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Abstract

These are rough notes for a course I gave on automorphic forms Oct–Dec 2005.

Lecture 1 (19/10/5): I gave an overview which I didn’t type up.
Lecture 2: (26/10/5) Now I’ll start properly.

1 Group varieties.

Let k be a field. Working definition: a group variety over k is an algebraic variety G over k (that
is, a scheme of finite type over Spec(k)) equipped with multiplication, inversion, and identity
e ∈ G(k).

Example: the affine line, an elliptic curve, a torus. GLn . Proof that GLn is affine. Quick proof
that Z is the endomorphisms of the torus, even in characteristic p.

A representation of a group G is a morphism of varieties G → GLn. Example: the upper
triangular representation of the affine line.

Let’s assume also that G is smooth and that k is algebraically closed. Then there’s a nice
structure theorem, which goes as follows.

We have G ⊇ G0, the connected component of the identity, and the quotient is finite. Then
G0 ⊇ G1, the maximal connected affine subgroup; this is normal, and the quotient is projective
(and hence an abelian variety) (this is a theorem of Chevalley, whose proof is not in the literature
but is on the web). Now G1 ⊇ G2, the radical of G1, which is the maximal connected affine
solvable normal subgroup (solvable means the obvious thing because if G is connected and H, K
are Zariski-closed subgroups, one of which is connected, then the commutator subgroup is also
connected), and it also contains G3, the maximal connected unipotent subgroup of G2, which is
normal in G2 and in G1. This is the unipotent radical. The quotient G2/G3 is a torus. Unipotent
means all representations have ρ(g)− 1 nilpotent.

Néron models are extensions of abelian varieties by tori.
Say G is reductive if G is affine and G3 = 0, so it’s an affine algebraic group with no unipotent

radical. I’ve never understood Richard Thomas’ definition of reductive.
An algebraic variety has a tangent space at a point, which is a finite-dimensional vector space

over the residue field of the point. The tangent space of a group variety at the origin inherits the
structure of an abstract Lie algebra (and in characteristic p it gets a little more). The tangent
space of a semisimple group variety is a semisimple Lie algebra, and there’s a classification of
semisimple Lie algebras which is usually presented over the complexes but works over any field.
The classification is in terms of root systems.

But you have to be careful: SLn and PGLn have the same tangent space over C (there is a
finite unramified covering SLn → PGLn of degree n), and are both semisimple groups, but they
aren’t isomorphic; (consider centres). The tangent space doesn’t see nice finite covers, so you can’t
reconstruct a group variety from its tangent space, even if the group variety is connected. On the
other hand a mild generalisation of root systems, called root data, can see these “finite errors”
and can also deal with the torus kicking around.
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A root datum is a 4-tuple (X, Ψ, X∨,Ψ∨) such that X and X∨ are finitely-generated free
abelian groups, equipped with a perfect pairing 〈, 〉 : X ×X∨ → Z, where Ψ ⊆ X and Ψ∨ ⊆ X∨

are finite subsets equipped with a bijection Ψ → Ψ∨ denoted α 7→ α∨, and two axioms.
The first is 〈α, α∨〉 = 2 for all α ∈ Ψ. This implies that for α ∈ Ψ, the map sα : X → X

defined by sα(x) = x−〈x, α∨〉α satisfies s2
α = 1, and similarly sα∨(u) = u−〈α, u〉α∨. The second

axiom is that for all α we have sα(Ψ) = Ψ and sα(Ψ∨) = Ψ∨.
Examples: X = Z = X∨ with 〈, 〉 the product. Then we can have Ψ = {±1}, or {±2}, or

{±1,±2}, or empty. Empty is a possibility, so these aren’t root systems, they are something a bit
more general. That one with 1 and 2 in it is lousy though: say a root datum is reduced if α ∈ Ψ
and λα ∈ Ψ for λ ∈ Q implies λ = ±1.

Let Q be the Z-span of Ψ and let V be the Q-span. Similarly let X0 be (Ψ∨)⊥ and let V0 be
the Q-span of X0. Then Q + X0 = Q ⊕ X0 ⊆ X has finite index. Say that the root datum is
semisimple if X0 = 0 and toric if Ψ = ∅. Note that Ψ is a root system in V . One can classify root
systems completely: there’s irreducible ones An (n ≥ 1) and Bn (n ≥ 2) and Cn (n ≥ 3) and Dn

(n ≥ 4) and E6, E7, E8, F4, G2 (and a non-reduced one BCn, n ≥ 1) and every root system is a
direct sum of finitely many irreducible ones. In our situation we have an injection X → S⊕T with
S semisimple and T toric, and the cokernel is finite. So we have a classification of root datums,
which is useful enough in practice.

Here’s the big construction: let G be connected and reductive, and let k be algebraically closed.
Choose a maximal torus T (probably not normal). Set X = Hom(T,Gm) and X∨ = Hom(Gm, T ).
Let Ψ be the root system for (G, T ) (the characters that show up in the action of T on the tangent
space). The definition of Ψ∨ is messier. If α ∈ Ψ then let Tα be the identity component of ker(α);
this is contained in T and is a little smaller. Let Zα denote the centraliser of Tα in G; this is
now a little bigger than T . Let Gα denote its derived subgroup; one can check that this is either
SL2 or PGL2 because one can characterise semisimple groups of rank 1. In either case, an explicit
calculation shows that there’s a unique map α∨ : Gm → Gα such that T is generated by Tα and
the image of α∨ and furthermore that 〈α, α∨〉 = 2. So there we go. This gives us a reduced root
datum associated to any connected reductive algebraic group (plus torus) and the big theorem is
that this establishes a bijection between reduced root datums and connected reductive algebraic
groups. The hard part is of course the construction of the group from the data. You reduce to the
cases semisimple and toric. The torus is easy. The semisimple case is again a theorem of Chevalley
from 1960 or so.

Hence one can write down “all” reductive groups over an algebraically closed field.
Lecture 3: (2/11/5)
Refs for previous lecture were: “semi-simple algebraic groups” by Kneser in Cassels-Froehlich,

Borel’s “linear algebraic groups” for the basics, and Springer’s “Reductive groups” in Corvallis.
k alg closed still. Fact: any affine group is a closed subgroup of some GLn. A representation of

G is a map G → GLn. A group is unipotent if all its reps are unipotent. If G is affine then it has
a unique maximal connected solvable (resp. unipotent) normal subgroup, the (resp. unipotent)
radical. G is called reductive if it’s affine and has no unipotent radical, and semisimple if it has no
radical. Recall: connected reductive groups are classified by a piece of linear algebra data, called
the root datum associated to G. This wasn’t an equivalence of categories, just a bijection on
objects: a group has lots more automorphisms than the piece of linear algebra data, for example.

An isogeny G → H is a surjection with finite kernel. An isogeny of root data is an injective
group hom X ′ → X with finite cokernel inducing a bijection Φ′ → Φ and such that the dual of the
hom induces a bijection Φ∨ → Φ′∨. It is the case that isogenies of root data give rise to isogenies
between groups.

Using this classification one can prove that up to isogeny, any connected reductive G is a
product of a semisimple group and a torus. Tori are easy, they are products of Gm. Semisimple
groups are again not too hard, they are, up to finite groups, products of simple groups, which,
using the root datum side of the picture, one can completely write down. Every simple group is
isogenous to one of An, Bn, Cn, Dn, E6, E7, E8, F4 and G2, and the resulting groups are

An = SLn+1, Bn and Dn are orthogonal groups, Cn is Sp2n, and the other five are exceptional
groups.
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If k is perfect, but not algebraically closed, then you define reductive and torus by “becomes
reductive/toric over the alg closure”. Note that here there’s an issue with the classification because
there are groups over k which are not isomorphic, but which become isomorphic over an algebraic
closure. For example the closed subgroup of 2-space over the reals defined by x2 + y2 = 1 with
multiplication (a, b)(c, d) = (ac − bd, ad + bc) [think (a, b) = a + bi; then (a + bi)(c + di) =
(ac− bd) + (ad + bc)i] is certainly not isomorphic to Gm, but it becomes isomorphic to Gm over
the complexes. Similarly, if K is a field and L is either a separable quadratic field extension of K
or K⊕K, whose Galois group has non-trivial element ∗ (which is the switch (a, b)∗ = (b, a) in the
second case) then one can define the unitary group U(n)/K as the subgroup of GLn(L) consisting
of matrices M such that M.M∗t = 1. This is a bunch of equations which aren’t L-linear but which
are K-linear so the resulting algebraic variety is defined over K but not L. This group is typically
not isomorphic to GLn. On the other hand if L = K ⊕ K then it is; however this is always the
case over an algebraically closed field so U(n) is a form of GLn.

For tori, one can work out what’s going on explicitly. Given a torus over k, Gk (the absolute
Galois group of k) acts (continuously) on Homk(T,Gm) = Zn and so we get an induced map of
Gk on a finite free abelian group. The converse is also true: given the action we recover the torus,
and this is an anti-equivalence of categories.

More generally, given a group G/k, the computation of all forms of G is an exercise in Galois
cohomology; Gal(k/k) acts on G(k) and there’s a cohomology pointed set H1(Gk,Aut(G)) (con-
tinuous cocycles modulo equivalence). One could try and work such a thing out in any given case.
The theory of automorphic forms for G will change massively if you replace G by a form of G. One
of Langlands’ amazing observations is that the theories of automorphic forms for distinct forms of
the same group should be strongly related.

2 Automorphic forms on real reductive groups.

I promised a definition so here is one.
I spent a lot of time trying to learn some analysis but realised later on that most of it was

irrelevant. Ref is Borel-Jacquet in Corvallis. Let G be a reductive group over Q and K a maximal
compact subgroup of G(R). We want to consider C∞ functions on G(R) but we want to only
consider the ones of interest to us, so we need boundedness conditions. Turns out we need other
conditions too which, if I were an expert, I’d tell you why we needed them.

Let Mn be the group of n×n matrices under addition, and consider GLn as an open subvariety
of Mn (of course it’s not a subgroup). Choose σ : G → GLn an injection with closed image in
Mn. Note that this is strictly stronger than just demanding the image is closed (for example if
G = GL1 then the identity map G → GL1 has image closed in GL1 but not in M1). Note also
however that if σ : G → GLn has image closed in GLn then adding either det(σ)−1 as one new
coordinate, or σ(g−1)t as n new coordinates, gives a new representation of degree n + 1 or 2n
which does have the required property.

Anyway, with σ as above, if g ∈ G(R) then define ||g||σ to be tr(σ(g)tσ(g))1/2. This depends
on σ but in fact I am told that1 for any σ and τ there exists C and n such that ||x||σ ≤ C||x||nτ .
We say f : G(R) → C is slowly increasing if there’s a norm on G(R) and C and n such that
|f(x)| ≤ C||x||n for all x.

Now let Γ be an “arithmetic subgroup” of G(Q); this I think means the intersection of G(Q)
with some compact open in G(Af ). An automorphic form for (G, K,Γ) is a smooth complex-valued
function f : G(R) → C such that

(a) f(γx) = f(x) for all γ ∈ Γ,
(b) f is right K-finite, (this means that the translates of f of the form x 7→ f(xk) generate a

finite-dimensional vector space),
(c) There’s an ideal of finite codimension in Z(U(gC)) which annihiliates f (I’ll define this in

the next section)
(d) f is slowly increasing.

1I should do this exercise.
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I need to explain what (c) means.
Lecture 4: (9/11/5)

3 Lie groups, Lie algebras, Universal enveloping algebras.

Let G be a group variety over the reals; then G(R) is a real Lie group (which is just a group in the
category of real manifolds). I always have to get my head around manifolds, so let me do this now.
Given a point p on a manifold M we have the space of germs of smooth functions at this point p,
called Cp(M), and the tangent space to M at p is just the linear maps Lp : Cp(M) → R such that
Lp(fg) = f(p)Lp(g) + g(p)Lp(f). A local calculation shows that this space is finite-dimensional.
Tangent spaces glue together to give you the tangent bundle. A smooth vector field is just a
smooth section of this tangent bundle. This is a big real vector space; an element of it is, for each
point p, a linear map Lp : Cp(M) → R such that if f is in C∞(M) then the function sending p to
Lp(f) is also in C∞(M). Note that L is determined by its action on C∞(M), by some partition of
unity argument, and that L(fg) = fL(g) + gL(f). I guess this gives a bijection between smooth
vector fields and derivations of C∞(M).

A weird calculation shows that if L and M are smooth vector fields then LM isn’t, but
LM −ML is. Let’s call this [L, M ]. This puts the structure of a Lie algebra on the space of all
smooth vector fields.

Formal definition: k any field. A Lie algebra over k is a vector space V/k equipped with an
alternating bilinear map [, ] : V × V → V such that [v, v] = 0 for all v and x [[a, b], c] + [[b, c], a] +
[[c, a], b] = 0. Natural example: if A is an associative algebra over k then define [a, b] = ab − ba.
Note that not all Lie algebras arise in this way, and many arise more than once.

If G is a Lie group then one can pull back vector fields by the action of the group and ask which
are left invariant. A left invariant vector field is determined by L0 which establishes a bijection
between left invariant vector fields and T0(M). So magically T0(M) inherits the structure of a
finite-dimensional Lie algebra. In practice if G = GLn(R) then T0(G) = Mn(R) and the Lie
algebra structure turns out to be AB −BA by a local calculation. Now if G is a closed subgroup
of GLn(R) then the tangent space is “what you think it is” and the Lie algebra is defined by
XY − Y X again, but XY might not be in the Lie algebra. For example SLn.

All this can be done algebraically; if G is an affine group variety then its algebraic tangent
space gets the structure of a Lie algebra over the base field. That’s why the classifications are
related.

There is a notion of solvable and nilpotent Lie algebras, of “ideals” (which correspond to normal
subgroups) and then radicals (largest solvable ideal) and nilpotent radicals, and semisimple, simple,
and reductive Lie algebras. The analogue of a torus is an abelian Lie algebra, which has [v, w] = 0
for all v and w. The analogue of a subtorus is a Cartan subalgebra, which is nilpotent subalgebra
equal to its own normaliser. A reductive Lie algebra is the direct sum of a semisimple one and
an abelian one. There’s a classification of Lie algebras over C and there’s a simple Lie algebras
in terms of root data just as before. A reductive affine algebraic group over an alg closed field is
determined up to isogeny by its Lie algebra because one can reconstruct the root datum tensored
with Q.

Now the universal enveloping algebra. The construction [a, b] = ab − ba gives a morphism of
functors from associative algebras to Lie algebras over k. This functor has a left adjoint, by which
I mean the following: there is an associative algebra U(g) that one can attach to a Lie algebra g,
with the property that Hom(g, A) = Hom(U(g), A) where the first is Lie algebra homs and the
second associative algebra homs. The existence of U(g) follows from the general adjoint functor
theorem, but, more usefully, one can just build U(g) as k ⊕ g ⊕ T 2(g) ⊕ · · · modulo the bi-ideal
generated by v⊗w−w⊗ v− [v, w], where Tn(g) is the tensor algebra g⊗k g⊗k · · · . This explicit
construction can be used to show that Poincaré–Birkhoff–Witt theorem, which says that if g is
finite-dimensional and e1, . . . , en is a basis of g then ea1

1 ea2
2 . . . are a basis for U(g). Example:

g abelian (that is, [v, w] = 0 for all v and w); then U(g) is just non-canonically a polynomial
algebra. If however g is something interesting like sl2 then we have a basis e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
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and h =
(

1 0
0 −1

)
and then [h, e] = 2e, [h, f ] = −2f and [e, f ] = h. The universal enveloping

algebra is some non-commutative ring generated by E, F and H, where you forget that these are
matrices: these elements satisfy satisfying EF − FE = H, but E2 6= 0 (by PBW!). The adjoint
representation of g (with ordered basis e, f, h) defined by g 7→ (h 7→ [g, h]) is

e 7→

0 0 −2
0 0 0
0 1 0


f 7→

 0 0 0
0 0 2
−1 0 0


h 7→

2 0 0
0 −2 0
0 0 0


and the Killing Form, B(x, y) = tr(ρ(x)ρ(y)), with ρ the adjoint representation, is represented by
the matrix 0 4 0

4 0 0
0 0 8

 .

Hence e∗ = f/4, f∗ = e/4 and h∗ = h/8. So EE∗+FF ∗+HH∗ = (2EF +2FE+H2)/8 will be in
the centre of the universal enveloping algebra. Set Ω = 2EF +2FE+H2+1 = 4EF +H2−2H+1.
Fun exercise: Ω is in the centre. Much less obvious: Z(U(sl2)) is C[Ω]. In fact if g/C is reductive
then Z(U(g)) is a polynomial algebra over C in ` variables, where ` is the rank of the Lie algebra
(the dimension of a Cartan subalgebra). See Dixmier’s book, Theorem 7.3.8(ii) for the semisimple
case; the extension to the reductive case is elementary (unless I made a mistake!).

Note that g acts on C∞(M) and the endomorphisms form a ring, so U(g) acts too. One can
think of elements of g as first order differential operators.

Now our definition of automorphic form makes sense.
Lecture 5: (16/11/05)

4 A basic theorem about automorphic forms.

If we fix an irreducible finite-dimensional representation ρ of K then we can say that f (an
automorphic form) is of type ρ if the induced representation of K is isomorphic to a finite sum
of copies of ρ. If G is connected reductive over Q then A(Γ, ρ, J, K) is the automorphic forms as
above (J an ideal of finite index in the centre of the universal env alg).

Harish-Chandra proved this space was finite-dimensional! I don’t know the proof.
Another point of view: if r : K → GL(V ) is an irreducible finite-dimensional complex unitary

representation of K (on an inner product space V ) then a V -valued automorphic form is φ :
G(R) → V satisfying φ(γx) = φ(x) for all γ ∈ Γ, existence of J of finite codimension, slowly
increasing, and now φ(xk) = r(k−1)φ(x). Let A(Γ, V, J, K) denote this space. For any v ∈ V
the function f : G(R) → C defined by f(x) = (φ(x), v) is a scalar automorphic form of type r,
because f(xk) = (φ(xk), v) = (k−1φ(x), v) = (φ(x), kv), and so the space of right K-translates of
f admites a K-invariant surjection from V and hence this space is finite-dimensional. Conversely
given an automorphic form f of type r, consider the space spanned by the right translates of K
on f . This is finite-dimensional, by assumption, and isomorphic to a direct sum of copies of r.
Choose k1, . . . , kn such that g 7→ f(gki) is a basis of this space. Now define φ : G(R) → Cn by
φ(g) = (f(gk1), f(gk2), . . .). This space affords a representation of K, which we know is isomorphic
to a direct sum of copies of V . Break the space up into irreducibles Cn = V ⊕ V ⊕ . . .⊕ V , and
let πi denote the projection onto the ith factor. Put an inner product on Cn to make everything
unitary. We recover f as the composite G(R) → Cn → C, this last map being linear, so it
breaks up as a sum over i of G(R) → V → C. Explicitly, there are V -valued automorphic
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forms fi and vectors vi such that f(g) =
∑

i(fi(g), vi). We have proved that the natural map
V ×C A(Γ, V, J, K) → A(Γ, r, J,K) sending (v, φ) to g 7→ (v, φ(g))V is a surjection, and I got
tangled up trying to prove it was an isomorphism. Is it?? Probably.

5 Explicit examples.

Let’s compute explicitly what’s going on for GL1. K = {±1} and g is 1-dimensional so it must be
D := Xd/dX so U(gC) is C[D]. Any ideal of finite index J is principal. If we fix a representation
of K then this tells us f(−x) in terms of f(x) so we may as well consider only x > 0; then we can
take logs and get functions on R. Because everything is an isomorphism of Lie groups we deduce
that D becomes (some constant times) d/dt. 6th form stuff (and perhaps something non-trivial: I
need to know that any C∞ function which is killed by an ODE with constant coeffts is analytic?)
now tells us that the space of solutions is finite-dimensional and has a basis consisting of tn exp(st)
for s a complex number and n ≥ 0 an integer. So back in the x world it’s log(x)nxs for s ∈ C.
Now which of these are slowly increasing? ||x|| = |x + 1/x| because σ(x) = diag(x, x−1, 1, 1) will
do and so we’re home. We see the space is finite-dimensional and furthermore we become slightly
bewildered by the general convention that we should fix a central character.

Lecture 6: (23/11/05)
The most general thing that people seem to do is to consider Z, the maximal split torus of the

centre of G over Q, and demand that f(zx) = χ(z)f(x) for some character, or quasi-character, χ
of Z(R) (not necessarily algebraic). This just seems to me to throw away the logs.

Another example: the norm 1 units in Q(i). That is, x2 + y2 = 1, the non-split torus. Then
G(R) = S1 = K and Γ = 1 so the situation is quite different here: if we choose a representation
of K, namely (x, y) 7→ zn with z = x + iy and n ∈ Z then it basically uniquely determines f ; we
have f(z) = czn for c ∈ C and that’s it, really, isn’t it. The Lie algebra is the reals again, and
if we think of the unit circle as eiθ with θ real, the invariant diff op is d/dθ and f(θ) = ceinθ so
Df = inf and hence most choices of J give a zero-dimensional space, whatever the representation
of K. Boundnedness: we can take our representation to send (x, y) to (x, y;−y, x) and the norm
is constant. So slowly increasing is the same as bounded and indeed our functions are bounded.

Next, G = GL2. Consider the j-function. Define j(−τ) = j(τ) and this extends j to a function
on C\R. Now set f(a, b; c, d) = j((ai + b)/(ci + d)), that is, f(γ) = j(γi). Is this an automorphic
form? It satisfies (a) and (b). The universal enveloping algebra is C[Ω, Z] and we have to
understand how Ω acts. To do this we use a trick. The Lie algebra is usually acting as left-invariant
differential operators and, as far as I can see, they don’t even induce differential operators on
functions on the upper half plane. For example E = (0, 1; 0, 0) acts thus. If f : GL2(R) → C and
X is in the Lie algebra then (Xf)(g) = (d/dt)f(geXt) so if f(kg) = f(g) then (Xf)(kg) = Xf(g).
But we can’t just switch our conventions, unfortunately: we’ve let U(g) act on the left and G act
on the left. Fortunately, we are saved by the basic fact that the centre of U(g) can be identified
with the bi-invariant differential operators! Recall that g ∈ g gives a map C∞(G) → C∞(G)
which commutes with Lx : f 7→ (g 7→ f(xg)) for all x. The basic fact, whose proof I don’t
know, is that the stuff in the centre is exactly the maps which commute with Rx too. So now we
let the Lie algebra act via (X∗f))(g) = (d/dt)f(e−Xtg). These derivations generate an algebra
anti-isomorphic to U(g) and we work in here instead. The point is that these operators induce
differential operators on the upper half plane.

E∗f = −df/dx (partial). F ∗f is the derivative of f(τ/(−tτ + 1)) = f(τ + tτ2 + . . .) =
f(τ + t(x2 − y2) + it(2xy) + . . .) so F ∗f = (x2 − y2)fx + 2xyfy. Exercise: H∗f = −2xfx − 2yfy

and Z∗f = 0 where H = (1, 0; 0,−1) and Z is the identity. So H2 + 2FE + 2EF works out to be
2y2(fxx + fyy). In particular the function coming from the j-function is indeed an eigenvector for
Ω. It’s also an eigenvector for Z, the last remaining generator of the centre.

Stupid thing though: f is not slowly increasing. Indeed if we consider the matrix
(

λ 0
0 1

)
then

it has norm λ for λ >> 0, but f(λ) is j(iλ) which is approximately q−1 + · · · = e2πλ which is
growing faster than any polynomial in λ. So (apart from the constant functions, which obviously
work) we don’t have an example of an automorphic form for GL2 yet.
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Lecture 7: (30/11/05)
I didn’t really prepare this lecture.
Definition: a Maass form for SL2(Z), is a C∞ function on the upper half plane such that

f(γz) = f(z) for γ ∈ SL2(Z), such that f(x + iy) = O(yN ), and (crucially) f is an eigenfunction
for f 7→ y2(fxx + fyy).

Given such an f we can build an automorphic form for GL2 as above, and this time our axioms
do work because we’ve put the boundedness criterion in. Note that if f were holomorphic then
it would induce a holomorphic function on the quotient Y0(1) of the upper half plane by SL2(Z),
and the boundedness criterion shows that this function extends to X0(1), so it’s constant.

So we’ve still not seen any examples. But here’s one: fix s ∈ C with <(s) > 1 and define
Es(τ) =

∑′
m,n∈Z

ys

|mτ+n|2s , where the prime means m,n not both zero, and τ = x + iy. This
converges because <(s) > 1 and it’s not too difficult to check it’s bounded and SL2(Z)-invariant.
The neat thing is that our differential operator is GL+

2 (R)-invariant and ys is an eigenvector for
it, with eigenvalue s(s− 1), so τ 7→ (=(γτ))s is too, for any γ ∈ GL+

2 (R), and this is ys/|cτ +d|2s.
So Es, being a sum of things of this form, is also an eigenvector for y2(d/dx2 + d2/dy2), with
eigenvalue s(s− 1).

Remark: it’s not cuspidal though. And you can’t multiply two together to get another one, so
we can’t generate all Maass forms this way. Indeed I don’t think it’s known how to generate all
Maass forms. Gelbart writes down an eigenvalue for which there is a Maass form which isn’t an
Eisenstein series; he builds the form (following Maass) via a Grossencharacter of a real quadratic
field.

6 The real definition of an automorphic form.

First let me mention restriction of scalars. If L/K is a finite extension of fields, and X is an
affine variety over L, then Y := ResL/K(X) is a variety over K with the property that Y (M) =
X(M ⊗K L) for any K-algebra M . In particular Y (M) = X(L). If X is a reductive group over L
then Y is a reductive group over K.

Adeles: The adeles AF of a number field F are the restricted product of the completions of F
at all places. The finite adeles Af

F are the restricted product over all finite places. We drop the
F if it’s Q. Example: Af = Ẑ⊗Q and A = Af ×R and AF = A⊗Q F .

Now let G be a reductive group over Q. Fix a maximal compact K∞ of G(R). Then G(A) =
G(Af )×G(R). A C-valued function on G(A) is smooth if it’s locally constant at the finite places
and C∞ at the infinite places. In other words, if x ∈ G(Af ) and y ∈ G(R) and we think of f as
a function of two variables then, for fixed x we have y 7→ f(x, y) is C∞, and for fixed y we have
x 7→ f(x, y) is locally constant.

The real definition:
An automorphic form f for G and K∞ is a smooth function f on G(A) such that
(a) f(γx) = f(x) for all γ ∈ G(Q)
(b1) There’s a max compact K in G(Af ) such that f(xk) = f(x) for all k ∈ K∞
(b2) The translates of f under K∞ form a finite-dimensional space
(c) There’s an ideal J of finite codimension of Z(U(g∞,C)) annihiliating f
(d) For each x ∈ G(Af ) the function y 7→ f(x, y) is slowly increasing as a function on G(R).
We can refine (b1) a bit: say ρ is an irred rep of K∞; then we could furthermore demand that

the translates of f generate a finite-dimensional space which is iso to a direct sum of copies of ρ.
Let A(K, ρ, J,K∞) denote this space.

Claim: this space is finite-dimensional.
One can deduce this from the earlier claim about finite-dimensionality. Here’s how. One needs

some kind of finiteness theorem about the groups G(Af ); we’re putting conditions on the finite
parts of the functions by demanding left invariance under G(Q) and right invariance under K.
The theorem is

Theorem (Borel: Theorem 5.1 of “Some finiteness properties of adele groups over number
fields” Publ math IHES 1963) G(Af ) is a finite disjoint union of double cosets G(Q)ciK.
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Remark: the proof works for an arbitrary “algebraic matric group” which I think is a closed
subgroup of GLn, so it works for arbitrary affine algebraic groups over Q. Remark: Borel considers
an embedding and only lets K be the stabiliser of a lattice, but it’s OK.

Example: G = ResF/Q GLn. Then we need to check finiteness of

GLn(F )\GLn(AF )/ GLn(F∞) GLn(Ô).

This is just GLn(F )\ Ô-lattices in (Af
F )n which is GLn(F )\ projective OF -modules in Fn which

is iso classes of rank n projective OF -modules which is the class group of F .
Corollary: A(K, ρ, J,K∞) is finite-dimensional
Proof: let C be the set of all the ci. For c ∈ C set Γc := G(Q)∩cKc−1 in G(Af ): an arithmetic

subgroup of G(Q). Now here’s the dictionary. By elementary group theory one checks easily that
there’s a bijection between G(F )\G(A)/K and the disjoint union over c ∈ C of Γc\G(R), the
dictionary being sending y in the cth term on the right to cy on the left. This map then induces
an isomorphism

A(K, ρ, J,K∞) ∼= ⊕c∈CA(Γc, ρ, J, K∞).

sending f to the functions fc on G(R) defined by fc(x) = f(cx).
So really we’re just using a fancier language to describe things we’ve seen before. But in fact

the adelic language is more natural. I’ve not talked about Hecke operators but they are a pain to
do on the right hand side—if G = ResF/Q GL1 then the old way of thinking about things via G(R)
gives us trouble because there aren’t naturally elements of G(Q) corresponding to an arbitrary
prime ideal. But these things do exist in (A).

Let’s revisit GL1 over Q. Now K can be the things in Ẑ× congruent to 1 mod N , and C is just
(Z/NZ)/± 1. If we fix J to be (td/dt− s) then this forces the components at infinity to look like
x 7→ xs but instead of the 2-dimensional space we had before, we’ve got a φ(N)-dimensional space
and this space has a basis corresponding to the characters of (Z/NZ)×. In general, for GL1 over
any number field, one can check that Grossencharacters, that is, continuous group homomorphisms
F×\A×

F → C×, are examples of automorphic forms.
Now let’s revisit GL2. [see HMF notes]
Final lecture: 14/12/05.
One can characterise the space. It’s not all the auto forms A(K, ρ, J,K∞) for J =blah and

ρ =2-dimensional because there’s this extra condition that phi(xr(θ)) = e−ikθ so it’s a very
specific subspace. Note that this is not completely formal. To go the other way you have to do
some analysis; you know that the function on the upper half plane that you’re trying to construct
satisfies a certain differential equation, and you have some other facts, and you need to deduce
that it’s holomorphic.

We’ve now seen a definition of an automorphic form. There are also vector-valued ones: if
(ρ, V ) is a finite-dimensional representation of K∞ we can consider f : G(A) → V such that
f(gu) = u−1f(g) and these two definitions boil down to the same thing although the precise
relation still eludes me.

An automorphic form is left-invariant under G(Q) and right-invariant under K and transforms
well under K∞. You can also add a condition about how the centre acts (or how the maximal
Q-split torus in the centre acts).
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