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1 Derived functors.

My goal is to define Ext and Tor but there’s no harm talking about general nonsense for a bit.
Because I want to derive both Hom and ⊗ with respect to both variables, we’re going to have
to talk about functors which are either left exact or right exact, and functors which are either
covariant or contravariant. But there’s a trick. If A is an abelian category then Aop is too, and
so we can work out the theory just with right derived functors of a covariant left exact functor
F : A→ B, and then apply the theory with functors A→ Bop, Aop → B and Aop → Bop!

So first let’s say A and B are abelian categories, and F is a covariant, left exact functor (that
is, if 0→ L→M → N → 0 is exact then so is 0→ F (L)→ F (M)→ F (N)).

If A has enough injectives then left exact (covariant) functors have right derived functors, and
they can be computed in the usual way: if X is an object of A then write down an injective
resolution 0→ X → I0 → I1 → · · · , apply the functor and get a complex 0→ F (I0)→ F (I1)→
· · · , and define the right derived functor Rn(F ) to be the cohomology of this complex at the point
F (In). Note for example that R0(F ) = F by left exactness. We recall the basic property of the
derived functor in this case: if 0→ X → Y → Z → 0 is exact, then so is

0→ F (X)→ F (Y )→ F (Z)→ R1F (X)→ R1F (Y )→ · · · .

Next, if F is a contravariant functor A→ B then think of F as a covariant functor F̃ : Aop → B;
it seems that the standard terminology is that F is left exact if, by definition, F̃ is left exact.

If F is a contravariant functor which is left exact in this sense, then we will be able to pull off the
same trick if Aop has enough injectives, which of course is the same as A having enough projectives.
The functor F̃ of course has right derived functors RnF̃ : Aop → B which can be thought of as
contravariant functors RnF : A → B—these are again called the right derived functors of the
contravariant left exact functor F . Explicitly, if X ∈ A and · · · → P1 → P0 → X → 0 is a
projective resolution, and if we apply F , then we get 0 → F (P0) → F (P1) → · · · and we take
the cohomology of this at the F (Pn) term to get RnF (X). And the canonical exact sequence is
that if 0 → X → Y → Z → 0 is exact then so is 0 → F (Z) → F (Y ) → F (X) → R1F (Z) →
R1F (Y )→ · · · . As a sanity check: we computed using projective resolutions so if Z is projective
then R1F (Z) = 0, but this is unsurprising because in this case the short exact sequence splits.

A right exact covariant functor A → B can be thought of as a left exact covariant functor
Aop → Bop, so the left derived functors of a right exact functor can be computed using projective
resolutions in A, if A has enough projectives. Similarly a right exact contravariant functor A→ B,
that is, a contravariant functor for which the associated covariant functor Aop → B is right exact,
will have left derived functors iff the associated map A→ Bop has right derived functors, so if A
has enough injectives then the derived functors exist and you can compute them using injective
resolutions in A.
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2 Example of a projective resolution.

This will come in handy later. Let G be a group, let A be the ring Z[G], and consider the category
of left A-modules (that is, A acts on the left). Here is a “standard” projective resolution of Z,
considered as a left G-module with G acting trivially. It’s called the “unnormalised bar resolution”.

Let Bn (for n ≥ 0) be the free A-module on the set of all symbols (g1, g2, . . . , gn). Thought of
another way, Bn is the free Z-module on the set of all symbols [g0, g1, . . . , gn] := g0(g1, g2, . . . , gn).
For n ≥ 1 define an A-linear map d : Bn → Bn−1 by demanding that on A-generators it does this:

d(g1, . . . , gn)

= g1(g2, . . . , gn)− (g1g2, g3, . . . , gn) + (g1, g2g3, g4, . . . , gn)− · · ·

· · ·+ (−1)n−1(g1, g2, . . . , gn−1gn) + (−1)n(g1, g2, . . . , gn−1).

So, explicitly, d : B1 → B0 sends the A-generator (g) to g(∗) − () with () the generator of B0

(which is free of rank 1) and d : B2 → B1 sends (g, h) to g(h)− (gh) + (g).
Finally define ε : B0 → Z by sending g(∗), for g ∈ G, to 1. The claim, which I won’t prove, is

that · · · → B2 → B1 → B0 → Z → 0 is exact. I suspect that one relatively painless proof of this
involves using some other basis where d has a much simpler definition! Another proof is hinted at
in Exercise 6.5.1(1) of Weibel. But let’s press on, I’ll prove enough to be able to compute H1 and
H1 group homology and cohomology.

Checking that the sequence is exact at the Z and B0 terms can be done by hand: clearly B0

surjects onto Z, and if one thinks of B0 as the ring A with (∗) = 1, then the map B1 → B0 sends
(g) to g − 1, and such things generate (as a left ideal) the kernel of B0 → Z, as is easily checked.
Let me check exactness at the B1 term, by mimicing the general proof. To check exactness here
I firstly have to check that d2 = 0, and it suffices to check this on generators. If (g, h) ∈ B2

then d(g, h) = g(h) − (gh) + (g) and d of this is gh(∗) − g(∗) − gh(∗) + (∗) + g(∗) − (∗) = 0, so
d2 = 0, and to check it exactness I just need to check that anything in the kernel of d : B1 → B0

is in the image of d : B2 → B1. Here’s how I’ll do this: define s : B1 → B2, Z-linear but not
A-linear, by s(g(h)) = (g, h), and define s : B0 → B1, Z-linear but not A-linear, by s(g(∗)) = (g).
I claim that ds+ sd is the identity map B1 → B1, and this will prove exactness at B1. It suffices
to check on Z-generators, so it suffices to check that (ds + sd)(g(h)) = g(h). But this is easy:
(ds)(g(h)) = d(g, h) = g(h)− (gh) + (g), and (sd)(g(h)) = s(gd(h)) = s(gh(∗)− g(∗)) = (gh)− (g)
so ds + sd is the identity. But this is enough to prove that the kernel of d : B1 → B0 coincides
with the image of d : B2 → B1!

We can also make the Bn free right A-modules by switching the G-action in the usual way:
b ∗ g := g−1b. Using this trick we also get a projective resolution of Z in the category of right
A-modules.

3 Ext.

Let A be a ring, not necessarily commutative. Write A -Mod for the category of left A-modules
(that is, A acts on the left) and Mod-A for the category of right A-modules. Both of these
categories have enough injectives and enough projectives.

If N is a left A-module then HomA(N, ∗) is covariant and left exact, so it has right derived
functors which are called ExtnA(N, ∗), and ExtnA(N,X) can be computed using an injective reso-
lution of X. We deduce immediately that if 0 → X → Y → Z → 0 is a short exact sequence of
left A-modules then we have a long exact sequence

0→ HomA(N,X)→ HomA(N,Y )→ HomA(N,Z)→ Ext1A(N,X)→ Ext1A(N,Y )→ · · · .

As a sanity check: if X is injective then 0→ X → Y → Z → 0 splits so it looks like Ext1A(N,X)
should be zero, and it is because X is an injective resolution of X and this complex has no term
in degree 1.
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Now consider a left A-module X and the functor HomA(∗, X). This functor is contravariant
and if M → N is surjective then HomA(N,X) → HomA(M,X) is injective, so HomA(∗, X) is
left exact and contravariant, so it has right derived functors, and these functors can be computed
using a projective resolution of N (because it’s injective in the opposite category to A -Mod).

The funny thing is that these derived functors are just ExtnA(∗, X) again! The reason for
this is that if N and X are left R-modules and I∗ is an injective resolution of X and P∗ is a
projective resolution of N , then there is a double complex called Hom(P∗, I∗) and the associated
total complex has natural maps to Hom( P∗, X) and to HomA(N, I∗) and both of these natural
maps are quasi-isomorphisms. This is explained much more carefully in section 2.7 of Weibel’s
homological algebra book.

We deduce that if 0→ L→M → N → 0 is a short exact sequence of left A-modules then we
get a long exact sequence

0→ HomA(N,X)→ HomA(M,X)→ HomA(L,X)→ Ext1A(N,X)→ Ext1A(M,X)→ · · · .

The sanity check: if N is projective then the sequence splits, so Ext1A(N,X) should be zero,
and it is because we computed it using a projective resolution of N .

Ext is not symmetric (as Hom isn’t!). But it is additive in each variable and contravariant
in the first, covariant in the second (so, for example, an A-module hom N1 → N2 induces maps
ExtnA(N2, L)→ ExtnA(N1, L), “because it’s true for n = 0”).

4 Group cohomology.

If G is a group and M is a G-module then Hi(G,M) is just ExtiA(Z,M), where A = Z[G]. Here
Z is the A-module defined by g.z = z for all g ∈ G and z ∈ Z. This can be computed by either
using an injective resolution of M , which is typically going to be hell to write down, or a projective
resolution of Z, and we wrote one of them down earlier! We deduce that Hi(G,M) is the homology
of the complex whose ith term is Hom(Bi,M). We have

0→ HomA(B0,M)→ HomA(B1,M)→ HomA(B2,M)→ · · · .

Because the Bi are free A-modules of rank “Gi”, as it were, we may consider HomA(Bi,M) as
just the (set-theoretic) maps Gi →M . So we see

0→M → Hom(G,M)→ Hom(G2,M)→ · · · .

The elements of Ci := Hom(Gi,M) are called i-cochains, and an i-cochain in the kernel of d is an
i-cocycle, and one in the image of d is an i-coboundary. The cohomology of M is the homology
of this complex. We see explicitly that dm is the map G → M sending g to, well, you do dg
in B0, and get g(∗) − (∗), and then consider the A-linear map sending (∗) to M and you get
gm − m, so there’s d from C0 to C1; its kernel is MG so we recover that H0(G,M) = MG.
Similarly d : C1 → C2 is defined thus: if f : G → M then df is the map G2 → M such that
(df)(g, h) = gf(h) − f(gh) + f(g), so a 1-cocycle is a function f with f(gh) = gf(h) + f(g) and
a 1-coboundary is f of the form f(g) = gm −m. In particular if G acts trivially on M then a
1-cocycle is just a group homomorphism and all coboundaries are zero, so H1(G,M) is just the
group homomorphisms G→M .

5 Tor.

If N is a right A-module then N ⊗A ∗ is a covariant right exact functor from left A-modules
to abelian groups (or even to A-modules, if A is commutative), so this functor has left derived
functors, and they’re called TorAn (N, ∗) and for X a left A-module we can compute TorAn (N,X)
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using a projective resolution of X. Given a short exact sequence 0 → X → Y → Z → 0 of left
A-modules we have a long exact sequence

· · · → TorA1 (N,Y )→ TorA1 (N,Z)→ N ⊗A X → N ⊗A Y → N ⊗A Z → 0

and the sanity check is that if Z is projective then Tor1A(N,Z) will vanish and the exact sequence
will split.

Now if X is a left A-module then ∗ ⊗A X is right exact and covariant on the category of right
A-modules, so we can take left derived functors, and, although I won’t give them a name yet, they
can be computed using a projective resolution of N in the usual way. Now the funny thing is that
in fact these derived functors are called TorAn (∗, X) again, because they’re isomorphic to the things
above! The reason for this is the following. If N is a right A-module and X is a left A-module
and if P∗ is a projective resolution of N and Q∗ is a projective resolution of X, then the complex
P∗⊗AX is quasi-isomorphic with the total complex of the double complex (Pi⊗AQj)i,j , which in
turn is quasi-isomorphic to the complex N ⊗A Q∗. The natural maps are from the total complex
to the “smaller” complexes, so in particular it’s perhaps going to be tricky to spot a natural map
from one definition of TorAn (N,X) to the other!

The upshot, of course, is that if 0→ L→M → N → 0 then we have a long exact sequence

· · · → TorA1 (M,X)→ TorA1 (N,X)→ L⊗A X →M ⊗A X → N ⊗A N → 0

and again the sanity check is that if N is projective then TorA1 (N,X) = 0 and the sequence splits.
Note that flat modules are acyclic for tensor product functors so their higher Tor groups vanish,

and one can use flat resolutions to compute Tor groups.

6 The Künneth formula.

Let · · · → Pn+1 → Pn → Pn−1 → · · · be a chain complex of torsion-free abelian groups and let M
be an abelian group. How does the homology of P∗ ⊗M relate to M tensored with the homology
of P∗? Because of our torsion-freeness assumption, it’s not too hard to see a relation.

Theorem 1. For every n there’s an exact sequence

0→ Hn(P )⊗Z M → Hn(P ⊗Z M)→ TorZ1 (Hn−1(P ),M)→ 0.

Proof. Let Zn be the kernel of Pn → Pn−1 and let Bn−1 be the image of Pn → Pn−1. Then
0 → Zn → Pn → Bn−1 → 0, and since Pn−1 is torsion-free we deduce that Bn−1 is too, so Bn−1

is flat as a Z-module and so TorZ1 (Bn−1,M) = 0, so

0→ Zn ⊗M → Pn ⊗M → Bn−1 ⊗M → 0

is exact. Put these together to get a short exact sequence of chain complexes

0→ Z∗ ⊗M → P∗ ⊗M → B∗−1 ⊗M → 0

and consider what the associated long exact sequence looks like. The differentials in the Z and B
complexes are zero! So the long exact sequence looks like this:

· · · → Hn+1(B∗−1⊗M)→ Hn(Z∗⊗M)→ Hn(P∗⊗M)→ Hn(B∗−1⊗M)→ Hn−1(Z∗⊗M)→ · · ·

and when translated into English we get

· · · → Bn ⊗M → Zn ⊗M → Hn(P∗ ⊗M)→ Bn−1 ⊗M → Zn−1 ⊗M → · · · .

Now 0→ Bn → Zn → Hn(P∗)→ 0, and because tensor is right exact we deduce

0→ Hn(P )⊗M → Hn(P∗ ⊗M)→ ker(Bn−1 ⊗M → Zn−1 ⊗M)→ 0.

Finally 0 → Bn−1 → Zn−1 → Hn−1(P∗) → 0 is a flat resolution of Hn−1(P∗) in the category of
abelian groups, so the kernel above is TorZ1 (Hn−1(P∗),M).

4



7 Group homology.

If G is a group and M is a left G-module then H0(G,M) is defined to be the biggest quotient
of M where G acts trivially. Of course in this situation M is a left A-module, if A = Z[G], and
we easily check that H0(G,M) = Z ⊗AM , where Z is the right A-module with trivial G-action.
We define Hn(G,M) = TorAn (Z,M), so if 0 → L → M → N → 0 is a short exact sequence of
G-modules (with G acting on the left) then there’s an associated long exact sequence

· · · → H1(G,M)→ H1(G,N)→ H0(G,L)→ H0(G,M)→ H0(G,N)→ 0

and furthermore Hn(G,M) can be computed using a projective resolution of either Z or M . But
we already have a projective resolution of Z! Before we apply it let’s see what comes from Künneth
though: we get facts about when G acts trivially on M .

If G acts trivially on M then H0(G,M) = M . If I is the augmentation ideal in Z[G] then

0→ I → Z[G]→ Z→ 0

is a short exact sequence of right Z[G]-modules, the middle one of which is projective, and hence
if A = Z[G] then for any module M we have

0→ TorA1 (Z,M)→ I ⊗AM →M → Z⊗AM → 0.

If M = Z then we deduce 0 → H1(G,Z) → I/I2 → Z → Z → 0 and the map Z → Z is an
isomorphism, hence H1(G,Z) = I/I2 = Gab, the map being the one sending g − 1 ∈ I to g (this
works).

Now let’s apply the universal coefficient theorem. Let M be any abelian group with trivial
G-action. Write down any projective resolution Q∗ of Z by free right A-modules, and let P∗ =
Q∗⊗A Z. Then the Qn were free A-modules, so the Pn are free Z-modules, the homology of P∗ is
Hn(G,Z) and the homology of P∗⊗ZM = Q∗⊗AM is Hn(G,M). We know that H0(G,M) = M
but the universal coefficient theorem lets us deduce that for all n ≥ 1 we have a short exact
sequence

0→ Hn(G,Z)⊗M → Hn(G,M)→ TorZ1 (Hn−1(G,Z),M)→ 0,

and in particular setting n = 1 gives us Gab⊗M = H1(G,M) (the Tor1 vanishes because Z is flat
as a Z-module).

Now let’s try and do the general calculation of H1(G,M), when M is not assumed to have the
trivial action. We consider the unnormalised bar resolution B∗ of Z, rigged so that A is acting on
the right this time, and we tensor this over A with M and take homology. We see that we need
to compute the homology of

B2 ⊗AM → B1 ⊗AM → B0 ⊗AM → 0.

Now B0 = A, B1 is a free A-module on the set G, and B2 is free on the set G×G. So we can
think of C2 := B2 ⊗AM as ⊕g,h∈G(g, h)M , C1 := B1 ⊗AM as ⊕g∈G(g)M and C0 := B0 ⊗AM
as M . The Ci are called i-cochains. The map C1 → C0 sends (g)m to g−1m −m (the inverse is
there because we’re thinking of B1 as a right A-module) and the map M2 → M1 sends (g, h)m
to (h)g−1m − (gh)m + (g)m. One checks readily that d2 = 0, that the cokernel of M1 → M0 is
the quotient of M by the group generated by {g−1m−m} (g ∈ G and m ∈ M), and one readily
checks that this is G-stable, so we recover the fact that H0(G,M) = MG.

The new thing that we see is that H1(G,M) is the quotient of the “1-cycles” by the “1-
boundaries”. By this I mean of course the kernel over the image. Now ⊕g∈GgM can be thought
of as maps f : G → M which vanish away from a finite set. Such a thing is a 1-cycle iff∑
g∈G(g−1f(g)− f(g)) = 0, and a 1-boundary iff there’s j : G×G→M with finite support such

that, well, it’s a complete mess isn’t it. It’s basically f(g) =
∑
h∈G h

−1j(h, g)−
∑
h∈G j(h, h

−1g)+∑
h∈G j(g, h). Again one can check that this is a 1-cycle. I am embarassed to say that I did this.
Note in particular that in the abelian case, any map G→M with finite support is a 1-cycle, and

the 1-boundaries are generated by the image of the maps G×G→M which are zero away from one
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element (g, h) ∈ G2, where they take the value m. Now d of such a thing is (h)m+ (g)m− (gh)m,
so when we take the quotient we recover an element of Gab⊗M , by explicit definition of the tensor
product!

8 Restriction and corestriction.

If H ⊆ G is a subgroup, and A is a left G-module, then H∗(H,A) is a δ-functor on left G-modules,
so there’s a map to the universal δ-functor; this is just a fancy way of saying that there’s a natural
map H∗(H,A)→ H∗(G,A). This map is called corestriction. Just the same argument shows that
there is a natural map Hn(G,A)→ Hn(H,A), and this map is called restriction.

If furthermore H is normal, then for a G/H-module M homology H∗(G,M) is a δ-functor on
G/H-modules, so there’s a map Hn(G,M)→ Hn(G/H,M) and this is called co-inflation; if N is
a G-module then there’s a natural surjection of G-modules N → NH and hence a natural map
Hn(G,N)→ Hn(G,NH)→ Hn(G/H,NH) and this is also called co-inflation.

Similarly (H still normal in G) there’s an inflation map Hn(G/H,NH) → Hn(G,NH) →
Hn(G,N).

Finally, if H is a normal subgroup of finite index in G, 1 and A is a G-module then there’s 1
a “trace” map AG → AH , defined as follows2. Write G =

∐n
i=1Hgi and for a ∈ A define 2

Ta =
∑
i gia. This is certainly a map of abelian groups A→ A and so it induces a map A→ AH .

Now if a ∈ A and g ∈ G then T (ga − a) =
∑
i giga − gia and because gig = higσ(i) for hi ∈ H

and σ a permutation of {1, 2, . . . , n} (g acting on the right on the cosets) we see that T (ga− a) =∑
i(higσia− gσ(i)a) is zero in AH . Hence we get an induced map AG → AH . By universality we

get induced trace maps Hn(G,A) → Hn(H,A), and the lemma is that if you first do trace and
then corestriction you get multiplication by the index (so this result is about an endomorphism of
the homology of the bigger group). This won’t be true for endomorphisms of the homology of the
smaller group, that is, if you do corestriction and then trace, I don’t think you get multiplication
by anything, even if H is normal in G: it’s not even true for H0. For example think about G a
finite group, H = 1 and M a G-module. The map MG → MG induced by sending m to

∑
g gm

is multiplication by the order of G, but the map M → M (and note M = H0(H,M) induced by
this is some kind of trace map still.

Similarly there’s a trace AH → AG and hence maps Hn(H,A) → Hn(G,A) also called trace,
and if you do restriction and then trace you get multiplication by the index.

Here’s what the trace looks like on H1. Let G and H be as above, and for g ∈ G write
gig = higσ(i) as above. If (g)m is a 1-chain for G, define its trace to be

∑
i(gigg

−1
σ(i))gim. One

checks easily that this is right, because it commutes with d. Note also that if G acts freely on
M = Z then we’re recovering the transfer map.

9 Some explicit recipes for connecting homs.

If 0→ A→ B → C → 0 is exact with a left G-action then the induced map H1(G,C)→ H0(G,A)
is defined thus: take a 1-cycle

∑n
i=1(gi)ci representing the homology class, and lift each ci to bi;

we get
∑n
i=1(gi)bi, a 1-chain in B. This isn’t a 1-cycle necessarily though, because d of it is∑

i(g
−1
i bi − bi), an element of B that maps to zero in C. Hence it’s in A. This is the boundary

map, as one can check using the bar resolution, basically.
If K /G is a normal subgroup with G/K = Γ and if M is a G-module then G acts natually on

MK (easy check: g(km−m) = k′m′ −m′ with k′ = gkg−1 ∈ K and m′ = gm), and hence Γ does
too. In fact Γ will act on Hn(K,M). Here’s the explicit definition on H1: in fact let’s consider
the obvious G-action on the 1-chains, where g sends (k)m to (gkg−1)gm. One checks easily that
this definition commutes with the boundary map above, so it’s the right one.

1DO WE NEED NORMAL? THIS IS AN IMPORTANT QUESTION. MY SOURCE WAS
WEIBEL! WEIBEL SAYS NORMAL! WHY??

2This can’t be the right name! It looks nothing like a trace!
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10 Spectral sequences.

There’s one for homology! The exact sequence of low degree terms looks like this. The set-up: K
a normal subgroup of a group G, and A a left G-module. We have

H2(G,A)→ H2(G/H,AH)→ H1(H,A)G/H → H1(G,A)→ H1(G/H,AH)→ 0.

Let me make explicit the Galois action on H1(H,A). In fact the Galois action lifts to the chains:
g sends (h)a to (ghg−1)(ga). Again one can check that this is right because it commutes with d.
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