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Let E/S be an elliptic curve over a scheme. Then E/S is smooth and hence
locally of finite presentation, and proper and hence quasi-compact, so it’s of
finite presentation. Hence one can cover S by affines Ui such that on each Ui

we have E|Ui is the pullback of an elliptic curve over a Noetherian ring. This is
in EGA IV, sections 8 through 11 (specifically 8.9.1 and 11.2.6.1). So WLOG S
is Noetherian, for what we’re going to do, which is constructing explicit models
for modular curves. Let f : E → S denote the structure map and let e : S → E
denote the zero section. Now Lemma 1.2.2 of Katz-Mazur shows that the image
of e defines what they call an effective Cartier Divisor, and its ideal sheaf is an
invertible sheaf on E. Let O(e) denote its inverse, and let O(ne) denote the nth
tensor power of O(e), n ≥ 0. Recall Grothendieck’s generalisation of the fact
that cohomology of a coherent sheaf on a projective variety is finite-dimensional:
if f is proper morphism between Noetherian schemes then Rif∗ of a coherent
sheaf is coherent. Hartshorne III.8.8(b) for the projective case, EGA III 3.2.1
for the proper case. Another standard cohomology and base change result is
the following.

Theorem 0.1 (Mumford ab vars p53). If X → Y is a proper morphism and
Y is affine and F is coherent on X and flat over Y and if, for some n we have
Hn(Xy,Fy) = 0 for all y ∈ Y , then Rn−1f∗F commutes with all base changes.

Now we show that if n ≥ 1 then f∗O(ne) is locally free of rank n and
commutes with all base changes; see p66 of Katz-Mazur for the argument. The
idea is that applying the theorem with n = 2 gives that R1f∗O(ne) is coherent
and commutes with base changes, and now looking at points showsR1f∗O(ne) =
0, so now applying Mumford ab vars theorem on p46 and also the lemma on
p47 with n = 0 and the lemma on p49, we deduce that f∗O(ne) is locally free
and commutes with all base changes.

Let’s cover S by open affines over which f∗O(ne) is free, for 1 ≤ n ≤ 6.
Let S = Spec(R) now denote one of these affines and write Mn for f∗O(ne).
Now the usual tricks work. There are maps Mn →Mn+1 and the map M0 →M1

is an isomorphism because it’s true on fibres. So 1 is a basis for M1. Let {1, x}
be a basis for M2; such a thing exists because if R is a ring and we have an
R-module homomorphism R → R2 sending 1 to (a, b) and with the property
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that the ideal generated by a and b is R, then we can solve λa + µb = 1 and
hence extend the map R→ R2 to an isomorphism R2 → R2.

Let’s normalise x slightly carefully: if we choose an isomorphism of the
completion of E along e with S[[t]], then we know that x = ut−2 + . . . and u
must be a unit becuase it’s not contained in any maximal ideal. So WLOG
u = 1.

Now go to M3. If we have a 3 × 2 matrix over a ring and modulo every
maximal ideal of this ring the matrix has rank 2, then one of the two by two
minors of this matrix will be non-zero, so the ideal generated by these three
minors is R, so we can extend to an invertible 3× 3 matrix. So we can beef up
{1, x} to {1, x, y}, a basis of M3. We can ensure also that y = t−3 + . . ..

Now I claim that 1, x, y, x2, xy must be a basis for M5. This is clear because
they all have poles of different orders at the origin.

So because y2 − x3 is in M5 we find a relation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

and this shows that the map E → P2 defined by the very ample sheaf
O(3e) has image lying in this cubic and for dimension reasons this must be an
isomorphism, I guess.

This model is in no way unique. We chose a uniformising parameter t and
unravelling we see that our degrees of freedom are given by sending x→ u2x+a
and y → u3y + bx + c, with u a unit and a, b, c arbitrary. So amongst our 5
variables we have 4 ways of changing them and this is morally why modular
curves are 1-dimensional.

We conclude that locally on the base, an elliptic curve is given by the usual
equation above.

Now let’s consider an S-valued point P of E which is not the zero section on
any fibre (note that in characteristic 2 we could have a section which usually has
order 2 but which suddenly has order 1 at a supersingular fibre. Terrifying!).
Using the a and c freedom above, we can assume that on each of our models, P
is the point (0, 0). So our equation becomes

y2 + a1xy + a3y = x3 + a2x
2 + a4x.

Now the line x = 0 meets the curve at infinity, (0, 0) and (0,−a3). So if P
hasn’t got order 2 on any fibre either, then v := a3 will be a unit. Now we use
our b flexibility, sending y to y− (a4/a3)x, to conclude that if P isn’t killed by 2
on any fibre, then we can write our curve as

y2 + a1xy + vy = x3 + a2x
2.

We still have our u flexibility, but we have gained a degree of freedom because
our condition on P is morally open. Note that −P = (0,−v). Let’s now try the
line y = 0; we have assumed that P doesn’t have order 2 so it’s no surprise to
see that −2P can never be infinite; we see that −2P = (−a2, 0).
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So if P doesn’t have order 3 on any fibre either, then a2 is also a unit.
Because a2 is weight 2 and v is weight 3, we can finally use our u dependency
and assume that a2 = v as well! Now we have no more flexibility, but we do
have a conclusion: if P doesn’t have order 1,2 or 3 on any fibre, then locally the
curve looks like

y2 + a1xy + vy = x3 + vx2,

with P = (0, 0), −P = (0,−v), −2P = (−v, 0), and v a unit.
Note that the lines x = c all go through infinity and can be used to find the

inverse of a point on the group law; the inverse of (x, y) is (x,−a1x− v− y). In
particular we see that 2P = (−v, (a1− 1)v). Another one: the line through −P
and −2P is y = −x − v and substituting in and comparing terms in x2 we see
that 3P = (1−a1, a1−v−1), and −3P = (1−a1, (1−a1)2). Pari is really really
good for working these out; e = ellinit([a1, v, v, 0, 0]);P = [0, 0]; ellpow(e, P, 3)
for example to see things in huge generality.

Now the results come easy. For example, 4P = 0 iff 2P = −2P iff a1 = 1
and we see that Y1(4) is the open subscheme of A1 where v is invertible and
where

y2 + xy + vy = x3 + vx2

is smooth. Similarly, if P has order 5 on each fibre then we want 3P = −2P
so a1 = 1 + v. Note finally that if 4P isn’t zero then a1 − 1 is a unit, maybe
this helps?
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