Harris-Taylor Local Langlands normalisation.

Kevin Buzzard

February 9, 2012

Last modified 01/06/2004. How little I knew then!

I just want to write down the normalisation used by Harris-Taylor for the Local Langlands correspondence. Let K be a finite extension of \mathbf{Q}_p , let q denote the cardinality of the residue field. Let $|.|:K^\times\to\mathbf{C}^\times$ be the map sending a uniformiser to 1/q. Let $\mathrm{Irr}(\mathrm{GL}_n(K))$ denote the irreducible admissible representations of $\mathrm{GL}_n(K)$ and let $\mathrm{WDRep}_n(W_K)$ denote the n-dimensionsal F-semi-simple representations of W_K , the Weil group of K.

Harris-Taylor let

$$\operatorname{Art}_K: K^{\times} \to W_K^{\operatorname{ab}}$$

be the map sending π , a uniformiser, to a geometric Frobenius. They fix an isomorphism $\mathbf{C} = \overline{\mathbf{Q}}_l$. Let's fix a norm on W_K that's compatible with Art_K and the usual norm on K^\times ; that is, define the norm |g| of an element $g \in W_K$ by ensuring that the norm of a geometric Frobenius is 1/q.

Their Local Langlands map is a bijection

$$\operatorname{rec}_K : \operatorname{Irr}(\operatorname{GL}_n(K)) \to \operatorname{WDRep}_n(W_K)$$

and they have another map r_l which takes an element π of $Irr(GL_n(K))$ to an l-adic Galois representation

$$r_l(\pi): W_K \to \operatorname{GL}_n(\overline{\mathbf{Q}}_l).$$

Note that in the simple case where N=0 it is *not* true that $r_l(\pi)=\operatorname{rec}_K(\pi)$; there's a twist. Examples of this (I shall say more on these examples later): if n=1 then

$$r_l(\pi) = \operatorname{rec}_K(\pi^{\vee}) = \operatorname{rec}_K(\pi)^{-1}$$

and if n=2 then

$$\operatorname{rec}_K(\pi) = (r_l(\pi^{\vee} \otimes (|.|_K \circ \det)^{-1/2}), N)$$

for some N. Perhaps the point is that rec_K is the bijection that makes L and ϵ factors work out well, and r_l is the map that makes local and global Galois representations work well.

Let's work out some explicit examples of this (using other comments in Harris-Taylor which I won't record, to make things easier to read).

Say n=1. Let's use ${\rm Art}_K$ to identify $W_K^{\rm ab}$ and K^{\times} . Say χ is an admissible representation of K^{\times} . Then

$$r_l(\chi) = \chi^{-1}$$

and

$$rec_K(\chi) = \chi.$$

In particular, if χ is unramified and sends a uniformiser to α then $r_l(\chi)$ sends a geometric Frobenius to $1/\alpha$ and $\mathrm{rec}_K(\chi)$ sends a geometric Frobenius to α .

Now say n=2 and χ_1 , χ_2 are admissible characters of K^{\times} . Let π denote $I(\chi_1,\chi_2)$, the normalised induction from the usual character of the Borel, that is, locally constant $\phi: \mathrm{GL}_2(K) \to \overline{\mathbf{Q}}_l$ such that

$$\phi(\begin{pmatrix} a & * \\ 0 & b \end{pmatrix} g) = \chi_1(a)\chi_2(b)|a/b|_K \phi(g).$$

This is irreducible if $\chi_1/\chi_2 \neq |.|^{\pm 1}$; let's assume this. In this case, we have

$$r_l(\pi) = r_l(\chi_1) \otimes |.|^{-1/2} \oplus r_l(\chi_2) \otimes |.|^{-1/2}.$$

The simplest example of this: if the χ_i are unramified and χ_i sends a uniformiser to α_i then π is unramified principal series, the Hecke operators T and S defined using double cosets have eigenvalues $\sqrt{q}(\alpha_1+\alpha_2)$ and $\alpha_1\alpha_2$ respectively, $r_l(\pi)$ sends a geometric Frobenius to a matrix with eigenvalues \sqrt{q}/α_1 and \sqrt{q}/α_2 . To compute $\mathrm{rec}_K(\pi)$ I need to know π^\vee and because we're using normalised induction we know that π^\vee is the normalised induction of the dual of the representation of the Borel, so in particular it's $I(\chi_1^{-1},\chi_2^{-1})$. Now an easy exercise shows that $I(\chi_1,\chi_2)\otimes(|.|_K\circ\det)^s\cong I(\chi_1|.|_K^s,\chi_2|.|_K^s)$ and hence if $\pi=I(\chi_1,\chi_2)$ then $\pi^\vee\otimes(|.|\circ\det)^{-1/2}=I(\psi_1,\psi_2)$ with ψ_i unramified sending a uniformiser to \sqrt{q}/α_i . Hence $\mathrm{rec}_K(\pi)$ is a representation sending a geometric Frobenius to a matrix with eigenvalues α_1,α_2 .