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A lot of this comes from the course I gave in 2004 on reps of real reductive
groups. I added a little, but unfortunately not quite enough, about which g-K-
modules were cohomological, on 29/04/2008.

Introduction

The local Langlands correspondence is a theorem for GLn over the reals, I think
(and for many if not all real or complex groups). Let’s see how far I can get
towards proving it for GL2(R) by doing the naive approach: “write down all
elements of both sides and match them up”. I’ll do the Galois theory in some
huge generality and the representation theory in rather less generality.

1 Weil groups for the reals and the complexes.

The Weil group of a local field is supposed to relate to both the multiplicative
group of the field, and also the absolute Galois group of the field. There is
actually a purely axiomatic approach to the notion of the Weil group of a local
(or indeed a global field). I won’t follow it at all, I’ll just give two concrete
definitions. Let K be a finite extension of the real numbers.

(1) If K ∼= C then define WK = K× (obvious topology).

(2) If K ∼= R then define WK to be the union of K
×

and jK
×

(j a formal
symbol), with the rules that j2 = −1 and jcj−1 = c (one checks easily that
these rules are enough to tell you how to multiply any two elements of WK

together).

Note that in both cases, K
×

is a normal subgroup of WK and the quotient
group is canonically isomorphic to Gal(K/K), giving an exact sequence

1→ K
× →WK → Gal(K/K)→ 1.

One key property that the Weil group of a local field K is supposed to have,
at least if you know about the non-archimedean case, is that its abelianisation
is supposed to come equipped with an isomorphism with K×. This is clear in
the complex case. In the real case let’s fix the isomorphism: one checks easily
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that the commutator subgroup of WK is things of the form c/c with c ∈ C×,
that is, the unit circle in C×. The quotient is hence naturally isomorphic to the
union of R>0 and jR>0, and the isomorphism from R× to this sends −1 to j
and x > 0 to

√
x. Alternatively, going the other way around, the isomorphism

W ab
R → R sends z = x+ iy ∈ C× to x2 + y2. Note in particular that it doesn’t

depend on the choice of isomorphism R = C. The “square root” (or square,
depending on which way you’re going) is for compatibility of this isomorphism
under finite extensions of K; read Tate’s article in Corvalis for more details.

Let’s define a norm ||w|| on WK . If K ∼= C then ||w|| = ww (this doesn’t
depend on the choice of K ∼= C). If K = R then ||w|| is ww for w ∈ C×, and
||j|| = 1. Note that the norm is a continuous group homomorphism W ab

K → R>0

which thus gives rise to (via our fixed isomorphisms) a continuous group homo-
morphism K× → R>0, which turns out to be the norm coming from measure
theory (that is, the function telling you how much multiplication expands a
Haar measure on the additive group K) in both cases. Note also that in both
cases, the kernel of the norm map is compact. Note finally that WR ⊂WR and
the norms agree.

By a representation of a Weil group we mean a continuous map into GL(V ),
with V a finite-dimensional complex vector space. We have lots of examples of
1-dimensional representations of Weil groups; if s ∈ C then consider w 7→ ||w||s
(note that if r > 0 is a positive real and s ∈ C then rs := exp(s log(r)) makes
sense). In fact there aren’t too many more.

Lemma 1. (a) The only continuous group homomorphisms R→ C× are those
of the form x 7→ exp(sx), with distinct s giving distinct homomorphisms.

(b) The only continuous group homomorphisms from the unit circle S :=
{z ∈ C : |z| = 1} to C× are of the form z 7→ zn for some n ∈ Z, with distinct
n giving distinct homomorphisms.

(c) The only continuous group homomorphisms R>0 → C× are those of
the form x 7→ xs := exp(s log(x)) for s ∈ C×, with distinct s giving distinct
homomorpsisms.

(d) The only continuous group homomorphisms R× → C× are of the form
x 7→ x−N ||x||s for s ∈ C and N ∈ {0, 1}, and distinct pairs (N, s) give distinct
homomorphisms.

(e) The only continuous group homomorphisms C× → C× are of the form
z 7→ z−N ||z||s with N ∈ Z and s ∈ C, and distinct pairs (N, s) give distinct
homomorphisms.

Proof. Distinct data giving distinct homomorphisms is easy: just divide one
representation by the other and the result is supposed to be 1.

(a) It suffices to prove that every group homomorphism R → C× agrees
with x 7→ exp(sx) on a small disc in R. Now choose an open disc centre 1
radius 1 say; the pre-image of this contains an open neighbourhood of zero, say
(−δ, δ), and we can cut along the non-positive real axis and define a log on C×

now, which is injective. We deduce the existence of a continuous “additive”
(wherever this makes sense) map (−δ, δ) → C. Now say δ/2 is sent to z; by
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continuity we see that the map is just multiplication by 2z/δ on [−δ/2, δ/2] and
this is enough.

(b) Precomposing with the map R → S given by r 7→ exp(ir) we see that
we need to classify the continuous group homomorphisms R→ C× with 2π in
the kernel; by (a) we just need to find all s such that exp(2πs) = 1, that is,
such that 2πs = 2πin for some n ∈ Z. We deduce that s = in and that the
representation is exp(ir) 7→ exp(inr) so we are done.

(c) Take logs and it follows from (a).
(d) Follows from (c).
(e) As a topological group, C× is the unit circle times R>0. For R>0 use

(c); for the unit circle use (b).

So we’ve now seen all the 1-dimensional representations of Weil groups. Tate
is slightly more “canonical”, not choosing an isomorphismK = C in the complex
case—he says that if K ∼= C then the 1-dimensional representations of WK are
all of the form z 7→ σ(z)−N ||z||s with σ : K → C an isomorphism (we need to
use both isomorphisms to see all the reps though), N ≥ 0, and s ∈ C, and the
only times distinct data gives the same isomorphism is when N = 0 in which
case we don’t mind which σ we choose. This normalisation is motivated by a
study of L-functions and epsilon factors.

Having seen all the 1-dimensional representations of Weil groups, we move
on to the higher dimensional case. By standard arguments, any continuous
irreducible finite-dimensional representation of WC has an eigenvector and is
hence 1-dimensional, so we deduce that we have now seen all the irreducible n-
dimensional representations of WC and hence all the semisimple n-dimensional
representations of WC.

For WR there are some irreducible 2-dimensional representations. The point
is that if ρ is an irreducible representation of WR of dimension greater than 1
then the restriction of ρ to WC must have an eigenvector, and if it’s v then v and
jv span an invariant subspace, so the dimension of ρ is 2, and ρ is induced from
a character of WC. The easiest way of seeing what’s going on is to note that any
character of WC is of the form z 7→ σ(z)N ||z||s with N ∈ Z≥0 and if you induce
this 1-dimensional representation then you get a 2-dimensional representation
which is irreducible ifN > 0, and reducible ifN = 0. Conclusion: the irreducible
representations of WR are 1-dimensional of the form W ab

R = R× → C× via
z 7→ z−N ||z||s with N ∈ {0, 1} and s ∈ C, and 2-dimensional induced from a
character z 7→ σ(z)−N ||z||s on WC, with N ∈ Z>0 and s ∈ C.

Say that a representation of a Weil group WK is “of Galois type” if it has
finite image. This is iff it factors through Gal(K/K). I’m not entirely sure how
important these things are but that’s the definition.

The irreducible representations of Weil groups above have L-functions and
ε constants. You can just define these things via a list: for example in the com-
plex case define L(σ(z)−N ||z||s) = 2(2π)−sΓ(s); in the real abelian case define
L(x−N ||x||s) = π−s/2Γ(s/2) and so on. See Tate Corvalis for more information.
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2 A crash course in functional analysis.

A normed space is a vector space (over the reals or complexes) with a real-
valued norm ||.|| on it satisfying ||x|| ≥ 0 with equality iff x = 0, the triangle

inequality, and ||λx|| = |λ|.||x|| (if the base field is C then |x+ iy| =
√
x2 + y2).

This induces a metric on the vector space. A Banach space is a normed space
for which the metric is complete. One can complete a metric space and hence
one can complete a normed space; the completion of a normed space is a Banach
space and the map from the normed space into the Banach space is injective
(Theorem 2.3-2 of Kreyszig). For example if p ≥ 1 then the continuous real-
valued functions on an interval [a, b] with

||f || =

(∫ b

a

|f(t)|p
)1/p

is an incomplete normed space because it’s easy to form a Cauchy sequence
consisting of functions which converge to a step function. The completion is
Lp([a, b]). Another construction of Lp([a, b]) is Lebesgue measurable functions
f on [a, b] such that the integral of |f |p on [a, b] exists and is finite, modulo
equivalence (quotient out by the subspace of things for which the integral is 0).

The dual of a normed space is the space of bounded (equivalently, continu-
ous) linear functionals on the space. The dual space is always a Banach space
(because the ground field is complete; Hom(X,Y ) (continuous linear maps) is
complete if Y is).

An inner product space is a vector space with an inner product 〈·, ·〉 on it,
which is a symmetric bilinear (resp. Hermitian sesquilinear) form (with values
in the ground field, the reals or complexes), such that 〈x, x〉 ≥ 0 with equality
iff x = 0. L2[a, b] is an example (both real and complex) with

〈f, g〉 =

∫ b

a

f(t)g(t)dt

, as is `2 (sequences (an) with
∑
n |an|2 < ∞). The inner product defines a

norm via ||x|| =
√
〈x, x〉 and hence a metric; a Hilbert space is a complete

inner product space. Every inner product space can be completed to a Hilbert
space. The norm on an inner product space satisfies the parallelogram equality
||x+y||2+ ||x−y||2 = 2(||x||2+ ||y||2) and one hence checks that there are plenty
of normed spaces for which the norm doesn’t come from an inner product.

If Y is a closed subspace of a Hilbert space V and Z = Y ⊥ then Z is also
closed and V = Y ⊕ Z. Via the abstract theory of orthonormal sets (and
Zorn’s Lemma) one sees that a Hilbert space is determined up to isomorphism
by the cardinality of a “total orthonormal set” (Theorem 3.6-5 of Kreyszig).
A separable Hilbert space over the complexes must be either finite-dimensional
or `2. A Hilbert space is semi-linearly isomorphic to its dual: this is Riesz’
Theorem (Theorem 3.8-1 of Kreyszig). More precisely, if V is a Hilbert space
and f is a continuous functional on V then there is a unique v ∈ V such that
f(x) = 〈v, x〉 for all x.
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If V and W are Hilbert spaces, and T : V → W is bounded, then it has an
adjoint T ∗ : W → V which is also bounded, and characterised by 〈Tv,w〉W =
〈v, T ∗w〉V . Note (T ∗)∗ = T . If T : V → V then T is self-adjoint if T = T ∗,
unitary if TT ∗ = T ∗T = 1 and normal if TT ∗ = T ∗T . Note that a continuous
linear map T : V → V is unitary iff T is surjective and 〈Tv, Tv〉 = 〈v, v〉 for
all v. Note also that right-shifting on `2 satisfies 〈Tv, Tw〉 = 〈v, w〉 for all v, w!
See the bottom of p206 of Kreyszig.

3 Some infinite-dimensional representations of
real and complex groups.

Let G be a topological group. A representation of G on a (possibly infinite-
dimensional) complex Hilbert space V is a homomorphism ρ from G to Aut(V )
(the group of linear maps V → V which are bijective, continuous, and have
continuous inverses) such that the resulting map G × V → V is continuous.
We have the usual obvious definitions: an invariant subspace is the usual thing;
V is irreducible if V 6= 0 and there are no closed invariant subspaces other
than 0 or V . Say that a representation is unitary if for all g ∈ G the map
ρ(g) : V → V is unitary. The advantage of unitary representations is that the
complement (wrt the inner product) of a closed invariant subspace is also closed
and invariant.

One simple example: SL2(R) acts on L2(R2) and (ρ(g)f)(x) = f(g−1x).
This is easily checked to be unitary. Another natural representation is: if G is
a group with a left Haar measure then choose a left Haar measure on G and let
G act on L2(G) by g.f(x) = f(g−1x). This is also unitary.

Schur’s Lemma works for unitary representations: a unitary Hilbert space
representation is irreducible iff the only bounded endomorphisms of the Hilbert
space commuting with the group action are the scalars. One way is easy but
the other is tricky: if L is a non-scalar endomorphism of V commuting with
the G-action we have to work a little to find an invariant subspace. Here’s
the idea: the adjoint L∗ also commutes with the G-action because the rep is
unitary; now (L+L∗)/2 and (L−L∗)/2i also commute with the G-action, both
are self-adjoint, and at least one is non-scalar. Now apply the spectral theorem
(Chapter 9 of Kreyszig; this is some work to prove) to the non-scalar one and
we get an idempotent E which is “a function of L” and hence also commutes
with G.

Recall that if S is an open subset of Rn (for example a neighbourhood of
the identity in G, if G is the real or complex points of a linear algebraic group)
and f is a function from S to a topological real vector space V , then f is
said to be differentiable at s0 ∈ S if there is a linear map f ′(s0) : Rn → V

such that lims→s0
f(s)−f(s0)−f ′(s0)(s−s0)

|s−s0| = 0 where |.| is any norm on Rn. If

f is differentiable at all s ∈ S then the map s 7→ f ′(s) is a map from S to
HomR(Rn, V ) = V n which is also a topological vector space, and we can ask
whether this is differentiable. We say f is C∞ if it’s differentiable as many times
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as you like. If ρ is a representation of G (the points of a linear algebraic group)
on a complex Hilbert space then we say v ∈ V is a C∞ vector for ρ if the map
G → V defined by g 7→ ρ(g)v is C∞. One easily checks that this is a complex
subspace of V . It’s not closed though, in fact in general just the opposite is
true—if G is a Lie group then it’s dense (Theorem 3.15 of Knapp, whose proof
is basically elementary: one shows using a partition of unity argument that
vectors can be approximated by vectors which are the solution to reasonable
integrals, and that these integrals are C∞). As a consequence one sees that
finite-dimensional continuous reps of a Lie group are C∞ automatically, which
goes some way to explaining why Lemma 1 is true—continuous representations
of reasonable groups are automatically infinitely differentiable, at least.

If v ∈ C∞(V ) then define f : g → V by f(X) = ρ(exp(X))v; this is C∞;
define φ(X)v = f ′(0)X. That is,

φ(X)v = lim
t→0

ρ(exp(tX))v − vt.

If you now carefully unravel the definitions then you see that φ(X) sends C∞(V )
to itself, and that φ([X,Y ]) = φ(X)φ(Y ) − φ(Y )φ(X) (see Proposition 3.9 of
Knapp). Hence the universal enveloping algebra acts on C∞(V ) as does it
complexification. One checks that the centre of the universal enveloping algebra
commutes with the G-action (corollary 3.12 of Knapp).

Now let G be a connected reductive affine algebraic group over k = R or
C. Then G(k) has a maximal compact subgroup; call it K. Rather than prove
this I’ll just give examples. Note that K might not be the k-points of a closed
subgroup of G, it’s just an abstract group (it will be a real Lie group though).

k = R: GLn(R) contains O(n); SLn(R) contains SO(n); Sp2n(R) contains
a group isomorphic to U(n); k = C: GLn(C) contains U(n); SOn(C) contains
SO(n) (the matrices in SOn(C) with real entries) and so on.

I am a bit muddled as to whether one can choose K arbitrarily in general;
perhaps some of the theory only works if you choose the “correct” K; note that
all the examples above are “correct” however!

If K is a compact topological group then the Peter–Weyl theorem (The-
orem 1.12 of Knapp) implies that every irreducible unitary representation of
K is finite-dimensional, and in fact more is true: every unitary Hilbert space
representation of K has the property that one can write down a bunch of finite-
dimensional invariant subspaces which are pairwise orthogonal and such that
the closure of their direct sum is the whole representation. The proof is delicate
but not too long; it uses an analysis of matrix coefficients (you can get away
with the Stone-Weierstrass theorem if K is assumed to be a matrix group).

Now say G is linear connected reductive and K is a maximal compact sub-
group of G(k). If π is a representation of G(k) on a complex Hilbert space V
and if v ∈ V then we say that v is K-finite if the C-span of the set π(K)v is
finite-dimensional. If K acts by unitary operators then we can “see” this sub-
space. Firstly decompose the action of K on V into finite-dimensional invariant
subspaces. If we choose an irreducible unitary representation τ of K then de-
note by Vτ the subspace of V spanned by subspaces of V isomorphic to τ . Now
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the K-finite vectors in V are just the algebraic direct sum of the Vτ as τ runs
through the irreducible unitary representations of K in this case. We say that
τ is a type for K if Vτ 6= 0.

Theorem 2. If G is linear connected reductive, K is a maximal compact sub-
group of G(k), and π is an irreducible unitary representation of G(k) then each
Vτ is finite-dimensional; in fact dim(Vτ ) ≤ dim(τ)2.

Proof. Knapp Theorem 8.1.

Definition. A representation of a linear connected reductive group G(k)
on a Hilbert space V is admissible if π(K) acts as unitary operators and if each
irreducible unitary representation τ of K occurs only finitely often in π|K.

So the previous theorem says that irreducible unitary representations are
admissible. There are non-unitary irreducible admissible representations too,
in general: general induced representations seem to have this property, as do
most finite-dimensional representations! In fact admissible is a neat trick which
catches both infinite-dimensional unitary and finite-dimensional representations,
isn’t it. I suspect that historically people studied unitary representations and
I suspect that it was Langlands who might have introduced the notation of
admissibility?

Theorem 3. Let V be an admissible repn of linear connected reductive G. Then
the K-finite vectors in V are all C∞, and of course they might not be G-stable,
but they are g-stable.

Proof. Proposition 8.5 of Knapp. One shows analogous to Knapp Theorem 3.15
(used above) that the C∞ K-finite vectors are dense, and then uses admissibility
to finish.

Note that the reason the K-finite vectors are not G-stable is that if v is K-
finite then gv is gKg−1-finite and gKg−1 might not be commensurable with K.
This is one big big difference between the archimedean and non-archimedean
cases.

We say that two admissible representations ofG are infinitesimally equivalent
if the associated representations of g on the K-finite vectors are algebraically
equivalent. Infinitesimally equivalent does not imply isomorphic, it’s weaker, so
I’m told. But infinitesimally equivalent irreducible unitary representations are
indeed equivalent: the essence of this argument is rather easy (Corollary 9.2 of
Knapp).

Lemma 4. If π is an admissible representation of G on V and V0 is the K-
finite vectors, then V0 is dense in V and, even better, there’s a natural bijection
between the closed G-invariant subspaces U of V and the algebraic g-invariant
subspaces U0 of V0, the dictionary being U0 = U ∩V0 and U = U0. In particular,
V is irreducible iff V0 is.

Proof. Corollary 8.10/8.11 of Knapp and the remarks at the top of p212.
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If V is admissible with no non-trivial closed invariant subspaces then we
say that π is irreducible admissible. Langlands classified irreducible admissi-
ble representations of G up to infinitesimal equivalence! I don’t know what
his theorem is though. One nice fact (the Casselman Subrepresentation Theo-
rem, Theorem 8.37 in Knapp) is that every irreducible admissible representation
of a linear connected reductive group is infinitesimally equivalent with a sub-
representation of some (possibly non-unitary) principal series representation (a
principal series representation is, vaguely speaking, a representation induced
from a twist of a unitary representation of some parabolic subgroup; see p168 of
Knapp. Principal series representations induced from irreducible unitary repre-
sentations are admissible, by Proposition 8.4 of Knapp).

If π is irreducible admissible then the centre of the complexified universal
enveloping algebra acts as a scalar on the K-finite vectors of π (Corollary 8.14
of Knapp).

We’ve seen that from an admissible representation, the K-finite vectors ad-
mit a representation of g and K. Here’s a formal definition.

Let K a be a compact subgroup of G(k), G any affine algebraic group. A
(g,K)-module is a complex vector space V equipped with an action of gC and
K such that the K-representation is a (possibly infinite) algebraic direct sum of
finite-dimensional representations of K (that’s equivalent to every vector being
K-finite), the actions are compatible in the sense that if X ∈ g is in the Lie
algebra of K then for all v ∈ V we have Xv (the g-action) is the derivative with
respect to t of exp(tX)v at t = 0, and if k ∈ K and X ∈ gC and v ∈ V then
kXv = ((ad k)(X))(kv) (here k acts on G and hence on g by conjugation).

A (g,K)-module is admissible if for all representations τ of K the number
of times τ shows up in V is finite. A submodule is the obvious thing. Clearly
an admissible representation of G gives an admissible (g,K)-module by taking
K-finite vectors. Note that according to Wallach Corvallis, Corollary 4.19, any
admissible irreducible (g,K)-module is the K-finite vectors in an admissible
irreducible (Hilbert space) representation of G. Wallach deduces this from the
Casselman subrepresentation theorem.

A key example: let V be an admissible Hilbert space representation of G(k)
and let V0 denote the K-finite vectors in V . Now vectors in V0 are C∞ and
hence g (and also g⊗R C) acts on V0, as does K, and furthermore the actions
of gC and K are compatible, in the following sense: firstly, if X ∈ g satisfies
exp(X) ∈ K then the two definitions of the action of X (one via thinking it of as
in g, the other via differentiating the K-action) are the same, and secondly the
action of kX is the same as (kXk−1)k, where kXk−1 has a meaning in the Lie
algebra, as k acts on G and hence on g by conjugation. So V0 gets the structure
of an admissible (g,K)-module.

Later on I will classify all irreducible (gl2, O(2))-modules; they will all turn
out to be admissible. Richard Taylor once told me that irreducible implies
admissible for all reductive groups G.

Here are some other definitions, while I’m here. Let V be an irreducible
admissible representation of G(k) with G connected linear reductive; let V0 be
theK-finite vectors. If we choose v, w ∈ V then we get a functionG→ C defined

8



by g 7→ (gv, w) and this is called a matrix coefficient. If v, w ∈ V0 then it’s called
a K-finite matrix coefficient. If all K-finite matrix coefficients are in L2(G) then
we say that V is discrete series. In this case V is infinitesimally equivalent to
the action of G on an irreducible closed subspace of L2(G) (Theorem 8.51 of
Knapp; see also Proposition 9.6 of Knapp). Note that if V is irreducible and
unitary then it’s enough to check that one non-zero K-finite matrix coefficient
is in L2(G).

If the K-finite matrix coefficients are in L2+ε(G) for all ε > 0 then we say
that V is irreducible tempered. Such a representation is infinitesimally equiva-
lent with a unitary representation. See Theorem 8.53 of Knapp for other facts
about irreducible tempered representations. Some induced representations are
tempered, and others aren’t.

4 The classification of (g, K)-modules in the GL2

case.

I want to write down all the irreducible admissible (g,K)-modules in the case
G = GL2 over R, so g = gl2(R) and K = O(2). Note that K isn’t connected.
Let’s define K0 = SO(2). Say V is an irreducible (g,K0)-module. Because

K0 is isomorphic to the circle, via eiθ =
( cos(θ) sin(θ)
− sin(θ) cos(θ)

)
, we see that V = ⊕Vn

where Vn = {v ∈ V : eiθ.v = eniθv}. Now K0 acts on gC by conjugation but
unfortunately the eigenspaces are a bit messy, so we have to grit our teeth.

Set γ =
(
1 1
i −i

)
. Then γ−1

( cos(θ) sin(θ)
− sin(θ) cos(θ)

)
γ =

(
eiθ 0
0 e−iθ

)
which does act nicely

on our favourite basis
(
0 1
0 0

)
and so on. So let’s choose a basis z =

(
1 0
0 1

)
and

e = γ
(
0 1
0 0

)
γ−1 and f = γ

(
0 0
1 0

)
γ−1 and h = γ

(
1 0
0 −1

)
γ−1 for g. Recall [h, e] = 2e

and [h, f ] = −2f and [e, f ] = h and everything commutes with z. We also

now have that if k =
( cos(θ) sin(θ)
− sin(θ) cos(θ)

)
then kek−1 = e2iθe, kfk−1 = e−2iθf and

khk−1 = h. Note also that exp(iθh) is just
( cos(θ) sin(θ)
− sin(θ) cos(θ)

)
∈ K and using the

definition of a (g,K)-module gives us that ih should act via the derivative at
zero with respect to θ of this, which on Vn is in, so h acts as multiplication by
n on Vn.

Let H,E, F, Z denote the corresponding elements of the universal enveloping
algebra. Set Ω = (H − 1)2 + 4EF . Now in U(g) we have EF − FE = H so
this is also (H + 1)2 + 4FE. One checks that Ω is actually in the centre of
U(g); this is easy, we know U(g) is generated by Z,E, F,H and e.g. ΩE =
H2E−2HE+E+4EFE = H(HE−2E)+E+4EFE andHE−EH = 2E so this
isHEH+E+4EFE = (2E+EH)H+E+4EFE = E(H2+2H+1+4FE) = EΩ
and so on. In fact the centre of U(gC) is just C[Ω, Z]—this will not be important
for the classification, but we’ll use it later. Because V is irreducible, Ω must act
by a scalar, call it ω, and Z must act by a scalar, call it z (abuse of notation
but this is OK).

Now if v ∈ Vn then Ev ∈ Vn+2 because kEv = (kEk−1)kv, and similarly
Fv ∈ Vn−2. Also EF = 1

4 (Ω − (H − 1)2) and hence EFv = 1
4 (ω − (n − 1)2)v
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if v ∈ Vn and similarly FEv = 1
4 (ω − (n + 1)2)v. In particular we see that if

ω − (n− 1)2 6= 0 and 0 6= v ∈ Vn then 0 6= Fv ∈ Vn−2 either.
Now if there exists 0 6= v ∈ Vn such that Fv = 0 then ⊕r≥0ErCv is stable

under E, F , H, Z and K0, so it’s V and note that this forces ω = (n − 1)2.
Similarly if there exists 0 6= v ∈ Vn with Ev = 0 then V = ⊕r≥0F rCv and
ω = (n + 1)2. Conversely, if ω = (n − 1)2 and Vn 6= 0 then FVn = 0, and if
ω = (n+ 1)2 and Vn 6= 0 then EVn = 0, and in either case we now know V .

We now see that if ω 6= m2 for any m ∈ Z then either V = ⊕n∈2ZVn or
V = ⊕n∈2Z+1Vn and in both cases the dimension of all the Vn in the sum is 1
(the point is that if 0 6= v ∈ Vn then Erv and F rv can’t vanish, and the space
generated by these vectors is stable). On the other hand if ω = m2 for some
m ∈ Z≥0 (WLOG) then V is one of the following four things: V = ⊕n≡m(2)Vn
or V = ⊕−m−1n=−∞,n6≡m(2)Vn or V = ⊕m−1n=1−m,n 6≡m(2)Vn (with m ≥ 1) or V =

⊕∞n=m+1,n6≡m(2)Vn and all the Vn mentioned in the sum are 1-dimensional.

One deduces from this that a (g,K0)-module is determined by ω, z, and
a type for the module (that is, an irreducible representation τ of K0 which
occurs as a subrepresentation of the (g,K0)-module), and furthermore for each
choice of ω, z, and type, there’s a unique irreducible (g,K0)-module with these
parameters. We have also proved that irreducible implies admissible and that
for fixed ω and z (that is, for fixed infinitesimal character) there are only finitely
many (g,K0)-modules. This fact is generally true: see Corollary 10.37 of Knapp.

Now say V is an irreducible (gl2,O2)-module, and set c =
(
0 1
1 0

)
. Now

V is either irreducible or reducible as a (gl2,SO2)-module. If it’s irreducible
(case A) then cVn = V−n as cHc−1 = −H, so V can’t be ⊕−m−1n=−∞,n6≡m(2)Vn
or ⊕∞n=m+1,n6≡m(2)Vn (although it could be the finite-dimensional option). In
all of the remaining cases precisely one of V0 and V1 is non-zero, and one can
easily check that in all cases there are only finitely many possibilities for the
action of c, up to isomorphism. Let’s do this: either (case A1) ω = m2 with
m ∈ Z≥0 and either V = ⊕

n∈Z,n≡m mod 2
Cvn or m > 0 and V = ⊕m−1n=1−mCvn

and there are exactly two ways in which c can act. Or (case A2) ω 6∈ Z2. Then
V = ⊕

n∈Z,n≡t mod 2
Cvn and V is determined by z, ω, t mod 2, and a choice

of a c-action (two choices again).
The alternative (case B) is that V is reducible as an (gl2,SO2)-module and

if 0 ⊂ W ⊂ V is a submodule then V = W ⊕ cW with cW 6≡ W and checking
cases shows us that we are forced to have ω = m2 with m ∈ Z≥0 and V =
⊕n≤−m−1,n≥m+1,n≡m+1 mod 2Cvn.

5 Jacquet–Langlands’ description of these mod-
ules.

If B is a Borel in a connected linear algebraic group G, and V is a (say, unitary
Hilbert space) representation of B(R), then it would be nice to know how to
induce it up to a representation of G but there are apparently some minor
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technical measure-theory problems with this induction and I won’t explain how
to do it properly (you look at continuous functions from G to V which transform
in a certain way and then complete in the L2 norm, so it seems). On the other
hand, induction for (g,K)-modules seems to be much easier—I imagine this is
the same as taking the usual induction and then taking the K-finite vectors. I
haven’t found a reference for induction on (g,K)-modules but here’s something
concrete which must be an example, which I got from Jacquet–Langlands.

Recall from Lemma 1 that the only continuous group homomorphisms R× →
C× are of the form µ(x) = |x|s(x/|x|)N with s ∈ C and N ∈ {0, 1}. Let µ1, µ2

be two such characters. Consider the pair as a character of the upper triangular
matrices in GL2(R). Now induce up: set

B(µ1, µ2) ={f : GL2(R)→ C :

f
(((

a x
0 b

))
g
)

= µ1(a)µ2(b)|a/b|1/2f(g) and f is SO2(R)-finite }.

The finiteness statement is that if f satisfies the equation above then for all
k ∈ SO2(R) we see that the function fk : GL2(R)→ C defined by fk(g) = f(gk)
also satisfies the equation above, but we want the vector space generated by the
fk as k runs through K to be finite-dimensional.

Define s and N by µ1µ
−1
2 = |t|s(t/|t|)N . Now one checks that if n ∈ Z with

n ≡ N mod 2 then the function φn defined by φn(
(
1 x
0 1

)(
a 0
0 b

)( cos(θ) sin(θ)
− sin(θ) cos(θ)

)
) =

µ1(a)µ2(b)|a/b|1/2einθ is in B(µ1, µ2) and in fact these functions form a basis of
B(µ1, µ2). Note that B(µ1, µ2) is an admissible (gl2,O2)-module. Moreover by
our classification of irreducible ones (which involves working out the dictionary),
or just by looking at what Jacquet-Langlands do on p164ff do, we can read off
when these things are irreducible. If s − N isn’t an odd integer, or if it is
but s = 0, then B(µ1, µ2) is irreducible. If however s − N is an odd integer
and s 6= 0 then there are two cases. Either s > 0 in which case one checks
that σ(µ1, µ2) := ⊕n>=s+1,n<=−s−1Cφn is an irreducible sub and the quotient
π(µ1, µ2) is finite-dimensional and irreducible. If on the other hand s < 0
then 1 + s ≤ n ≤ −1− s gives a finite-dimensional irreducible submodule, call it
π(µ1, µ2), and the quotient σ(µ1, µ2) is irreducible. One now checks without too
much trouble (it’s a long long check though) that every irreducible admissible
(gl2(R),O2)-module is either a π or a σ, and that the only isomorphisms between
them are π(µ, ν) = π(ν, µ) and σ(µ, ν) = σ(ν, µ) = σ(µη, νη) = σ(νη, µη) where
η(t) = t/|t|. The dictionary is that if µi(t) = |t|si(t/|t|)Ni then z = s1 + s2 and
ω = (s1 − s2)2 on B(µ1, µ2), and it’s easy to unravel the rest now (the Ni are a
bit of a pain).

Note that there is something “simple” going on here whose analogue is much
more complicated in the p-adic case. In the p-adic case we could induce up
characters of the Borel, and we got principal series and special representations,
but there were also strange supercuspidal representations which didn’t arise as
a subquotient of principal series. In the case of GL2(R) this doesn’t happen.
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6 L-functions of irreducible admissible represen-
tations.

There are two conventions here, unfortunately. Jacquet and Langlands associate
L-functions to representations; Tate associates numbers to representations, and
then twisting the representations by |.|s gives rise to functions. Fortunately
Tate’s numbers are just Jacuqet-Langlands’ functions evaluated at zero, so let’s
go with Jacquet-Langlands. Note that Jacquet and Langlands attempt to as-
sociate an L-function to the σs and πs in the GL2(R) case via an “explicit”
construction re-interpreting the representations as certain spaces of functions
on GL2(R) a la Whittaker model, but I’ve not tried to understand this and will
instead just write down the answer.

6.1 GL1 /R

The (Langlands) L-function of x 7→ |x|r.(x/|x|)m (withm ∈ {0, 1}) is π−(s+r+m)/2Γ((s+
r+m)/2). Note that if m has the right parity but isn’t in {0, 1} then this formula
is wrong.

6.2 GL1 /C

The Langlands L-function of z 7→ zm(zz)r with m ∈ Z≥0 is 2(2π)−(s+r+m)Γ(s+
r + m). Note that if m < 0 is an integer then again this formula is wrong. In
fact what I have said above isn’t enough to determine all L-functions: we also
need to know that the L-function of z 7→ zn(zz)r with r ∈ C and n ∈ Z≥0 is
2(2π)−(s+r+n)Γ(s + r + n). Note that if m = n = 0 then the characters agree
but so do the L-functions.

On p194 of Jacquet-Langlands they also explain the epsilon factors.

6.3 GL2 /R

The L-function of π(µ1, µ2) is just the product L(µ1, s)L(µ2, s).
Now if σ(µ1, µ2) exists then (after possibly switching µ1 and µ2, and possibly

multiplying them both by η, the function x 7→ (x/|x|)) we can write µ1(t) =
|t|r+(m/2) with r ∈ C and m ∈ Z>0 and µ2(t) = |t|r−(m/2)η(t)m−1. Define
ω : C× → C× by ω(z) = (zz)r−(m/2)zm (we could also use (zz)r−(m/2)zm)
and define L(σ(µ1, µ2) = L(ω, s) (I just told you what this was in the previous
subsection: it’s 2(2π)−(s+r+(m/2))Γ(s+ r + (m/2)).

7 The Local Langlands correspondence for GL2 /R.

I’ve just mentioned, or implied, what the correspondence is. The reducible
representation µ1 ⊕ µ2 becomes associated with π(µ1, µ2), and if m ∈ Z>0

then the irreducible 2-d Weil representation induced from the map C× → C×
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defined by z 7→ zm(zz)s is attached to σ(µ1, µ2) with µ1(t) = |t|(s + m) and
µ2(t) = |t|s.(t/|t|)(m− 1).

The Harish-Chandra isomorphism at infinity is a map from the centre of
U(gC) to U(hC)W (with W the Weyl group and the superscript C meaning
“tensor with C”) and it sends Ω to H2 and sends Z to Z. Moreover it seems to
me that the lattice of characters in h⊗C (that is, the ones coming from the torus)
is the C-linear maps which send Z and H to integers of the same parity. Note
also that half the sum of the positive roots is not in this lattice: it sends Z to
zero and H to 1. So π(µ1, µ2) or σ(µ1, µ2) are algebraic iff µi(t) = |t|si(t/|t|)Ni
with s1, s2 ∈ Z.

8 The Local Langlands theorem for GL2 /R.

Recall that all of the irreducible (gl2,O2)-modules we wrote down do show up
as the K-finite vectors in a Hilbert space representation of GL2(R) (see Wallach
Corvallis 4.19); we deduce

Theorem 5. There’s a natural bijection between the 2-dimensional representa-
tions of WR and infinitesimal equivalence classes of admissible representations
of GL2(R).

The representations associated to weight k modular forms are called σk, and
these are the ones with V = ⊕∞n=k,n≡k(2)(Vn ⊕ V−n), with ω = (k − 1)2 and
z = 2 − k. If k > 1 then this is called a discrete series representation, and if
k = 1 it’s called a limit of discrete series. The Jacquet–Langlands name for

σk, k > 1, will be σ(µ1, µ2) with µ1(x) = |x|1/2 and µ2(x) = |x| 3−2k
2 (x/|x|)k =

x2−k|x|−1/2, if k > 1, where we note that this corresponds to an irreducible
representation of the Weil group; note that (µ1/µ2)(x) = xk−1(x/|x|) so we
induce the representation z 7→ zk−1 of WC to WR. The J–L name for σ1 is
π(µ1, µ2) with µ1(x) = |x|1/2 and µ2(x) = |x|1/2(x/|x|).

Waffle: To get ones hands on what’s going on in the general case, one has to
understand induction properly. Basically one should stick to inducing twists
of unitary representations, so it seems. And here there’s a trick: there is
a unitary discrete series representation of GL2(R) corresponding to the σ’s.
One can write it down explicltly: given an integer s ≥ 1 one defines D+

s to
be the representation of SL2(R) acting on the analytic f on the upper half
plane and satisfying ||f || =

∫ ∫
|f(z)|2ys−1dxdy < ∞, with the action being

(gf)(z) = (bz + d)−(s+1)f((az + c)/(bz + d)) and then one induces this up to
SL±2 (R) and gets a representation of GL2(R) in what I presume is the usual
way. Now one thinks about the πs as coming from induced representations from
the Borel, but the σs as coming from twists of these discrete series. I don’t really
understand why. It seems to me that any irreducible admissible representation
of GLn should be infinitesimally equivalent to something induced from a Borel
but the way people explain it is to induce from a slightly bigger group. Somehow
it fits best into Langlands’ framework in this setting. Langlands proved that
inducing up twists of tempered unitary representations from parabolics gave
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all irreducible admissible representations of an arbitrary reductive group G up
to infinitesimal equivalence. This is known as Langlands’ classification of irre-
ducible admissible representations. To deal with the tempered representations
though, one runs into the theory of L-packets about which I know nothing.

9 (g, K)-cohomology in the GL2 case.

I’ll quote freely from Borel-Wallach (the 2000 edition). Let’s deal with the centre
first. Let g be the 1-dimensional (abelian) Lie algebra over the complexes, and
let V be a 1-dimensional complex vector space with an action of g. Choose a
basis 1 ∈ g.

Lemma 6. If 1 ∈ g acts as multiplication by s ∈ C on V then z ∈ g acts as zs.
The Lie algebra cohomology groups Hi(g;V ) of V are either zero for all i ≥ 0,
or s = 0 in which case H0(g;V ) and H1(g;V ) are both 1-dimensional and all
the others are zero-dimensional.

Proof. By definition the Lie algebra cohomology is the cohomology of a complex
C∗(g;V ) = HomC(Λ∗(g), V ) which is zero in degrees other than 0 and 1, and
is 1-dimensional in degrees zero and 1. The result will follow if we check that d
is an isomorphism iff s 6= 0, and this follows straight from the definition of d in
equation (2) of Chapter 1 of Borel-Wallach, which shows that d = s.

Much more interesting is the following. Let g now denote the complexified
Lie algebra of SL2(R), let K denote SO2(R) and let k denote its complexified
Lie algebra. Choose a basis X,Y,H of g such that CH = k and [H,X] =
2X, [H,Y ] = −2Y and [X,Y ] = H (I am thinking X =

(
0 1
0 0

)
, Y = Xt and

H =
(
1 0
0 −1

)
). Let V denote an admissible representation of SL2(R) over the

complexes.

Lemma 7. The (g, k)-cohomology of V is the cohomology of the following com-
plex of finite-dimensional complex vector spaces:

V H=0 → V H=2 ⊕ V H=−2 → V H=0

where the first map sends v to (Xv, Y v) and the second sends (a, b) to Y a−Xb.

Proof. Again one simply applies the definition of the complex defining (g, k)-
cohomology; it is by definition the cohomology of this complex. See section 1.2
of Borel-Wallach.

Corollary 8. If f is a modular form of weight 3 or more, or weight 1, then the
associated (g,K)-module has no cohomology.

Proof. The associated (sl2, k)-module has V H=0 = V H=2 = V H=−2 = 0 because
V H=n is only non-zero for |n| ≥ k and n ≡ k mod 2. Now the Künneth formula
(section 1.3 of BW) shows that there will be no cohomology as a (gl2, k)-module
either. But (gl2,K)-cohomology is the K-invariants of (gl2, k)-cohomology so
this also vanishes.
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