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1 Definitions.

(Written 3/6/04; typo fixed 4/4/6)
Let K be a finite extension of Qp, let q denote the cardinality of the residue

field, let |.| : K× → C× be the map sending a uniformiser to 1/q. Fix an
integer n ≥ 1. These are some notes about the principal series representations
of G := GLn(K).

If χ1, χ2, . . . , χn are continuous group homomorphisms K× → C× then there
is an obvious representation of the Borel B of upper triangular matrices in G
associated to this collection: namely the representation χ : B → C× defined by
χ(b) =

∏n
i=1 χi(bii). Define I(χ) to be the normalised induction of χ from B

to G. We recall explicitly what this is in this case: define a function δ : B → C×

by

δ(b) =
∏

1≤i<j≤n

|bii/bjj | =
n∏

i=1

|bii|n+1−2i.

Then
I(χ) = {f : G→ C|f(bg) = χ(b)δ(b)1/2f(g)}

where the functions are locally constant, b ∈ B and g ∈ G. Define a G-action
on this space by gf(h) = f(hg). The normalisation constant I think screws up
Frobenius reciprocity a bit but it makes some other things work much better.

It turns out that I(χ) is irreducible if χi 6= χj |.| for all i, j (and I think this
might be iff). If I(χ) and I(χ′) are irreducible then they are isomorphic iff the
characters χi and χ′i are the same after possible reordering. An example of a re-
ducible case is when n > 1 and χ = δ−1/2; for example if n = 2 this corresponds
to χ1 = |.|−1/2 and χ2 = |.|1/2. In this case I(χ) is just the functions B\G→ C
and the constant functions are a G-invariant one-dimensional subspace. It turns
out that if n = 2 then the quotient is irreducible (the Steinberg representation)
but if n > 2 then one also has to worry about functions which are invariant
under other parabolics containing B and the situation is more complicated (but
still well-understood). I think that there is a unique generic irreducible sub-
quotient of I(χ) but I forget why I think this, and I think it’s the Steinberg
representation.
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2 Duals.

The dual Ĩ(χ) or I(χ)∨ of I(χ) is just the smooth vectors in the algebraic dual
space to I(χ). Because we are using normalised induction, the dual of I(χ) is
just I(χ̃), where χ̃ denotes the dual of χ. Becuase χ is 1-dimensional, its dual is

just its inverse, so Ĩ(χ) = I(χ−1). The reason for all this is that the duality is
explicitly given by an integral; given elements of I(χ) and I(χ−1) the product is
a function G→ C that transforms in a certain way related to Haar measure on
the Borel; but there is some kind of twisted integral (“Haar measure on B\G”;
Theorem 1.21 of Bernshtein-Zelevinskii Russian Math Surveys) that takes as
input exactly such a function and gives out a number; this gives the duality.

3 Twisting.

Let ψ be a continuous group homomorphism K× → C×. Then we can twist
the representation I(χ) by the 1-dimensional representation ψ ◦ det of G. If we
think of I(χ)⊗ (ψ ◦ det) as being the set I(χ) but with a twisted action defined
by gf(h) = ψ(det(g))f(hg), and, for f ∈ I(χ)⊗ (ψ ◦ det), we define f̃ : G→ C
by f̃(g) = f(g)ψ(det(g)), then we check easily that f̃(bg) = f(bg)ψ(det(bg)) =
χ(b)δ(b)1/2ψ(det(b))f̃(g) and hence f̃ ∈ I(χ.(ψ ◦ det)). Moreover, recalling
that f ∈ I(χ) ⊗ (ψ ◦ det), so the action of G on f is defined by (gf)(h) =

f(hg)ψ(det(h)), we see that g̃f = gf̃ , so we have proved that

I(χ)⊗ (ψ ◦ det) = I(χ.(ψ ◦ det)).

4 Hecke actions.

Let $ be a uniformiser of K. Say χ = (χi) and all the χi are unramified, and
χi($) = αi. Let us also assume that I(χ) is irreducible, although I don’t know
whether that’s necessary (probably not). If 0 ≤ m ≤ n then define γm ∈ G
to be the diagonal matrix diag($,$, . . . ,$, 1, 1, . . . , 1) where there are m $s.
Define G0 := GLn(O) where O is the integers in K. Recall that the Hecke
algebra associated to G0\G/G0 is commutative and if Tm is the Hecke operator
[G0γmG0] then this Hecke algebra can be formed by taking the polynomial ring
in the Tm, 1 ≤ m ≤ n, and then inverting Tn. This Hecke algebra acts on
the 1-dimensional space of K-invariants in I(χ) (recall I am assuming the χi

are unramified) and if σm is the mth symmetric polynomial in the αi then the

eigenvalue of Tm on this 1-dimensional space is q
m(n−m)

2 σm. For example T1
acts as q(n−1)/2(α1 + α2 + . . . + αn) and Tn acts as α1α2 . . . αn. In his thesis,
Russ Mann works out how these Hecke operators act on I(χ)M for certain other
compact open subgroups M (M for “mirahoric”, I think).
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5 Outer automorphisms.

The group G has an outer automorphism ι, sending g to g−t, the inverse of
the transpose of g. If π is a representation of G then so is π ◦ ι, and let’s call
this representation ι(π). If I(χ) is irreducible and unramified (with χi($) = αi

as usual), here’s a way of working out ι(I(χ)): an unramified representation is
determined by the associated representation of the unramified Hecke algebra.
Because G0 is preserved by inverse and transpose, we see that if G0gG0 =∐
G0gi then G0g

−tG0 =
∐
G0g

−t
i and hence if [G0gG0] acts on v ∈ I(χ)G0 as

multiplication by λ then [G0g
−tG0] acts on v ∈ ι(I(χ))G0 as multiplcation by λ

as well. Because [G0γ
−t
m G0] = [G0γn−m/$G0] = [G0γn−mG0][G0$

−1G0] and
Tn has eigenvalue

∏
i αi, we see that the eigenvalue for Tm on ι(I(χ)) is

∏
i α
−1
i

times the eigenvalue of Tn−m on I(χ), which is the smae as the eigenvalue of
Tm on I(χ−1). I guess this is enough to conclude that ι(I(χ)) = I(χ−1) for
unramified irreducible principal series, although it may be easy to work out
what’s going on in the general irreducible case as well.

6 Normalisations for Local Langlands.

Say π := I(χ) is irreducible. Harris and Taylor associate two n-dimensional
representations of the Weil group to I(χ), one called recK(π) and the other
called rl(π). Strictly speaking recK(π) is a complex representation and rl(π) is
an l-adic one, but we fix an isomorphism Ql = C so there’s not much difference
in this case. The point is that these representations are not “the same”, they
differ by a duality and a twist in general. I will explicitly write them both
down here. I think that the point is that, vaguely speaking, recK(π) works
better for things like matching L-functions but rl(π) works better for local-
global compatibilities.

Let’s fix notation as in the Harris-Taylor book. Let

ArtK : K× →W ab
K

be the map sending $, a uniformiser, to a geometric Frobenius. Let’s fix a norm
on WK that’s compatible with ArtK , that is, define |g| = |Art−1K (g)|. So for
example the norm of a geometric Frobenius is 1/q.

Here is the explicit dictionary. If χi : K× → C× is a continuous character
then let χi also denote the associated 1-dimensional representation of the Weil
group. The dictionary in the 1-dimensional case is:

rl(χ) = χ−1

and
recK(χ) = χ.

This follows from the remarks on p6 of the Harris-Taylor book. In particular, if
χ is unramified and sends $ to α then rl(χ) sends an arithmetic Frobenius to
α and recK(χ) sends a geometric Frobenius to α.
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The general case:

rl(I(χ)) = ⊕n
i=1χ

−1.|.|(1−n)/2

and
recK(I(χ)) = χ

again; this also follows easily from remarks on p6 of Harris-Taylor.

7 A concrete example: n = 2 unramified princi-
pal series.

As a concrete example—if n = 2 and χ1, χ2 are unramified characters with
χi($) = αi, and χ1/χ2 6= |.|±1, then π := I(χ) is unramified principal series,
the usual Hecke operators T and S defined using double cosets have eigenvalues√
q(α1+α2) and α1α2 respectively, rl(π) sends a geometric Frobenius to a matrix

with eigenvalues
√
q/α1 and

√
q/α2, and recK(π) sends a geometric Frobenius

to a matrix with eigenvalues α1, α2.
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