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1 Classical modular forms.

I’m going to do this in a bit of a kooky way.
If z is in the upper half plane and if n is a positive integer, then let me write qn(z) := e2πinz

(most people just write qn).

Lemma 1 (Key lemma!). If p is prime then
(a) qn(pz) = qnp(z).

(b)
∑p−1
j=0 qn

(
z+j
p

)
= pqn/p(z) if p | n and zero otherwise.

Proof. (a) is trivial. For (b) note that if ζ = e2πi/p then the sum is
∑
j ζ

nje2πinz/p which is zero

for p - n and pe2πi(n/p)z for p | n.

Now let N be a positive integer, let k be a positive integer, let χ be a Dirichlet character of
level N with χ(−1) = (−1)k, and define a sequence a1, a2, . . . of complex numbers in the following
way: a1 = 1, ap is anything you like, for p prime (except don’t let them grow too quickly, say
|ap| ≤ 2p(k−1)/2 for all p), and then define apn thus: if p|N then apn = (ap)

n, and if p - n then
define ap by the usual recurrence relation:

∞∑
n=0

apnX
n = (1− apX + χ(p)pk−1X2)−1.

Now define a function on the upper half plane by F (z) =
∑
n≥1 anqn(z).

Define an operator Tp on functions on the upper half plane: if p - N then define

(Tpf)(z) :=
1

p

p−1∑
i=0

f((z + i)/p) + pk−1χ(p)f(pz)

and if p | N then drop the last term.

Lemma 2. The function F above is an eigenvector for the Hecke operators Tp for all primes p,
with eigenvalue ap. Furthermore F is a holomorphic function on the upper half plane.

Proof. The first sentence follows purely formally from the Key Lemma and the definition of the ai.
The second follows from the fact that a locally uniformly converging sum of holomorphic functions
is holomorphic.

Corollary 3. “All that one has to do” to make sure that F is a weight k level N character χ
cuspidal eigenform is to check boundedness at the cusps, and that it transforms in the appropriate
manner under Γ0(N).
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Remark 4. This is sometimes not as hard as it seems! One can use converse theorems! We
can define the L-function of F as

∑
n≥1 an/n

s and if this L-function and its twists are bounded
in some reasonable sense, and satisfy some reasonable functional equations, then F will be a
cusp form, the proof being that the functional equations and boundedness actually prove that F
transforms correctly. Somehow the boundedness really is key (otherwise Artin’s conjecture would
be a theorem): this appears to be an observation of Hecke.

2 Maass forms.

There are some details here which are no doubt trivial to analysts but I had never seen them, so
I’ve included them. For smooth reading they are best omitted!

Let ∆ = −y2(∂2/∂x2 + ∂2/∂y2) denote the “non-Euclidean Laplacian” (a differential operator
on the upper half plane, also known as the “Laplace-Beltrami operator”).

Lemma 5. If F is a smooth function on the upper half plane, and if g =
(
a b
c d

)
∈ GL+

2 (R),
considered as an automorphism of the upper half plane z 7→ (az + b)/(cz + d), then ∆(F ◦ g) =
(∆F ) ◦ g.

Proof. It suffices to check on a set of generators, for example g =
(
1 t
0 1

)
,
(
a 0
0 a

)
,
(
λ 0
0 1

)
and

(
0 −1
1 0

)
,

and one just bashes it out in each case.

Details (Definitely worth omitting! It’s a tedious exercise.). (a) g =
(
1 t
0 1

)
. In this case we need

to check that ∆(x+ iy 7→ F (x+ iy + t)) is −y2(Fxx(x+ iy + t) + Fyy(x+ iy + t)) which is clear.
(b) g =

(
a 0
0 a

)
. This is trivial.

(c) g =
(
λ 0
0 1

)
. In this case we have to check that ∆(x+ iy 7→ F (λx+λiy)) is −λ2y2(Fxx(λx+

iλy)+Fyy(λx+ iλy)). The left hand side is −y2(∂2/∂x2 +∂2/∂y2)F(λx+ iλy) and the two partial
derivatives both float out a factor of λ2 and we get the right answer.

(d) g =
(
0 −1
1 0

)
. The only one left! In this case we have to check that ∆(x+ iy 7→ F (−x/(x2 +

y2) + iy/(x2 + y2)) is −y2/(x2 + y2)2(Fxx(−x/(x2 + y2) + iy/(x2 + y2)) + Fyy(−x/(x2 + y2) +
iy/(x2+y2))). So now I really have to understand the chain rule! Either that or I have to somehow
be able to use the fact that z 7→ −1/z is holomorphic which would somehow help, I’m sure!

Consider the map x+iy 7→ F (−x/(x2+y2)+iy/(x2+y2)). Let’s compute the partial derivative
of this map with respect to x. It’s

x+ iy 7→(−(x2 + y2) + 2x2)/(x2 + y2)2Fx(−x/(x2 + y2) + iy/(x2 + y2))

− 2xy/(x2 + y2)2Fy(−x/(x2 + y2) + iy/(x2 + y2))

=
x2 − y2

(x2 + y2)2
Fx(−x/(x2 + y2) + iy/(x2 + y2))

− 2xy/(x2 + y2)2Fy(−x/(x2 + y2) + iy/(x2 + y2)).
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Now let’s compute the partial derivative of this with respect to x! It’s(
x2 − y2

(x2 + y2)2

)2

Fxx(−x/(x2 + y2) + iy/(x2 + y2))

− 2
(x2 − y2)(2xy)

(x2 + y2)4
Fxy(−x/(x2 + y2) + iy/(x2 + y2))

+
2x(x2 + y2)− 4x(x2 − y2)

(x2 + y2)3
Fx(−x/(x2 + y2) + iy/(x2 + y2))

+ (2xy/(x2 + y2)2)2Fyy(−x/(x2 + y2) + iy/(x2 + y2))

+ (−2y(x2 + y2) + 4xy(2x))/(x2 + y2)3Fy(−x/(x2 + y2) + iy/(x2 + y2))

=
(x2 − y2)2

(x2 + y2)4
Fxx(−x/(x2 + y2) + iy/(x2 + y2))

− 4xy(x2 − y2)

(x2 + y2)4
Fxy(−x/(x2 + y2) + iy/(x2 + y2))

+
4x2y2

(x2 + y2)4
Fyy(−x/(x2 + y2) + iy/(x2 + y2))

+
−2x3 + 6xy2

(x2 + y2)3
Fx(−x/(x2 + y2) + iy/(x2 + y2))

+
6yx2 − 2y3

(x2 + y2)3
Fy(−x/(x2 + y2) + iy/(x2 + y2))

We now have to play the same game with y: the first derivative is

x+ iy 7→ 2xy

(x2 + y2)2
Fx(−x/(x2 + y2) + iy/(x2 + y2))

+
x2 − y2

(x2 + y2)2
Fy(−x/(x2 + y2) + iy/(x2 + y2))

and the second is

4x2y2

(x2 + y2)4
Fxx(−x/(x2 + y2) + iy/(x2 + y2))

+
4xy(x2 − y2)

(x2 + y2)4
Fxy(−x/(x2 + y2) + iy/(x2 + y2))

+
(x2 − y2)2

(x2 + y2)4
Fyy(−x/(x2 + y2) + iy/(x2 + y2))

+
2x3 − 6xy2

(x2 + y2)3
Fx(−x/(x2 + y2) + iy/(x2 + y2))

+
−6yx2 + 2y3

(x2 + y2)3
Fy(−x/(x2 + y2) + iy/(x2 + y2))

and the sum is, slightly too miraculously,

1

(x2 + y2)2
(Fxx + Fyy)(−x/(x2 + y2) + iy/(x2 + y2))

which is what we wanted to prove.

Now let ν be a complex number (my understanding is that for cuspidal Maass forms the
positivity of a certain operator will imply that 1/4 − ν2 is a positive real, but we never need to
assume this in the “local” theory at infinity).
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Define the K-Bessel function Kν(y), a function from the positive reals to the complexes, by

Kν(y) =
1

2

∫ ∞
0

e−y(t+t
−1)/2tνdt/t.

This integral is absolutely convergent no problems. Furthermore pari can compute it efficiently
and quickly (it’s the function besselk(nu,y)) but the implementation appears to be broken in
the current version (2.4.1) when ν = 0, which is a case of definite interest—the workaround is to
use ν = (1e− 30) ∗ I instead!). This is a certain kind of Bessel function; Bessel functions usually
oscillate, there are usually two around, and they’re the solutions to a second order differential
equation, kind of analogous to sin and cos, but we’re not using those ones, we’re using a certain
linear combination of them that decreases exponentially as y grows, a kind of analogue of e−t; the
other “natural” basis function for the solution of the differential equation has exponential growth
as y tends to infinity (but note that Kν(y) blows up exponentially as y tends to zero). Anyway,
here’s the standard fact about Bessel functions:

Lemma 6. Kν is a solution to the differential equation

y2d2F/dy2 + ydF/dy − (y2 + ν2)F = 0.

Proof. Differentiate under the integral (and multiply by 8); one now has to check that for any
positive real number y we have∫ ∞

t=0

(t2y2 − 2y2 + y2/t2 − 2yt− 2y/t− 4ν2)e−y(t+t
−1)/2tνdt/t = 0

and we’re going to do this by spotting that the integrand is the derivative (with respect to t) of
2(−yt − 2ν + y/t)e−y(t+1/t)/2tν−1 and that (for positive real y) as t tends either to 0 or infinity
this function is exponentially decreasing to zero.

Corollary 7. The functions on the upper half plane defined by x + iy 7→ y1/2Kν(2πy)e2πix and
x+ iy 7→ y1/2Kν(2πy)e−2πix are both eigenvectors for ∆, with eigenvalue (1/4− ν2).

Proof. Just bash it out; each function is a product of a function of x only and a function of y only,
so it’s easy.

Details. Let’s do the first function. Explicitly, applying ∆ gives us the function

x+ iy 7→ −y2(−4π2y1/2Kν(2πy)− 4−1y−3/2Kν(2πy) + y−1/22πK ′ν(2πy) + y1/24π2K ′′ν (2πy))e2πix

which simplifies to

y1/2(4y2π2Kν(2πy) + 4−1Kν(2πy)− 2πyK ′ν(2πy)− 4π2y2K ′′ν (2πy))e2πix

so it suffices to check that

(1/4− ν2)Kν(2πy) = 4y2π2Kν(2πy) + (1/4)Kν(2πy)− 2πyK ′ν(2πy)− 4π2y2K ′′ν (2πy),

that is, that
(ν2 + 4y2π2)Kν(2πy)− 2πyK ′ν(2πy)− 4π2y2K ′′ν (2πy) = 0,

and it does.
For the second function, the details are essentially the same.

Now choose a sign ε ∈ {+1,−1} (this is going to be the “sign” of the Maass form: this has
nothing to do with Atkin-Lehner operators, this is all to do with the infinity type or (from the
Galois point of view) whether complex conjucation is

(
1 0
0 1

)
or
(−1 0

0 −1
)
. Define a function W ↑ on

the upper half plane by
W ↑(x+ iy) = y1/2Kν(2πy) exp(2πix)
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and define a function W ↓ on the lower half plane by

W ↓(x+ iy) = (−y)1/2Kν(2π(−y)) exp(2πix)

(so W ↓(z) = W ↑(z)).
Now for n a positive real number, define functions on the upper half plane thus:

Q+
n (z) = (W ↑(nz) +W ↓(−nz))

and
Q−n (z) = (W ↑(nz)−W ↓(−nz)).

Lemma 8. Q+
n and Q−n are eigenvectors for ∆ with eigenvalue (1/4− ν2).

Proof. The previous corollory showed that W ↑ was, and from Lemma 5 (the invariance under
GL+

2 (R) we deduce that z 7→ W (nz) will be for any positive real n. Similarly the previous
corollary showed that W ↓(−z) (a function on the upperr half plane) was, and now again by
invariance of the differential operator we’re done.

Now let us restrict to n a positive integer (because we want our Maass forms to satisfy F (z) =
F (z + 1)).

Lemma 9. (Key Lemma for Maass forms) If p is prime then
(a) Q+

n (pz) = Q+
np(z) and similarly for Q−, and

(b)
∑p−1
j=0 Q

+
n

(
z+j
p

)
= pQ+

n/p(z) if p | n and zero otherwise, and similarly for Q−.

Proof. It suffices to prove these assertions with Q+
n (z) replaced by W (nz) and W (−nz). Now (a)

is trivial, and for (b) note that if ζ = e2πi/p then the sum is
∑
j ζ

njW (nz/p) which is zero for
p - n and pW (nz/p) for p | n.

You can see what’s coming now, right?
Now let N be a positive integer, let χ be an even Dirichlet character of level N , let ε be a

sign, think of k as zero, and define a sequence b1, b2, . . . of complex numbers in the following way:
b1 = 1, bp is anything you like with |bp| ≤ 2p−1/2, and define bpn = (bp)

n if p | N and via the
recurrence

∞∑
n=0

bpnX
n = (1− bpX + χ(p)p−1X2)−1

if p - N . Now define a function on the upper half plane by F (z) =
∑
n≥1 bnQ

ε
n(z). The operator

Tp is defined as in the previous section, and we see

Lemma 10. The function F above is an eigenvector for the Hecke operators Tp for all primes p,
with eigenvalue bp, and furthermore F is an eigenvector for ∆ with eigenvalue (1/4− ν2).

Proof. The combinatorics is the same as before and convergence is easy and a sum of eigenvectors
(with the same eigenvalue) is an eigenvector.

Corollary 11. “All that one has to do” to make sure that F is a Maass form is to check bound-
edness at the cusps, and that F transforms in the appropriate manner under Γ0(N).

Remark 12. And of course one can use converse theorems, who don’t care whether you’re dealing
with holomorphic or non-holomorphic forms, to do this. Note that the L-function of F above is
in fact

∑
n≥1 bn

√
n/ns; this square root had to appear somewhere, because the analogy of Maass

forms with modular forms isn’t perfect: a Maass form looks a bit like a non-holomorphic form of
“weight 0” (for the purposes of the action of Γ1(N) but also a bit like a non-holomorphic form of
“weight 1” (for the purposes of Galois representations). For the purposes of notation I’m going to
set an = bn

√
n. In the algebraic Maass form case it’s the an which will be the traces of Frobenius,

even though the bn are the Hecke eigenvalues; this is a funny twist which one doesn’t see in the
holomorphic case, and it’s due to the fact that Maass forms can’t quite make up their mind as to
whether they are “weight 0” or “weight 1”.
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3 Explicit examples.

3.1 An algebraic example.

I can write down an example of a Maass form which gives rise to a Galois representation! This
was a bit of a pain for reasons I’ll explain below, but because computing 200,000 Q-expansion
coefficients isn’t much trouble in 2007 I could still do it.

Before I start, let me explain something about why I chose this particular representation. If I
really want pari to compute a sum of Bessel functions and then attempt to check that it’s invariant
under some subgroup Γ1(N) then it’s nice to have N as small as possible, because for z near the real
line, to compute the sum accurately one need to sum hundreds of thousands of Bessel functions,
and the bigger N is, the closer to the real line one of z, γz is going to be for γ ∈ Γ0(N) with c 6= 0.
Fortunately my “dihedral forms” script that I wrote when computing weight 1 holomorphic cusp
forms apparently computed all 2-dimenensional complex Galois representations that were induced
from characters on quadratic fields, both even or odd, so I could use that script and search to find
even representations. The actual magma script is commented out in the TeX file.

Using this strategy I found continuous even 2-dimensional complex representations of conduc-
tors 136, 145, 148, 205 and 221. Now 136 is a multiple of 8 so I went for 145 (which is both odd
and squarefree); let me explain this example carefully.

The class group of K := Q(
√

145) is cyclic of order 4 and totally real. Let H denote the
associated Hilbert class field. According to pari, H is the splitting field of f := x4−x3−3x2+x+1,
a polynomial whose discriminant is 52.29. The primes 5 and 29 are the only ramified primes in K.
Now Gal(H/Q) = D8, the dihedral group with 8 elements, and this group has an irreducible
2-dimensional complex representation. The only elements with non-zero traces are the identity
(trace 2) and the non-trivial central element (trace −2). The non-trivial central element generates
a subgroup of order 2 which fixes a field of degree 4 over Q and this field is Q(

√
5,
√

29). The
determinant of the representation is non-trivial (think of D8 acting on a square; there are flips)
and the determinant cuts out a quadratic extension of Q which is just K. Hence the character of
our Maass form is going to be (·/145) = (·/5)(·/29) and for p a prime with p 6∈ {5, 29} we have
ap = 0 unless p splits completely in Q(

√
5,
√

29).
Non-zero ap are rather sporadic and take a while to start (for the usual reasons). Magma tells

me that a5 = a29 = −1 (this is a brute force calculation of Frobenius acting on inertial invariants,
which it can do because magma can see the ray class character which is giving rise to the form)
and all the other ap are zero for p < 59. We have a59 = a71 = −2, a109 = 2 and a139 = 2 and those
are the only non-zero ap up to 139. The representation is induced from all three of Q(

√
29),Q(

√
5)

and Q(
√

145)!
The automorphic representation has non-trivial character at 5 and 29 and hence is ramified

principal series at these primes. Magma tells me that e = f = g = 2 at 5 and 29, so in each
case inertia is order 2 and must be acting in each case as something with order 2 (because it
corresponds to a tamely ramified principal series with one unramified character and one quadratic
tamely ramified character).

Magma has done the dirty work of computing a5 and a29; we need to know ap for much much
larger p if we want convergence, but this is easy. For a good prime, its trace will be zero unless it
splits completely in Q(

√
5,
√

29). If p splits completely in this extension (i.e.,if both 5 and 29 are
squares mod p) then ap will be +2 or −2, and it’ll be +2 iff p splits completely in H, which one
can test by factoring f mod p. The pari code is commented out in the TeX file. Note that the
aps above are traces, so they’re not the bp in the Q-expansion, there’s a factor of

√
p missing, as

I explained earlier.
Using these observations, I could easily write a pari script that firstly computed an for all

n < 200000 (in a few seconds) and then actually summed the infinite sum that gives me a Maass
form. The script is commented out in the TeX file, as is a sample run, which indicates that the
infinite sum does appear to be stable under Γ1(145).

I have pari files containing other algebraic examples, for example one involving the class group
of K := Q(

√
79) (which is cyclic of order 3 over K and gives a totally real S3-extension).
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3.2 A non-algebraic example.

It’s much easier to come up with non-algebraic examples, from a computational point of view,
because one can work with much much lower level: the Grossencharacter on the quadratic field
doesn’t have to have trivial infinity type so one can use quadratic fields of very small discriminant
and Grossencharacters of conductor 1. Let’s do the one in Gelbart’s book, the one with infinity
type π+

s with s = 2πi/ log(
√

2− 1) and ∆-eigenvalue (1− s2)/4, so ν = πi/ log(
√

2− 1).
Here’s the mathematics. Set L = Q(

√
2). We want a Grossencharacter on L and A×L is

L×.ÔL
×
.(R>0)2 because L has class number 1 and a fundamental unit of norm −1. Hence a

Grossencharacter of conductor 1 can be thought of as a function on (R>0)2/Γ with Γ the totally
positive units embedded diagonally. We want the Grossencharacter to be unitary, so it will be of the
form (x1, x2) 7→ xit11 xit22 with x1 corresponding to the “obvious” embedding

√
2 > 0, say. We want

the character to be trivial on 3+2
√

2 so (3+2
√

2)it1−it2 = 1 and hence i(t1−t2) log(3+2
√

2) = 2πin
for some integer n and hence t1 − t2 = πn/ log(1 +

√
2) for some integer n and Gelbart chooses

n = 2 for some reason and furthermore sets t1 + t2 = 0, so t1 = π/ log(1 +
√

2) = 3.5644279 . . .
and t2 = −t1.

This defines a grossencharacter χ. To compute χ of a uniformiser at some prime p of L, choose
a totally positive generator λ of p and then embed this generator into (R>0)2 in the obvious way
and evaluate. I don’t have to worry about arithmetic vs geometric Frobenii because when I induce
the answer will be independent of my choice. Furthermore the nice thing about choosing n = 2
above rather than 1 is that you don’t need a totally positive generator; any generator will do, and
you embed it into (R>0)2 by just taking the absolute values of both embeddings.

The idea of course is to consider the representation of the Weil group of E induced by this
Grossencharacter, and then induce up to the Weil group of Q and get a representation to GL2(C).
Again I’ll work with ap, the traces of Frobenius, rather than bp, the Q-expansion coefficients
(and hence the Hecke eigenvalues). Here’s what’s going on explicitly. For p odd the automorphic
representation will be unramified principal series; if p is inert in Q(

√
2) then ap = 0 and if p = pp is

split then ap = χ(p) + χ(p). Computing at 2 is a special case: the Grossencharacter is unramified
there, and in fact it’s trivial there because χ(

√
2) = |

√
2|it1 |

√
2|it2 = 1. So locally the Weil

representation looks like the induction from Q2(
√

2) to Q2 of the trivial representation, and this
is just trivial plus the character of order 2 corresponding to the quadratic extension; hence the
Weil representation is reducible, and the smooth admissible representation is principal series with
one ramified (of conductor 8) and one unramified character. Hence the caracter of the Maass form
will be χ(n) := (2/n) and the level will be 8 (Gelbart says it’s 2 in his book but I think he’s
wrong). Furthermore we have a2 = 1 (the trace of Frobenius on the inertial invariants). The ap
will be zero if p is 3 or 5 mod 8, and for p = 1 or 7 mod 8 write p = (a+ b

√
2)(c+ d

√
d) and then

compute z = |a + b
√

2|it1 |a − b
√

2|it2 (a complex number of norm 1) and set ap = z + z. This
really works: again I have a pari script that computes only thousands of Q-expansion coefficients
and gives a function that looks computationally invariant under Γ1(8).

As an example, we have a7 = z + z with z = (3 +
√

2)it1(3 −
√

2)−it1 with, recall, t1 =
π/ log(1 +

√
2), so a7 = −1.747936377 . . .. Explicitly, we have a7 = 2 cos(πr) with

r =
log(3 +

√
2)− log(3−

√
2)

log(1 +
√

2)

and one imagines that this is wholly transcendental! On the other hand we have a2 = 1, so it’s
hard to imagine that any twist of this form will be algebraic in any way.

4 Some general theory of Maass forms.

I wrote this up at some point; it doesn’t really go with the rest of this note but I’ll put it here
anyway.

If Γ = Γ1(N) then a Maass form is a C∞ function f on the upper half plane such that
f(γz) = f(z) for all γ ∈ Γ, and such that firstly ∆f = λf for some λ ∈ C, with ∆ the differential
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operator −y2(∂2/∂2x+ ∂2/∂2y), and secondly a boundedness condition: there is an N such that
(f ◦ γ)(x + iy) = O(yN ) for all γ ∈ SL2(Z). We say furthermore that f is a cusp form if∫ 1

0
(f ◦ γ)(z + x)dx = 0 for all γ ∈ SL2(Z).

Example: if <(s) > 1 then the non-holomorphic Eisenstein series Es(τ) =
∑′
m,n =(z)s/|mτ +

n|2s works, because ∆ is GL+
2 (R)-invariant and the map from the upper half plane to the reals

sending z to =(z)s is an eigenvector for it with eigenvalue s(s− 1), and Es is just a sum of such
things translated around by SL2(Z) so it’s also an eigenvector with eigenvalue s(s− 1).

The functions Es extend meromorphically to all s ∈ C, by the way, with poles at s = 1
and s = 0 and no other poles. We have Es(z + 1) = Es(z) of course, so we can write Es(z) =∑
r∈Z as,r(y)e2πirx with as,r(y) some function on the reals. It turns out that as,0(y) is some linear

combination of ys and y1−s, and as,r(y) for r 6= 0 is some constant times y1/2 times a Bessel
function y 7→ Ks−1/2(2π|r|y). In fact once you have these facts it’s not difficult to analytically

continue Es, because |Ks(y)| ≤ Ce−y/2 for some constant C = C(s).
More generally, for a level 1 Maass form we have f(z + 1) = f(z) and hence we can write

f(z) =
∑∞
r=−∞ ar(y)e2πirx and if ∆f = (1/4 − ν2)f then it’s shown in Bump’s book that ar(y)

must be a constant Cr times
√
yKv(2π|r|y), the point being that one can check that ar(y)/

√
y

satisfies a certain second order differential equation, which has two linearly independent solutions,
one of which has exponential growth and the other of which is Bessel’s function.

Here’s a mad involution: the function on the upper half plane sending x+ iy to −x+ iy sends
Maass forms to Maass forms and preserves ∆-eigenvalues. So the space of Maass forms can be
broken up into a direct sum of two subspaces, the odd ones and the even ones. For the even ones
we have Cr = C−r and for the odd ones we have C−r = −Cr. For a cusp form, by the way, we
have C0 = 0.

The L-function of a Maass form is just
∑
r>0 Cr/r

s. One can check without too much trouble

that if f is a cusp form then Cr = O(r1/2) and hence the L-function converges for <(s) > 3/2.
In fact Bump says that the Rankin-Selberg method shows that for a cusp form, the L-function
converges for <(s) > 1 (but remember what he said about the Ramanujan conjecture :-/)

If f is a cuspidal Maass form with ∆-eigenvalue (1/4− ν2), and if we set ε = 0 if f is even and
ε = −1 if f is odd, then we can define the completed L-function of f thus:

Λ(s) = π−sΓ((s+ ε+ ν)/2)Γ((s+ ε− ν)/2)L(s)

and the theorem is that
Λ(s) = (−1)εΛ(1− s).

This is only for level 1 eigenforms, unfortunately.
More random facts. ∆ only has positive real eigenvalues on the cusp forms, so if (1/4− ν2) is

an eigenvalue then ν is either real and in (−1/2, 1/2), or pure imaginary. Selberg proved that the
first case does not arise for SL2(Z) and conjectured that it wouldn’t arise for congruence subgroups
(but for an arbitrary discrete group Γ, non-zero real values of ν can occur).

If Γ comes from a non-split indefinite quaternion algebra then the eigenvalues of ∆ can be
ordered 0 = λ0 < λ1 < . . .. The zero comes from the constant function, which is a cusp form as
there are no cusps. A consequence of the Selberg trace formula is “Weyl’s law”, that the number
of eigenvalues λi with λi < N is some non-zero constant (related to the volume of the quotient of
the upper half plane) times N , so in particular there are eigenvalues. But if Γ has cusps, then we
have the Eisenstein series, and also the discrete spectrum, which is the constant functions and the
cusp forms (and Weyl’s law still holds). Note that Maass forms coming from Grossencharacters
over quadratic extensions of Q are another way to prove the existence of Maass forms, but one
can count eigenvalues and check that “almost no” Maass forms are of this form.
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