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1 What is this document?

Ambrus Pal told me some facts about automorphic forms over function fields (and their relation
to geometry of curves over finite fields). I need to write them down before I forget them! First
though I need to write down the definitions of automorphic forms over function fields because I
am a bit hazy on them. So here we go.

2 The definitions.

Note: there will be examples, but after the definitions it’s natural to recall class field theory and
to make several geometric and combinatorial remarks—then the examples can be explained in a
much more conceptual manner—the theory guides the way so you’re not just floundering around
with matrices.

The definitions come from Borel-Jacquet in Corvallis. In the number field case we first make a
definition of an automorphic form over a real reductive group, and then give an adelic definition
and check that it basically specialises to the real reductive group definition in some sense. In the
function field case we have to start with an adelic definition because there are no real places. So we
let F now be a function field over a finite field k and write A for the adeles of F and so on. If G/F is
connected reductive then a function on G(A) is said to be smooth if it’s locally constant. Let Z be
the centre of G. We fix a (quasi-)character χ : Z(A)/Z(F )→ C× and an open compact subgroup
K of G(A) (all places!). Define 0V (χ,K) to be the C-valued functions f : G(F )\G(A)/K → C
with f(zx) = χ(z)f(x), and such that f is cuspidal. The cuspidality condition (which I’m about
to explain) is the reason for that little 0 by the V . There is no boundedness condition necessary in
the function field case (in fact there are boundedness conditions mentioned in Godement-Jacquet
(SLNM 260, p138) but they are actually implied by f(zx) = χ(z)f(x) and a compactness result
below). The cuspidality condition is that for all x ∈ G(A) the integral of f(nx)dn vanishes, where
the integral is taken over N(F )\N(A) (where N is the unipotent radical of any proper parabolic
F -subgroup P of G). It suffices to check that the integral vanishes for P running through a set of
reps of the conj classes of the proper maximal parabolic F -subgroups.

Note that these are not automorphic forms yet! There is still an “admissibility” condition to
be imposed, which can perhaps either be thought of as some sort of finiteness condition or as
some sort of condition of the form “I satisfy some differential equations”. In fact in the version I
worked out it seemed to say “Some sequence closely related to me satisfies a difference equation.
Note also Proposition 4.5 of Borel-Jacquet, which says that in the presence of the other axioms
for an automorphic form over a number field, z-finiteness (i.e. the condition about satisfying some
differential equations, where here z is the centre of the universal enveloping algebra) is equivalent
to an admissibility condition at infinity.

Anyway, back to cusp forms. Harder proved that there was a compact subgroup C of G(A)
such that f ∈ 0V (χ,K) has support on a set of the form Z(A)G(F ).C. In particular 0V (χ,K)
is finite-dimensional. This is proved in Godement-Jacquet for GLn (Lemma 10.9) and I know an
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explicit proof for GL2 if F = k(T ), the field of fractions of a polynomial ring in one variable over
a finite field (which I’ll explain later on, when doing examples).

The admissibility condition that we need for a function to be an automorphic form is this: a
function on G(F )\G(A)/K is admissible if for some (equivalently any! B-J 5.7) place v of F , the
representation of G(Fv) generated by f is admissible. Turns out that this implies Z(A)-finiteness
(see the comment in B-J 5.8).

An automorphic form is an admissible map G(F )\G(A)/K → C. A cusp form is a cuspidal
automorphic form.

But perhaps surprisingly, all one needs to do to check that a cuspidal (that is, the integrals
vanish) function on G(F )\G(A)/K is a cusp form, is to do is to check Z(A)-finiteness! This is
B-J 5.9.

3 Adeles and geometry.

Ambrus explained these neat results to me, relating adeles to the geometry of the situation and to
Weil groups. First let me mention Weil groups. The Weil group of F is a subgroup of the absolute
Galois group of Gal(F sep/F ) of F , rather more indicative of the non-arch local field case than the
number field case. The algebraic closure of k gives a natural surjection Gal(F sep/F )→ Ẑ and the
Weil group is the pre-image of Z with the discrete topology in the usual way. Global class field
theory in this setting tells us that the abelianisation of this Weil group is canonically isomorphic
to the idele class group of F :

W ab
F = F×\A×.

Now let C denote the smooth projective geometrically connected curve over k corresponding to
F and let Ô denote the product of the integer rings at all the completions of F . If Pic(C) denotes
the group isomorphism classes of invertible sheaves on C/k then we have a canonical isomorphism

Pic(C) = F×\A×/Ô×.

Furthermore there is a “degree” map deg : A× → Z which has F× and Ô× in its kernel (the
former by the product formula), and this map agrees with the usual degree map Pic(C)→ Z, the
kernel of which is of course Pic0(C).

Ambrus explained to me a beautiful generalisation of the statement that Pic(C) = F×\A×/Ô×:
if n ≥ 1 then the isomorphism classes Vecn(C) of the rank n vector bundles on C are in natural
bijection with an adelic space:

Vecn(C) = GLn(F )\GLn(A)/GLn(Ô).

Explicitly, the map from right to left is given by sending the element g ∈ GLn(A) to the sheaf
whose sections on the open U ⊆ C are {v ∈ Fn | vg ∈ On

x ∀x ∈ U}.

4 Explicit double cosets in the case C = P1.

If F = k(T ) and so C is just the projective line, then of course Pic(C) = Z. Even better: Ambrus
tells me that a vector bundle on P1 is isomorphic to a direct sum of line bundles! Hence any rank
n vector bundle will be isomorphic to O(a1) ⊕ O(a2) ⊕ · · · ⊕ O(an). The ai are integers and are
uniquely determined up to order (one can see this by looking at dimensions of global sections of
the vector bundle and all its twists by O(m) for m an integer). As a consequence we see that if
we choose a degree 1 place ∞ ∈ C and let $ be a uniformiser there, then we have a natural set of
double coset representatives for GLn(F )\GLn(A)/GLn(Ô). For ~a = (a1, a2, . . . , an) ∈ Zn with
a1 ≤ a2 ≤ · · · ≤ an let d~a ∈ GLn(F∞) denote the diagonal matrix diag($a1 , $a2 , . . . , $an). Let
D be the set of all matrices d~a of this form, considered as a subset of both GLn(F∞) and GLn(A).

Lemma 1. If F = k(T ) then GLn(A) =
∐

d∈D GLn(F )dGLn(Ô).
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Proof. Immediate from the above.

In particular, because the coset generators can be taken to be supported at one place, we
see that if Af is the “finite adeles”, that is, the restricted product

∏
v 6=∞ Fv, and Ôf is the

corresponding product of the integer rings, then
{2}

Corollary 2. If F = k(T ) then GLn(Af ) = GLn(F ) GLn(Ôf ).

Proof. Take something on the left hand side, consider it in GLn(A), write it as an element of
GLn(F )γGLn(Ô) with γ supported at infinity, and now restrict to the finite places.

However I think we can do better! I think that weak approximation might say

Conjecture-Lemma 3. SLn(F ) is dense in SLn(Af ).

Proof. This might be standard? Platonov and Rapinchuk appear only to deal with the number
field case though.

Conjecture-Corollary 4. If K0 ⊆ SLn(Ôf ) is a compact open subgroup then SLn(Af ) =
SLn(F )K.

Proof. (assuming the conjecture-lemma) If x ∈ SLn(Af ) then xK is open so meets SLn(F ), and
that’s it.

{5}
Conjecture-Corollary 5. If F = k(T ) and if K ⊆ GLn(Ôf ) is a compact open subgroup with
det(K) = O×f then GLn(Af ) = GLn(F ).K.

Proof. (assuming the conjecture-lemma): By Corollary 2 (which is where we assume F = k(T ))
we have A×f = F×O×f . So now given something in GLn(Af ) we can modify it on the left by an
element of GLn(F ) and on the right by an element of K until it’s in SLn(Af ), and the result
follows from the previous conjecture-corollary.

At the infinite place we deduce (do we need this?? Maybe for tree arguments) that if D denotes
the set of d(ai) as above, we have

Corollary 6. If F = k(T ) then GLn(F∞) =
⋃

d∈D GLn(F ).d.GLn(Ô∞).

Proof. Same idea as in the proof of Corollary 2 but now just restrict to the infinite place.

Corollary 7. GLn(A) = GLn(F ) GLn(Ôf ) GLn(F∞).

Proof. Follows immediately from Corollary 2.

Remark 8. This latter corollary just says that the Picard group becomes zero if you remove a
point. Somehow in general probably the result is that vector bundles on an affine open in C
are just some adelic quotient space where you remove the local components corresponding to the
points you removed.

{9}
Conjecture-Corollary 9. If F = k(T ) and K ⊆ GLn(Ôf ) is compact and open with det(K) =
Ôf then GLn(A) = GLn(F )K GLn(F∞).

Proof. (assuming the conjecture-lemma) Follows immediately from conjectural corollary 5.
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5 The tree.

The tree Z itself (which I’m about to define) is a purely local object. It’s an analogue of the upper
half plane. If L is the field of fractions of any complete DVR then we can consider lattices in L2

up to homothety and there you are—well, those are the vertices anyway. The edges are “adjacent”
lattices. If the residue field is finite (which it always is, in our case) then the tree is locally finite in
the sense that the vertices have finite degree. The group GL2(L) acts naturally on L2 and hence
on the tree, and it’s easy to check that the action is transitive.

Now set L = F∞, and let Z∞ be the centre of GL2(F∞). The tree Z associated to F∞
has a canonical vertex O2

∞, and the stabiliser of this vertex under the GL2(F∞)-action is just
Z∞.GL2(O∞). Hence Z has vertices bijecting with GL2(F∞)/Z∞.GL2(O∞), and a similar cal-
culation shows that it has edges bijecting with GL2(F∞)/Z∞.Γ0(∞), where Γ0(∞) is the obvious
thing (upper triangular modulo the maximal ideal). There are “source” and “target” maps from
the edges to the vertices; if w =

(
0 1
$ 0

)
with $ a uniformiser then the source map sends g to g

and the target sends g to gw, which is well-defined because w normalises Z∞.Γ0(∞). Note that
the edges really are oriented here, and w induces a fixed-point-free bijection on the edges sending
an edge to its “opposite”, that is, the same edge but pointing the other way.

6 Quotients of the tree in the P1-case.

The point is that because Pic0(C) is trivial in the P1 case, one can use those lemmas from an
earlier section to relate quotients of the tree to adelic objects.

Here’s how it works. Set F = k(T ) always in this section. Let R = k[T ] denote the functions
on C\{∞}, so R = F ∩ Ôf . The key point is

Lemma 10. If F = k(T ) then GL2(F )\GL2(A) = GL2(R)\GL2(Ôf ) GL2(F∞).

Proof. A corollary from an earlier section said

GL2(A) = GL2(F ) GL2(Ôf ) GL2(F∞)

and the result follows from this and the second isomorphism theorem or whatever it’s called:
A\AB = (A ∩B)\B.

{11}
Conjecture-Lemma 11. If F = k(T ) and Kf ⊆ GL2(Ôf ) is compact and open with det(Kf ) =
Ô×f then GL2(F )\GL2(A) = ΓKf

\Kf GL2(F∞) where ΓKf
= Kf∩GL2(F ) (where the intersection

is in GL2(Af ) but ΓKf
is thought of as a subset of GL2(F ) embedded diagonally).

Proof. (Assuming the conjecture-lemma) Again it’s just the second isomorphism theorem, plus
conjecture-corollary 9.

Corollary 12. If Z is the tree then GL2(R)\Z = GL2(F )\GL2(A)/GL2(Ô).Z∞.

Proof. The lemma shows that the right hand side is GL2(R)\GL2(F∞)/GL2(O∞).Z∞ so we’re
done by the description of Z given in the previous section.

Conjecture-Corollary 13. If K = Kf .K∞ is compact open with det(K) = Ô×f then

GL2(F )\GL2(A)/K.Z∞ = ΓKf
\GL2(F∞)/K∞.Z∞.

Proof. (Assuming the Conjecture-lemma) Immediate by Conjecture-Lemma 11.

Conjecture-Corollary 14. If furthermore K∞ is GL2(O∞) or Γ0(∞) then in the setting above,
the double quotient space is the quotient by ΓKf

of either the vertices or the edges of the tree.

Proof. Immediate.
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7 Examples

Finally.

7.1 GL1.

Let me do the GL1 case first. If G = GL1 and K is Ô× then G(F )\G(A)/K is Pic(C) which has
a finite subgroup Pic0(C) and quotient isomorphic to Z via the degree map. I guess that more
generally if K is any compact open then there will still be a degree map and the kernel will be some
finite ray-class-group thing. That space 0V (χ,K) is going to have dimension either 0 or 1 because
cuspidality is no condition at all (no proper parabolics) and Z = G so saying what happens on Z
is saying everything; the space will be 1-dimensional, and contain χ, iff χ(K) = {1}.

An arbitrary function on G(F )\G(A)/K generates a smooth representation of G(Fv) and this
representation is fixed by Kv and hence admissible iff it’s finite-dimensional. So admissibility is
visibly equivalent to Z-finiteness in this case. In the case C = ¶1 and K = Ô×, the double coset
space is isomorphic to Z and admissibility is equivalent to “the induced function on Z is of the
form n 7→ an with the an satisfying a linear recurrence relation”, that is, a difference equation,
which is some kind of discrete version of a differential equation. But in the general case (F and
K arbitrary) a similar thing is going on: if you choose a place ∞

Back to the general case (F and K arbitrary). A representation of G(A) shows up as a subset
of the space of cuspidal automorphic forms iff

7.2 GL2 when F = k(T ).

Well, let’s do PGL2 because it has no centre. Let K0 be PGL2(Ô), let K be a finite index open
subgroup of K0, and let’s consider maps G(F )\G(A)/K → C. First let’s try and understand the
double coset space. Let’s let K = K0 for a minute. Then if G = GL2 then the double coset space
is just rank 2 vector bundles up to isomorphism, so (because we’re doing the projective line) it’s
pairs a ≤ b of integers. Now quotient out by the centre and we see that if G = PGL2 then we’re
left with b−a so it’s Z≥0, with coset representatives given by γn :=

(
$n 0
0 1

)
for $ any uniformiser

concentrated at any random degree 1 place, for example. One can alternatively think of the double
coset space as the quotient of the tree T by GL2(R), where R = k[T ] is functions on the affine line,
and the “distance from the fixed point” map gives the natural isomorphism between this quotient
space and Z≥0.

If K is some open subgroup of K0 and G = PGL2 and we write K0 =
∐
kiK then the γnki

will certainly contain a set of representatives for the double coset space G(F )\G(A)/K.
Harder’s theorem says that anything cuspidal has compact support, and hence in this case

finite support. Let’s see a proof of this in this case. Firstly, what do these integrals mean? I think
that A = F + Ô; I can prove it by induction on number of poles, as it were, it’s easy because
F = k(T ) (it wouldn’t surprise me if it were true in general though!): all I have to do is to prove
that if v is a place, if n > 0 and if uv ∈ Fv is a local unit and $v ∈ Fv is a uniformiser, then
there’s f ∈ F such that f = uv$

−n
v + · · · in Fv and furthermore such that f is integral everywhere

else. But one just writes down the polynomial, I guess, which makes it work. OK so in that case
we have A = F + Ô and F ∩ Ô is k so we can think of the integral defining cuspidality as an
integral over Ô/k and because k is finite we may as well just integrate over Ô and demand that
this integral vanish.

Now the key observation is that
(

1 t
0 1

)(
1 0
0 $a

)
=
(

1 0
0 $a

)(
1 $at
0 1

)
and for f : G(F )\G(A)/K → C

to be cuspidal (general K in K0 now) we need that the integral of f(nx)dn vanishes, and hence
that the integral f(

(
1 t
0 1

)
x)dt vanishes as t runs through Ô. Now fix K and coset reps ki, and then

choose a so large that
(

1 $at
0 1

)
ki is a subset of K; you can’t do this. Doh. You can if K = K0

though and this would have proved that the integral vanishes for a sufficiently large.
Vague aim: to see that the Steinberg is all to do with functions on the edges of the graph.

Todo possibly: write down explicit proof of Harder’s theorem in this case. KMB,
originally written 12/9/07, last edited 19/11/07.
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