset of Σ is actually realised by M. But a complete type might of course not be realised by M
itself.

Let SA(M) = ∪n≥1S
n
A(M). Let κ be a cardinal. Say M is κ-saturated if for all A ⊆ M

with |A| < κ, the LA-structure M itself realises every type in SA(M). Say M is saturated if it’s
|M |-saturated.

I think we’re going to be trying to construct saturated models.

Lemma 48. (i) ≺ is a partial order on models (so M≺M and A ≺ B ≺ C implies A ≺ C).
(ii) If A ≺ C and B ≺ C and A ⊆ B then cA ≺ B.

Proof. Trivial unravelling of definitions.

Now let α be an ordinal and let {Mβ : β < α} be a collection of L-structures with β < γ =⇒
Mβ ⊆Mγ . Let M denote the union of the Mβ ; this is also naturally an L-structure.

We say that the Mβ form an elementary chain if Mβ ≺Mγ for all β < γ < α.

Lemma 49. If {Mβ : β < α} is an elementary chain with union M then Mβ ≺M for all β.

The lemma follows immediately from

Lemma 50. For every L-formula φ, the following is true: for every β < α and for every a ∈Mn
β

(where n is the number of free variables of φ), we have Mβ |= φ(a) ⇐⇒ M |= φ(a).

Note that the point is that we’ll use formula induction to prove the result for all β at once;
this is crucial in the argument.

Proof. An easy formula induction. Trivial for atomic formulae, and ¬ and ∧,∨. The only time
when we have to use the assumption of the lemma is when φ is of the form ∃xψ, and we know
M |= φ(a) and we want to deduce Mβ |= φ(a) (the other way of this is also easy). Here’s how
this unique non-formal part goes. We know M |= φ(a), so there’s b ∈M with M |= ψ(a, b). Now
choose γ ≥ β with b ∈Mγ . We knowM |= ψ(a, b) so by our inductive hypothesis applied to ψ, we
deduce Mγ |= ψ(a, b). So certainly Mγ |= ∃xψ(a, x), which is φ(a). But Mβ ≺ Mγ and hence
Mγ |= φ(a), which is what we wanted.

We now need, for some reason, a long technical lemma.

Lemma 51. Let M be an L-structure. Let κ be a cardinal with ℵ0 ≤ |M | ≤ 2κ and |L| ≤ κ.
Then M has an elementary extension N with |N | = 2κ and with the following amazing property:
for any A ⊆M with |A| ≤ κ, N (interpreted as an LA-structure in the obvious way) realises every
type in SA(M)!

Recall SA(M) is the types realised by some model of the full theory of M in LA. So I guess
that in some sense this isn’t so amazing: you can envisage N as being some huge ultraproduct.
This wouldn’t be an elementary extension, but you can probably fix this by some trick of enlarging
the language.

In fact before we start let’s do some counting. A type in SA(M) is a bunch of formulae in LA,
and |A| ≤ κ and |L| ≤ κ, and the assumptions imply κ is infinite, so |LA| ≤ κ, so the number
of formulae in LA is at most κ, so the size of SA(M) is at most 2κ. Furthermore the number of
subsets A of M of size at most κ is at most κ.|M |κ ≤ κ.(2κ)κ ≤ 2κ, so in fact the total number of
types mentioned in the lemma is at most 2κ. So in fact this lemma isn’t surprising at all!

Proof. The trick, as ever, is to adjoin a new variable for every Σ in every SA(M). So let the
language L∗ denote LM (L and a constant for every m ∈M) plus a constant vector dΣ of length
n for every A ⊆M of size at most κ and every n ≥ 1 and every Σ ∈ SnA(M) (where by a constant
vector of length n I just mean n constants). The point is that dΣ will be a witness to the realisation
of Σ.

Now consider the full theory ofM as an LM -structure (that is, the elementary diagram ofM).
Consider this theory as an L∗-theory. Now let T be the following L∗-theory: firstly, take the full
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theory of M as an LM -structure. And now also add the sentences σ(dΣ) for Σ running through
all of SA(M) (and A running through all subsets of M of size at most κ), and σ running through
Σ.

The claim is that T is satisfiable. If we can prove this claim then we’re done, because if N is
a model of T then WLOG it has cardinality 2κ (by going down and then going up), and M⊆ N
(because of the constants) and in fact M ≺ N (because T contains the elementary diagram of
M), and for any Σ the interpretation of the constant vector dΣ realises Σ.

So it suffices to prove that T is satisfiable, and by compactness it suffices to prove that all
finite subsets of T are satisfiable. So say S ⊆ T is a finite subset. Let’s denote all the elements of
S not in the elementary diagram as φ1, φ2, . . . , φr, with φi = σi(dΣi), where of course some of the
Σi might coincide for different i. But what’s for sure is that there is a finite subset A ⊆ M such
that all the Σi are in SA(M). Moreover, all the elements of S that are in the elemtary diagram
of M can, after enlarging A if necessary, be assumed to be sentences in LA. So now in fact let’s
throw in all of the full theory of M as an LA-structure into S and prove that the resulting thing
is satisfiable. And now here’s the trick: we assumed that each Σi was realised by some model
of the theory of M, so each statement of the form ∃xσi(x) is realised by some model of the full
theory of M, and because the full theory is complete it must be a consequence of the full theory
ofM, so it’s realised byM itself. If we fix Σ and let I be the finite set of i such that Σi = Σ then
∃x(σi1(x) ∧ σi2(x) ∧ . . .) is also true in M, and we deduce that M is a model for S! So all finite
subsets of T have a model, so T has a model, and we’re done.

So now we use this lemma to prove

Proposition 52. Let M be an L-structure and let κ be a cardinal such that ℵ0 ≤ |M| ≤ 2κ and
|L| ≤ κ. Then M has an elementary extension N with |N | = 2κ and such that N is κ+-saturated.

Note that this is stronger than the previous lemma because we have to allow A ⊆ N rather
than A ⊆M .

Proof. We’ll build an elementary chain {Mα : α < κ+} with M0 =M, |Mα| = 2κ if α > 0 and
if A ⊆ Mα with |A| ≤ κ then Mα+1 realises all types in SA(Mα). If we can do this then we’re
done: let N be the union of the Mα; then |N | ≤ κ+.2κ = 2κ, and M =M0 ≺ N , and if A ⊆ N
with |A| ≤ κ there’s some α < κ+ with A ⊆ Mα (because the cofinality of κ+ is κ+), and any
Σ ∈ SA(Mα) is realised in Mα+1 and hence in N .

We construct the elementary chain by ordinal induction, surprise surprise. At limit ordinals
just take the union (the only thing we have to check is that the cardinality doesn’t blow up, which
is easy to check). At successor ordinals we just use the previous lemma, which is exactly what we
need to make the argument work. So we’re done!

Corollary 53. Assume GCH. If κ ≥ ℵ0 is a cardinal with |L| ≤ κ then any L-theory T which
has infinite models has saturated models of cardinality κ+.

Proof. Take M |= T with |M| = κ (by going up). By the previous proposition there’s an
elementary extension N of M with |N | = 2κ = κ+, and N being κ+-saturated. Hence N is
saturated. Moreover M≺ N and hence M≡ N , so N |= T .

Proposition 54. If M and N are two saturated L-structures with M≡ N and |M | = |N | ≥ ℵ0,
then M∼= N .

That’s a pretty neat application of the notion of saturated models! The proof is going to be
some crazy back-and-forth argument. Just before we start, let’s show

Lemma 55. If |M| ≥ ℵ0 and M is κ-saturated, then |M| ≥ κ.

Proof. By contradiction. Say |M| < κ. Consider the 1-type {¬(c = ca) : a ∈ M}. Now M is
infinite, so all finite subsets of Σ are realised by a model of ThLM (M) (namelyM), so Σ is realised
by some model of ThLM (M), so Σ ∈ SM (M). By definition of saturated,M itself realises Σ—but
this is clearly false.
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We’ll now start the proof of this saturated-models-are-isomorphic proposition.

Proof. Let M and N be as in the proposition. Say A ⊆ M and let’s say we’re given an injective
map f : A→ N . Then N naturally becomes a LA-structure. Let MA and Nf(A) denote M and
N as LA-structures. Now count M = {mα : α ∈ κ} and N = {nα : α ∈ κ}. We’ll now use the
back and forth idea.

Grr. I never typed this up; the rest of this proof (a standard back and forth) is in 2 sides
of photocopied notes in my hard-copy notes on this course (which also contains the example
sheets).

18 Appendix: real fields.

A field is formally real if −1 isn’t a sum of squares. The theorem is that F is formally real iff it’s
orderable. Better: if F is formally real and x ∈ F such that −x isn’t a sum of squares, there’s an
ordering on F such that x > 0.

A field F is real closed if it’s formally real and if the only finite formally real extension of F
is F itself. Note that there will surely be massively infinite formally real extensions of F . I think
that Ambrus said that a slick definition of real closed is simply that a field is real closed iff it’s a
structure in the language of fields that models the full theory of the reals!

The theorem is that F is real closed iff (a) every polynomial of odd degree has a root, and (b)
for any non-zero f ∈ F , either +f or −f has a square root.

Examples: the reals. The hyperreals (a countable ultraproduct of copies of the reals)—this
isn’t the reals because the element (1, 2, 3, 4, 5, . . .) is bigger than every integer. On the other hand
if F is formally real and if you adjoin a square root of −1 then you get something algebraically
closed! So the hyperreals embed into the complexes, giving an element of Aut(C) of order 2 which
isn’t conjugate to complex conjugation within Aut(C).

A much easier construction: start with R, adjoin a transcendental x and decree that x is bigger
than every real. Now take the real closure!
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