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Last modified 22/05/2009. This was my attempt to read an old paper of Serre’s on the notion
of Hodge-Tate.

1 Basic definitions.

For simplicity let’s define a Fontaine field to be a finite extension K of the field of fractions of
W (k), where k is a perfect field of characteristic p and W (k) is its Witt vectors. Examples are
finite extensions of Qp but if we work in this slightly greater generality then it helps us (well, it
helps me, at least) to see which arguments are “the right ones”.

Choose an algebraic closure K of K, let ΓK = Gal(K/K), let C denote the completion of K.
Tate showed that ΓK acts on C, and that the invariants CΓK were just K again.

Note that k contains a copy of Z/pZ, so W (k) contains a copy of Zp and so K and hence C
contains a copy of Qp. There is a canonical character χ : ΓK → Z×p , the cyclotomic character,
defined in the usual way by the action of Galois on p-power roots of unity. We can regard χ as
taking values in Z×p or Q×p or even C×. We define C(i) to be the 1-dimensional C-representation
of ΓK on which ΓK acts via χi. Let BHT denote the ring C[T, T−1], with ΓK acting on T i via χi.

If V/Qp is a finite-dimensional vector space with an action of ΓK then we can let ΓK act
on V ⊗Qp BHT via the diagonal action; this is not C-linear but it is Qp-linear, and in fact it is
K-linear, with K acting via its action on BHT . Note that BHT = ⊕i∈ZC(i) is a Galois-stable
decomposition of BHT into graded pieces.

Define

D(V ) = (V ⊗Qp
BHT )ΓK

= ⊕i(V ⊗Qp C(i))ΓK

Then D(V ) is a graded K-vector space. Tate proved that D(V ) is finite-dimensional over K, and
in fact that the natural map

α : D(V )⊗K BHT → V ⊗Qp
BHT

sending d ⊗ c to dc was an injection. Hence dimK D(V ) ≤ dimQp
V (tensor up to the field of

fractions of BHT ). Furthermore, Fontaine observed that BHT was an “admissible ring”, from
which it follows that α is an isomorphism if and only if dimK D(V ) = dimQp V (no doubt this
was known to Tate; I’m too lazy to check if he writes this explicitly). We say V is Hodge-Tate if
equality holds.

In fact another thing we can do is to consider the map BHT → C sending T to 1; if α is an
isomorphism then the base change to C of α via this map is an isomorphism, giving us that the
canonical map

⊕i(V ⊗Qp C(i))ΓK ⊗K C → V ⊗Qp C

is an isomorphism; hence V ⊗Qp
C inherits a grading, and hence we get a map µ : (Gm)C →

GL(V )C—this is the “Hodge-Tate character” of V . The Hodge-Tate weights of V are the i for
which (V ⊗Qp C(i))ΓK are non-zero and the multiplicity of the weight i is the K-dimension of
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this latter space. Hence (counted with multiplicities), an n-dimensional representation has n
Hodge-Tate weights.

Example: the cyclotomic character has Hodge-Tate weight −1, which seems to be the usual
convention these days. If we change the action of T to be via the inverse of the cyclotomic character
then it’ll have weight +1, which Toby says is better for us. Becuase I’ll mostly be working with
general representations, nothing I say below will depend on conventions.

2 Some basic properties of D that we need.

I’m just cribbing all of these straight out of periodes p-adiques.
The map D is an additive functor from p-adic representations of ΓK (by which I mean finite-

dimensional Qp-vector spaces plus a continuous ΓK-action) to finite-dimensional graded K-vector
spaces with grading-preserving maps (p141).

Hodge-Tate representations are stable under duality, tensor product, direct sum, and passage
to submodules and quotients. Serre says this on p471 of Ouevres III (his article on algebraic
groups associated to Hodge-Tate Galois representations). Moreover the category of Hodge-Tate
representations is an abelian tensor category.

But better: the category of Hodge-Tate representations of ΓK is a sub-Tannakian category
of the category of all representations, and the map D is in fact an exact faithful tensor-functor
from the category of Hodge-Tate representations to the category of graded vector spaces (p142 of
periodes p-adiques).

This last piece of twaddle implies that there’s a canonical map D(V1)⊗KD(V2)→ D(V1⊗Qp
V2)

and it’s an isomorphism and furthermore it’s grading-preserving, that the dual of D is D of the
dual (as graded K-vector space) and that D is an exact functor.

3 More general coefficient fields.

Now say E/Qp is finite of degree d, and V is an n-dimensional E-vector space with an E-linear
action of ΓK , with K as always a Fontaine field. The correct way to define Hodge-Tate is: consider
V as an nd-dimensional Qp-vector space V0; the E-representation V of ΓK is Hodge-Tate iff (by
definition) V0 is. Looking at it this way we get nd Hodge-Tate weights. But we can do better: the
E-action gives some structure on these weights. Define D(V ) = D(V0). Then D(V ) is actually a
module for E⊗Qp

K and Hodge-Tateness of V is equivalent to the statement that the K-dimension
of D(V ) is nd. But it’s better not to think about it this way: think about Hodge-Tateness as
saying that the induced map D(V )⊗K BHT → V ⊗Qp BHT is an isomorphism of BHT -modules,
because if it is then it’s an isomorphism of E⊗Qp

BHT -modules. Now V is free of rank n over E, so
V ⊗Qp

BHT is free of rank n over E⊗Qp
BHT , and hence Hodge-Tateness implies that D(V )⊗KBHT

is free of rank n over E ⊗Qp
BHT . Now D(V ) is an E ⊗Qp

K-module and I claim that it must be
free of rank n over this ring. For E ⊗Qp

K is isomorphic to a direct sum of finitely many finite
field extensions Li of K, and so D(V ) is just a vector space Di over Li for each i. The claim
is that all these vector spaces are n-dimensional, and this must be true because they have some
dimension, and when tensored over K to BHT they become free of rank n over Li ⊗K BHT , so
had better have been of rank n to start with.

The conclusion is that V being Hodge-Tate is equivalent to D(V ) having K-dimension nd but
is also equivalent to the superficially stronger assertion that D(V ) is free of rank n over E⊗Qp

K.
How do Hodge-Tate numbers work in this setting? Well, D(V ) is a K-vector space with a

grading whose ith piece is (V ⊗Qp C(i))ΓK , but this piece is a module for E ⊗Qp K. So it seems
to me that the natural numbers to associate with this situation are to write E ⊗Qp

K as a direct
sum of fields Li and for each such field we have a graded vector space and we can count the
dimensions of each graded piece. The case that Toby is particularly fond of is when K/Qp is finite
and E contains the normal closure of K/Qp; then each Li is E, and the i’s run through the maps
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K → E. But another case would be when K contains the normal closure of E/Qp (for example
when E = Qp); in this case one gets numbers for each E → K.

How does µ work in this setting? Well, if G is the algebraic group Aut(V ) over E, and
H = ResE/Qp

G, then the point is that H is smaller than AutQp
(V ) (for A a Qp-algebra, an

A-valued point of H is an endomorphism of the A-module V ⊗Qp
A which is both A- and E-linear;

for an A-valued point of AutQp(V ) you don’t demand the E-linearity). Now I claim that µ is
really a map GL1 /C → HC . One can see this directly: indeed D(V ) is graded; its graded pieces
are also modules for E ⊗Qp

K (but the graded pieces might not themselves be free: see example
below). The isomorphism D(V ) ⊗K C = V ⊗Qp

C means that V ⊗Qp
C inherits a grading, but

the graded pieces are modules for E ⊗Qp
C, and hence the induced map from GL1(C) is taking

values in the E ⊗Qp
C-linear endomorphisms of V ⊗Qp

C, and this is precisely what H(C) is.
More generally one works with C-algebras, get exactly the same result, and concludes that µ goes
from GL1 /C to HC . One can go a bit further here: because C contains the normal closure of
E/Qp we have that HC is canonically

∏
τ :E→C GL(V )τ :E→C , the product of the base-changes of

our original group GL(V )/E to C via the d embeddings. So we could think of µ as being d maps
µτ : (GL1)C → GL(V )C , one for each base extension of GL(V ) to C via τ : E → C.

Note of course that µ itself gives rise to numbers, so we are also getting n numbers for each
τ : E → C, and of course one checks easily that what is happening here is that any τ : E → C
induces a map E ⊗Qp

K → C whose image is a field and a component of E ⊗Qp
K.

Summary: any component of E ⊗Qp
K gives us n numbers. Any τ : E → C gives us a

component of E ⊗Qp
K, and hence numbers, but it also gives us a µ.

An easy example of a D(V ) which is Hodge-Tate and hence free over E ⊗Qp
K but whose

graded pieces aren’t free, is when E = K is the unramified quadratic extension of Qp. Class field
theory tells us that if we choose a uniformiser in K (for example, the number p) then there’s an
extension of K with Galois group canonically R×, with R the integers of K, and which corresponds
via class field theory to the quotient of K× obtained by sending our chosen uniformiser to 1. If
we map R× to E× via the canonical inclusion R→ E then the resulting character is Hodge-Tate.
Thought of as a 2-dimensional representation of ΓK then its Hodge-Tate weights are 0 and −1.
But in fact D(V ) is free of rank 1 over E ⊗Qp K, and its graded pieces are K-vector spaces of
dimension 1 in degrees 0 and −1, and clearly these can’t be free over E ⊗Qp

K.
Now let’s put ourselves into Toby’s favourite setting—the setting we’re in in our paper, when

K is a finite extension of Qp of degree m, and when E is a sufficiently large finite extension that E
contains the normal closure of K/Qp. Let’s see how these notions simplify in this case. In this case
we have E⊗QpK = ⊕σ:K→EE as σ ranges over the mQp-algebra maps K → E, and so in this case
D(V ) becomes the direct sum of m E-vector spaces, each of which is graded and n-dimensional.
The upshot is that in this case one attaches n Hodge-Tate weights to each σ : K → E; this is the
sort of thing that Clozel-Harris-Taylor like to do. It seems to me from thinking about this sort of
thing now that from a purely local point of view this seems a little unnatural—the motivation from
doing this will, it seems to me, typically be coming from a global setting (i.e. we will probably
be in the case where other global features of the situation are predicting Hodge-Tate weights).
Furthermore the Hodge-Tate cocharacter doesn’t seem to work any more simply in this setting:
to get the filtration one still has to tensor up to C so the natural ring over which one is working
is still E ⊗Qp

C, and so one is naturally led to consider maps E → K rather than maps K → E,
which is was what I had always assumed would come out in the wash: the filtration on D(V ) is
by E ⊗Qp

K-modules and if E is big then this breaks up as a bunch of E-vector spaces, but to
get the µ on V you need to go up to C: you can have a µ on D(V ) but we want something on V
because later on GL(V ) will be replaced by a general reductive group.

4 Coefficient field Qp.

This is just an extension of the previous idea, but for convenience Toby and I will stick to coefficient
fields in Qp and I just wanted to check it all works out fine. Now we have V an n-dimensional
vector space over Qp, and an action of ΓK on V (with K a general Fontaine field at this point).
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Pick a basis temporarily. The image of ΓK in GLn(Qp) is clearly compact and Hausdorff, so by
the Baire Category Theorem it’s a Baire space, which means that given countably many closed
subsets of it, each with empty interior, their union will also have empty interior. But ΓK is the
countable union of ΓK ∩GLn(E) as E varies through the finite extensions of Qp, so ΓK ∩GLn(E)
has non-empty interior for some E, and hence contains an open and hence finite index subgroup of
ΓK . Enlarging E if necessary, we may assume ΓK ⊆ GLn(E). So there’s an n-dimensional vector
space V0 over E equipped with an action of ΓK which tensors up to give V over Qp.

We apply the above twaddle to V0. The “numbers” version gives us this: for every component
of E ⊗Qp

K we get n numbers. The “µ” version gives us this: for each E → C an embedding of
Qp-algebras we get µτ : (GL1)C → GL(V0)τ,C .

But now we need to think about how this data depends on E. For a start, there is no E in
the question, so there shouldn’t be an E in the answer. But this is OK: we can fix this thus.
For the “numbers” version of Hodge-Tate weights, I think we are getting n numbers for every
component of K ⊗Qp

Qp. I am not sure I’m going to persevere with this in the general Fontaine
field case, because I’m not really interested in numbers. So let’s make the simplifying assumption
that K/Qp is finite and then see if we can get numbers out. Now a component of K ⊗Qp

E is just
a finite extension of E. Now we get one of these for every map K → Qp, the point being that E
is an explicit subfield of Qp so any map K → Qp gives a map K ⊗Qp

E → Qp whose image has
no zero divisors and is hence a field; this is the component we’re after. So the “numbers” version
gives n numbers for each K → Qp. And the “µ” version (back to a general Fontaine field): we
get a µ : GL1 → GL(V0)C for each E → C, so given a Qp-algebra homomorphism Qp → C we
can base extend GL(V0) from E to Qp and then to C, so the “µ” version of the story is that for
each Qp → C we’re getting µ : GL1 → GL(V )C .

But this isn’t quite the end of the story. We could have chosen a totally different basis and
a totally different E. Then what? As Toby and I both observed, it suffices to check that the
data we get doesn’t change under field extension (because then you can go up and go down). So
say we have V0/E and a finite extension E′ of E within Qp. The “numbers” game (with K/Qp

finite) gives us a list of H-T weights for each component of E ⊗Qp K, and if we base change to E′

(note that D commutes with tensoring up to E′ over E) then dimensions don’t change and hence
numbers don’t change. So indeed the notion of Hodge-Tate weights attached to an embedding
K → Qp are well-defined.

What about µ? Back to K a general Fontaine field. Here the question is the following. We
have E in E′ in Qp and we have a map τ : Qp → C. Both E and E′ give us µτ : GL1 → GL(V )τ,C
and we need to check that they give us the same map. It’s easier to think in terms of filtrations.
Here’s the explicit question. Over E we have a filtration on V0 ⊗Qp C but we’re only interested
in the component corresponding to τ |E which is simply the submodule V0 ⊗E C. Now of course
things are becoming clear. Over E′ we’re interested in the filtration on E′ ⊗E V0 ⊗Qp

C but
we’re only interested in the part of this E′ ⊗Qp

C-module corresponding to the component of
E′ ⊗Qp C corresponding to τ |E′ which is V0 ⊗E E′ ⊗E′ C = V0 ⊗E C again. Finally the filtration
on D(V0) ⊗E E′ is the same as the filtration on D(V0 ⊗E E′) and so the filtrations on V ⊗τ C
coincide. So indeed we have a well-defined µ attached to a Hodge-Tate V/Qp and an embedding
Qp → C.

5 Representations to more general groups over Qp.

Let’s start with the story of G, a reductive group over Qp, and K a Fontaine field and a map
ΓK → G(Qp). Let’s furthermore choose a faithful representation G → GL(V ) over Qp; now we
have a map ΓK → GL(V )(Qp). If this map is Hodge-Tate then we get µ : (GL1)C → GL(V )C .
The claim is that µ factors through a map to GC , and let me spend some time convincing myself
of this because we’ll need to generalise it later.

The argument in Serre’s paper does not go “let’s think about things carefully and unravel the
definitions and check it”; it goes like this: “µ is a canonical and functorial thing, and hence can
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be regarded as some sort of map from certain representations of G to representations of Gm, and
so by the Tannakian Formalism it will give rise to a map Gm → G. It’s this argument that we
have to understand because we’re going to need to generalise it.

Here’s the proof then. First take an arbitrary map G→ GL(W ) over Qp, with W a Qp-vector
space of dimension N . This gives us an induced N -dimensional Galois representation. I claim
that this Galois representation is Hodge-Tate. This is true because V is a faithful representation
of G, and any representation of G, it says here in Proposition 3.1 of Deligne’s article in SLNM900
(Deligne-Milne-Ogus-Shih), that the N -dimensional Galois representation is a subobject of V ⊗
V ⊗ . . . ⊗ V ⊗ V ∨ ⊗ V ∨ ⊗ . . . ⊗ V ∨ (This is only asserted for G reductive; I don’t know if it’s
true for a general algebraic group G). But Hodge-Tate reps are stable under tensor products,
duals, and subobjects, so we’re done. Note that this argument also shows that there is a sensible
notion of what it means for ΓK → G(Qp) to be Hodge-Tate: it just means that for a faithful
representation to GLn (equivalently, all faithful reps, equivalently all reps), the induced Galois rep
is (are) Hodge-Tate.

In particular, for any representation G→ GL(W ) we get a map µ : (GL1)C → GL(WC).
Hence, for any representation X : G → GL(W ) of G and any C-algebra A, we have, for

a ∈ A×, we have an endomorphism of W ⊗Qp
A corresponding to a, which on the ith graded

piece is multiplication by ai. These endomorphisms satisfy some very natural properties: recall
D(W1)⊗K D(W2) = D(W1 ⊗Qp W2) (this is in Fontaine Periodes p-adiques p124) and, crucially,
if α : W1 → W2 is G-equivariant then D(α) : D(W1) → D(W2) exists and is grading-preserving
(D is a functor to graded vector spaces). The upshot of all of this is that, for a fixed A and a, we
have an A-valued automorphism of the fibre (forgetful) functor on the category of representations
of G, and hence a map A× → G(A) by one of the standard theorems about Tannakian categories.
This is a morphism of functors and turns into a map (GL1)C → GC which is of course just µ
again.

Of course we don’t have “numbers” in this general setting, only µs. So far we have shown that
for a Hodge-Tate representation ΓK → G(Qp) with G reductive, we get µ : (GL1)C → GC .

6 More general coefficient fields.

Now say we have ΓK → G(E) with G now reductive over a finite extension E of Qp. Of course
we just follow our noses; we set H = ResE/Qp

G, so now we have a representation to H(Qp). A
faithful E-representation of G gives a faithful Qp-representation of H, so there’s our notion of
Hodge-Tate. So we get µ : (GL1)C → HC and, because C is so big, we see HC =

∏
τ :E→C Gτ,C ,

so we get a µtau : (GL1)C → Gτ,C for each τ : E → C.
Let’s just pause here and think what τ is again. To give τ is to give aK-algebra map E⊗QpK →

C and hence it’s to give a component Li of E ⊗Qp
K and a K-algebra map Li → C.

7 Our ultimate goal: general G and coefficient field Qp.

We now put ourselves in the position that Toby and I find ourselves in: we have a representation
ΓK → G(Qp), with G reductive over Qp (and hence with finite component group; we’ll have to
reduce to this case but this is fine) and, for the moment at least, K a general Fontaine field. The
first thing to do is to choose a totally arbitrary model G0 for G over a field E0; the Baire Category
argument shows that we can now find E/E0 large enough such that that ΓK is taking values in
G0(E). We now (from the previous section) have a µ : (GL1)C → (G0)τ :E→C for every τ : E → C.
To make this notion intrinsic we consider instead maps τ : Qp → C; to every such map we get an
induced map E → Qp → C, and the base change of G0 to Qp is G again, so for every such τ we
get µ : (GL1)C → Gτ :E→C .

Finally we have to check that this is well-defined, so we have to worry about a completely
different model G′0 and a completely different E′0 and so on. But both G0 and G′0 will become
isomorphic after some huge field extension containing both E and E′, so it suffices to check that
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the recipe attaching µ to τ is unchanged if we replace E above by a bigger field E′. We have a
representation to G0(E) and also to G0(E′). By the recipe of the previous section, if τ ′ : E′ → C
restricts to τ : E → C then we’ll get a mu and a mu′ and we need to check they’re the same. But
in fact we can reduce to the vector space case! Just choose a faithful representation of G0 defined
over E; this induces a faithful representation over E′ and we already checked here that the two
µs coincided after this faithful representation; hence they coincide.

8 The case K/Qp finite and G an L-group.

Given any Fontaine field K and a representation ΓK → G(Qp) with G reductive, there’s a good
notion of being Hodge-Tate. If the representation is Hodge-Tate then for each τ : Qp → C we
get µ : (GL1)C → Gτ,C . The image of µ will land in the connected component of GC and will
hence give us a cocharacter of the dual torus (recall G is an L-group) and hence an element of
X∗(T )/W , where T is a torus over Q in our conn red group, and W is the “absolute” Weyl group.

So we’re getting an element of X∗(T )/W for each τ : Qp → C, and in practice there will
be a coefficient field E0 such that this element will only depend on the restriction of τ to E0. I
do wonder whether E0 will be the coefficient field of the automorphic form, because if there is
any form of G defined over E0 and which is recieving the Galois representation then µτ will only
depend on τ |E0.

Now if K/Qp is finite then τ induces an isomorphism Qp = K and so to give τ is to give a
map σ : K → Qp. Furthermore if L/K is a finite extension of K containing the normal closure
of E0/Qp (that is, of all Li/K with Li components of E0 ⊗Qp

K) then µσ will only depend on
σ|L. This is some sort of “continuity” (indeed—even a local constancy) of the association σ 7→ µσ.
But to actually get the cocharacter one does need more than K → Qp; to see what one needs in
practice one should take “the smallest field E such that ρ can be realised over E” and then take
the Galois closure of K and of E and put it all together; that’s what one has to embed into Qp.
If you don’t embed enough then you only get “Hodge-Tate numbers”.
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