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1 Pontrjagin duality.

Noam Elkies wrote a brief note on this at
http://www.math.harvard.edu/˜elkies/M55b.99/pontrjagin.html.
If G is a locally compact abelian group (LCAG) (that is, a HAUSDORFF topological abelian

group such that any point has a neighbourhood contained in a compact set) then its dual is the
continuous homomorphisms from G to the unit circle T. Let Ĝ denote this abelian group. Any
g ∈ G gives (via evaluation) a homomorphism Ĝ → T and we put the weakest topology on Ĝ
that makes all these homomorphisms continuous. The theorem is that with this topology Ĝ is
an LCAG and the double-dual of G is canonically isomorphic with G as a topological group. In
fact it gives an anti-equivalence of categories from the category of LCAGs (with continuous group
homs as morphisms) to itself.

2 Examples.

The dual of a finite abelian group with the discrete topology is non-canonically isomorphic to
itself.

The dual of Z is T, and the dual of T is Z.
More generally the dual of a compact group is discrete, and vice-versa.
The dual of R is (kind of non-canonically) R again, the map being that sending r ∈ R to the

character x 7→ exp(ixr) or exp(2πixr) or whatever. The dual of C is kind of non-canonically C
for the same reason.

If F is a finite extension of Qp then the dual of F is non-canonically F ; if one chooses a
character 0 6= ψ : F → T then one way of seeing the identification is that you can send f ∈ F to
the map x 7→ ψ(fx).

Similarly if R is the integers in F then the dual of the compact group R is non-canonically
isomorphic to the discrete group F/R.

I think that the dual of a number field under addition (with the discrete topology) is related
to the adeles of that field. That sounds wrong doesn’t it. Is it that the dual of the multiplicative
group is related to the ideles? I forget. Darn. This is in Tate’s thesis but someone has my copy
of Cassels-Froehlich.

3 Fourier transforms in some vast generality.

The idea is that if f is a reasonably well-behaved function on a LCAG G then its Fourier transform
should be a simiarly reasonably well-behaved function on Ĝ, thought of as the decomposition of
f into characters.
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4 Haar measure.

If G is any locally compact Hausdorff topological group then it has a left Haar measure. If G is
furthermore abelian then this will equal the right Haar measure. This means that we can speak
not only about continuous functions on G, but also measurable functions, and also Lp-functions,
for 1 ≤ p < ∞, which are of course the measurable functions f for which the integral of |f |p
converges, modulo the subspace of f for which the integral converges to zero. Functions in L1 are
referred to as “integrable”. Note that because of the fact that Lp(G) is a subquotient, rather than
a subspace, of the measurable functions, there are in general no natural inclusions amongst these
Lp spaces as p varies. All are Banach spaces though, the norm being the pth root of the integral.
I think that if G is compact then “Lp ⊆ L1 for p > 1”. Note that (by convention) L∞(G) is the
“essentially bounded” functions f , that is, those that are bounded away from some set of measure
zero, and the norm on L∞ is of course the “essential supremum” of f .

Note however that in this generality one cannot speak about C∞ functions on G, as far as I
can see.

5 Formal definition in some vast generality.

If G is an LCAG, then G gets a Haar measure, defined up to a positive real. If now f is an L1-
function on G (that is, f is complex-valued, measurable, and the integral of |f | over G converges)
then its Fourier transform is the function f̂ : Ĝ→ C sending χ to

∫
x
f(x)χ(x)dx. The theorem is

that if we also put a Haar measure on Ĝ then f̂ is bounded, continuous, and “vanishes at infinity”,
whatever that means. If f is in L1 and f̂ also happens to be in L1 then it might be the case that
one can recover f in L1 as f(x) =

∫
χ
g(χ)χ(x)dχ assuming one has picked the “correct” Haar

measure on Ĝ (this is just a normalisation issue). I don’t know a reference though.
One can also check that for G any LCAG, Fourier transform induces an isometric isomorphism

L2(G) → L2(Ĝ). I read this in Cartan-Godement. I think this is “Plancherel’s theorem”? Note
that one has to be super-careful here by what one means by “induces”: the Fourier transform
converges for f ∈ L1(G) but if G isn’t compact then there is no natural map L2(G) → L1(G)
so we don’t get a natural Fourier transform defined on all of L2(G) for free. What one does is
firstly defines the Fourier transform on L1(G), and hence on L1(G)∩L2(G), and then extends by
continuity to L2(G).

6 The reals.

Choose an identification R = R̂. If f is C∞ with compact support, or more generally in Schwartz
space (which is C∞ functions all of whose derivatives tend to zero faster than any power of |x|),
then f̂ is also in Schwartz space; in fact Fourier transform is an isomorphism from Schwarz space
to itself. The transform of the convolution is the product of the transforms. One can read about
this in Folland’s “Real Analysis”. The usual normalisation is that we use Lebesgue measure and
set f̂(y) =

∫
f(x)e−2πixydx, so we identify R with its dual using that 2π factor.

The neat thing about these choices is that for a > 0 real, the Fourier transform of x 7→
exp(−πax2) can be computed without too much trouble. If it is g(y) then one checks by differen-
tiating under the integral that g′(y) is some integral involving what turns out to be f ′(x), because
of our clever choice of f , and then by integration by parts we can get back to an integral of f
again and deduce that g′(y) = −2πy

a g(y), so g(y) = ce−πy
2/a for some constant c which is easily

checked (set y = 0) to be a−1/2. Note that the Fourier transform of g is now f again! But this is
because f is even; usually when you do the Fourier transform twice to f you get x 7→ f(−x) (see
Follard p251 for example).

If f ∈ L1(R) then f̂ is a well-defined function on R, and indeed it is uniformly continuous
(see Baggett and Fulks, p105) and is zero iff f = 0 in L1 (B&F p113). However, f̂ might not be
in L1: the characteristic function of [−1, 1] gives an easy counterexample; its Fourier transform
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is sin(x)/x (up to some constant) and this isn’t in L1. If however f ∈ L1 and f̂ ∈ L1 then f is

continuous and ˆ̂
f = f(−x).

Plancherel’s theorem is that if f is in L1 and L2 then f̂ is in L2 and the L2-norms of f and f̂
coincide.

7 The integers and the circle.

Reference: Chapter 8 of Folland.
Let T denote the circle group and say f is an L1-function on T. Its Fourier transform is in

`∞(Z), that is, a bounded sequence indexed by Z, the nth term being
∫
f(z)z−n, the integral with

respect to a Haar measure, normalised so that the circle has measure 1. Note that boundedness
of the Fourier coefficients is clear as indeed is the property that the `∞ norm of the coefficients
is at most the L1-norm of f . Note also that f ∈ L1(T) is determined by its Fourier transform
f̂ ∈ `∞(Z). A book called “Fourier Analysis” by Baggett and Fulks that I found in the Imperial
library proves this on p15. This book also points out that not every bounded sequence arises
in this way: indeed if f is in L1 then there’s a step function which is L1-close to f and from
this it’s not hard to check that the bounded sequence in fact tends to zero in both directions
(the Riemann-Lebesgue theorem). In fact, even a general element of `∞(Z) which tends to zero
in both directions may not be the Fourier transform of an element of L1(T): an example (from
Baggett and Fulks, section 2.5) is given by the sequence defined by cn = 0 for −1 ≤ n ≤ 1 and
cn = sgn(n)/log(|n|) for |n| ≥ 2. No super-nice classification is known about the image of L1(T)
although it’s a fact that a sequence is in the image iff it’s the convolution of two `2 sequences (p70
of B&F).

We can do much better if we assume f ∈ L2(T). In this case f̂ ∈ `2(Z) and the L2-norm of f
equals the `2-norm of f̂ . Equivalently, the characters z 7→ zn for all n form an orthonormal basis of
the Hilbert space L2(T), and the proof of this latter fact is essentially just the Stone-Weierstrass
theorem (and the fact that the continuous functions are dense in L2). As a consequence we
see a special case of the general theorem that L2(G) = L2(Ĝ): we have proved that L2(T) is
isometrically isomorphic to `2(Z).

More generally if 1 ≤ p ≤ 2 and 2 ≤ q ≤ ∞ and 1/p+1/q = 1 then the Fourier transform takes
Lp(T) to `q(Z), and the Hausdorff-Young inequality is that the `q norm of f̂ is ≤ the Lp-norm of
f . We’ve just proved the cases p = 1 and p = 2 of this, and the general case now follows by some
formal measure theory argument. This last is from Folland.

8 Schwarz space for totally disconnected topological spaces.

If X is a locally compact totally disconnected topological space then let C∞c (X) denote the vector
space of locally constant complex-valued functions on X with compact support. One can make
this space an algebra (a ring without a 1) by defining addition and multiplication pointwise and
the spectrum of this ring (in some appropriate sense), with its Zariski topology, is X again. There
is a sheaf of algebras on X and if you localise C∞c (X) at a prime ideal (all of which you get by
fixing a point and evaluating functions at that point) then you recover the complex numbers.

9 A neat “duality” in the totally disconnected case.

If now G is a locally compact totally disconnected abelian group which is the union of its compact
subgroups then C∞c (G) has a second multiplication if you fix a Haar measure: you can convolute.
It turns out that Fourier transform induces an isomorphism of algebras between C∞c (G) (with
convolution as multiplication) and C∞c (Ĝ) (with pointwise multiplication as multiplication). Is
this some kind of analogue of the duality between Schwartz space and itself when G = R?
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Note also that for G locally compact totally disconnected abelian and the union of compact
subgroups, there are bijections between Ĝ (in the sense above), the irreducible unitary reps of G
(this much is kind of clear) and the smooth irreducible reps of G.

10 p-adic fields.

Let F be a finite extension of Qp. If we fix ψ : F → T a non-trivial character then F̂ becomes
identified with F . I think that people Schwartz space in this setting to be the locally constant
complex-valued functions on F with compact support. The remarks above should enable us to view
functions on F under pointwise multiplication with functions on F under convolution. Let’s fix ψ
to be the usual thing: take trace from F to Qp and then use the map sending 1/pn to exp(2πi/pn)
for all n. Now F is identified with F̂ . Let π be a uniformiser for F and let’s normalise Haar
measure such that O, the integers of F , have Haar measure 1. Note that ψ vanishes on D−1, with
D the different, and indeed D−1 will be the conductor of ψ.

For n an integer, let fn denote the characteristic function of πnO. Then fn has L2-norm q−n

where q is the size of the residue field.
Let’s compute the Fourier transform of fn with respect to all our choices. Call it gn. We have

gn(y) =
∫
x∈πnO ψ(−xy)dx. Clearly this function vanishes outside D−1π−nO and is identically

q−n on it, so gn = q−nf−c−n with c the valuation of the different. Note that gn has L2-norm qc−n

so we’ve not quite done as well as Plancherel: we should have put in a normalising factor of q−c/2

I guess.
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