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Introduction

I just wanted to see some precise statements about automorphic representations for GL2 over Q,
including various normalisations in the theory of modular forms, and how Maass forms fit into the
picture, and so on.

1 Automorphic forms: the definitions.

Let G be the group GL2 /Q. Let K∞ be the subgroup O2(R) of G(R). Say that f : G(A)→ C is
smooth if it’s continuous and, when viewed as a function in two variables (x, y) ∈ G(Af )×G(R),
it’s C∞ in y for fixed x, and locally constant in x for fixed y. Recall (for example from Borel-
Jacquet in Corvallis) that an automorphic form for (G,K∞) is a smooth f : G(A) → C such
that

(a) f(γx) = f(x) for all γ ∈ G(Q)
(b1) There exists some compact open K ∈ G(Af ) such that f(xk) = f(x) for all x ∈ G(A)

and k ∈ G(Af )
(b2) There is a finite-dimensional (semisimple) representation ρ of K∞ with the property that

the sub-C-vector space of Hom(G(A),C) generated by the maps x 7→ f(xk) as k ∈ K∞ varies, is,
as a representation of K, isomorphic to a finite direct sum of Jordan-Hoelder factors of ρ.

(c) There is an ideal of finite codimension of the centre of the universal enveloping algebra of
the complexification of the Lie algebra of G(R), which annihilates f .

(d) For each x ∈ G(Af ), the function on G(R) defined by y 7→ f(xy) is slowly increasing
(definition below).

Definition of slowly increasing. Define a norm on M2(R) by |
(
a b
c d

)
| = max{|a|, |b|, |c|, |d|}.

Then define a norm on GL2(R) by ||γ|| = max{|γ|, |γ−1|}. Note that if γ−1 =
( e f
g h

)
then this

norm is equivalent to the norm given by ||γ|| =
√

(a2+b2+c2+d2+e2+f2+g2+h2): the L2 norm
and the L∞ norm on a finite-dimensional vector space. See the remark on p190 of Borel-Jacquet
to deduce that this is hence a norm on GL2(R) in the right sense.

A function α : G(R)→ C is slowly increasing if there exists C and n such that for all y ∈ G(R)
we have |α(y)| ≤ C||y||n.

We say f is a cusp form if furthermore
(e)

∫
N(Q)\N(A)

f(nx)dn = 0 for all x ∈ G(A) and for all N in GL2 conjugate (over GL2(Q))

to the upper triangular unipotent matrices.
Now let’s construct some examples of these things.
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2 The holomorphic case.

2.1 Review of classical modular forms.

Say f is a modular form in Mk(Γ1(N)) in the classical sense. Let’s recall the normalations of
the classical theory. For k ∈ Z and γ ∈ GL+

2 (R) (the plus means positive determinant), and f a
function on the upper half plane, let’s define f |kγ by

f |kγ(τ) = (det(γ))k−1j(γ, τ)−kf(γτ).

Here j(
(
a b
c d

)
, τ) = cτ + d.

The classical definition of Hecke operators involves using f( τ+ip ) and hence the matrices
(
1 i
0 p

)
.

To make sure this happens we need to use the double coset associated to
(
1 0
0 p

)
. The general

machine will be that if f is a modular form for Γ1(N) and p is a prime then we want Tpf to be∑
f |kγi where Γ1(N)

(
1 0
0 p

)
Γ1(N) =

∐
i Γ1(N)γi. If p|N then we can choose the γi to be

(
1 i
0 p

)
for

0 ≤ i < p (easy proof). This is great because it means that if f =
∑
anq

n then Tpf =
∑
anpq

n

(easy check).
For p - N we can take the γi to be as above, but then we need one more: if γ :=

(
a b
c d

)
∈ Γ1(N)

and p|a then p - b and it’s not hard to check that
(
1 0
0 p

)
γ is not in any of the cosets we’ve written so

far. If we were working with Γ0(N) then we’d be able to take
(
p 0
0 1

)
for the other coset, but if we’re

working with Γ1 then we need to use something a bit more subtle because, unfortunately,
(
p 0
0 1

)
is not in the double coset space! (look mod N for a trivial proof of this). Here’s a modification
of it that is. Choose a matrix M ∈ SL2(Z) with M ≡ 1 mod N and M ≡

(
0 −1
1 0

)
mod p2

(this is possible because the map SL2(Z) → SL2(Z/p2N) is surjective). Then M ∈ Γ1(N) and(
1 0
0 p

)
M = W

(
p 0
0 1

)
will do for the other coset. Here W ∈ SL2(Z) and one checks that W ≡

(
0 −1
1 0

)
mod p and W ≡

(
p−1 0
0 p

)
mod N . Note in particular that W ∈ Γ0(N) but typically W 6∈ Γ1(N)

and this is what’s causing the problems. Now, doing the calculations, we get that if f =
∑
anq

n

then Tpf =
∑
anpq

n + g where g = f |kW
(
p 0
0 1

)
. Classically we know that we want g to be

pk−1χ(p)f(qp), so we want f |kW to be χ(p)f and this tells us how to normalise characters now.
Conclusion: the isomorphism Γ0(N)/Γ1(N) → (Z/NZ)× should be defined by sending

(
a b
c d

)
to d. Then a Dirichlet character χ of level N gives a map Γ0(N) → C× via

(
a b
c d

)
7→ χ(d), and

we define a modular form of character χ to be one that transforms according to this character:
f |kγ = χ(γ)f .

2.2 “The” automorphic form associated to a classical modular form.

Let s be an arbitrary complex number (this explains the quotes around “The” above). Let f ∈
Mk(Γ1(N);χ) be a modular form of weight k, level N and character χ, with conventions as above.

Let’s associate an automorphic form to f . Let K be the subgroup K0(N) of GL2(Ẑ), that is, the
matrices congruent to

( ∗ ∗
0 ∗
)

mod N , and let χ denote the map K → C sending
(
a b
c d

)
to d mod N .

Let K1(N) denote the kernel of χ. It’s standard stuff that GL2(A) = GL2(Q)K GL+
2 (R), the

reason being that det(K) = (Ẑ)×. Given f as above, define φ : GL2(A) → C by φ(γκu) =
χ(κ)−1(f |ku)(i)(detu)s with γ ∈ GL2(Q) and κ ∈ K. This is well-defined as if γ1κ1u1 = γ2κ2u2
then t := γ−12 γ1 = κ2κ

−1
1 u2u

−1
1 is in K ∩ GL2(Q) ⊆ GL2(Z) and it’s also in GL+

2 (R) so it’s in
SL2(Z) so it’s in Γ0(N). Hence det(u1) = det(u2), u2 = tu1 so f |ku2 = (f |kt)|ku1 = χ(t)f |ku1
and finally χ(κ2) = χ(t)χ(κ1) so the χ(t)s cancel.

Remark: one could restrict to k ∈ K1(N) in the definition of φ; this makes the definition a
bit simpler (no χ) but on the other hand one then has to unravel how K0(N) acts explicitly, and
this information is useful when computing central characters. We will usually restrict to K1(N)
to simplify notation, unless we need K0(N).

We need to check φ is an automorphic form. Axioms (a) and (b1) are clear. We need to think a
bit about the others. For (b2) consider first v =

(
c −s
s c

)
∈ SO2(R), with c = cos(θ) and s = sin(θ).
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One checks easily that if x = γκu with κ ∈ K1(N) then

φ(xv) = (f |kuv)(i) det(u)s

= j(v, i)−k(f |ku)(i) det(u)s

= e−ikθφ(x)

so SO2(R) is acting via a character. Because O2(R) = SO2(R)
∐

SO2(R)w for w =
(−1 0

0 1

)
it suffices to understand how w acts. Note that the reason we’ve chosen it this way around is
because of our choice of K; if we’d put the 1 in the top left of K1(N) we would have used −w.
Now φ(γκuw) = φ((γw)(w−1κ)(w−1uw)) with terrible abuse of notation: the first w is diagonal,
the second is at the finite places and the third and fourth are at the infinite places. If one defines
g by g(τ) = f(−τ) then one checks that for u =

(
a b
c d

)
we have w−1uw =

(
a −b
−c d

)
and

φ(γκuw) = (f |k(w−1uw))(i) det(u)s

= f((ai− b)/(−ci+ d))(−ci+ d)−k det(u)k−1+s

= g(ui)(ci+ d)−k det(u)k−1+s

= (g|ku)(i) det(u)s

and by abstract group theory SO2(R) acts on this via the character e+ikθ, because conjugating
by w sends θ to −θ. So if k 6= 0 and f 6= 0 then we get a genuinely 2-dimensional space spanned
by the K∞-translates of φ and we can let ρ be this 2-dimensional representation. A basis for it is
φ and the map x 7→ φ(xw), where here w is thought of as at infinity.

Next we have to work out how the universal enveloping algebra acts. The way this works, I
think, is that if X ∈ g = gl2(R), then (Xφ)(g) = (d/dt)(t 7→ φ(geXt))|t=0, and more generally

(X1X2 . . . Xnφ)(g) = (dn/dt1dt2 . . . dtn)(φ(geX1t1eX2t2 . . . eXntn))|ti=0.

We now have to work all this out explicitly.
Now say g = γκu, with κ ∈ K1(N), and let α be the function on the upper half plane defined

by α = det(u)s(f |ku), so α(i) = φ(g). Then we deduce

X1X2 . . . Xnφ(g) = (dn/dt1dt2 . . . dtn)((detuet1X1et2X2 . . .)sf |k(uet1X1et2X2 . . .)(i))|ti=0

= (dn/dti)((det et1X1et2X2 . . .)s(α|ket1X1et2X2 . . .)(i))|ti=0.

For E =
(
0 1
0 0

)
and F =

(
0 0
1 0

)
we have etE =

(
1 t
0 1

)
and etF =

(
1 0
t 1

)
, and we get

Eφ(g) = (d/dt)(t 7→ α|k
(
1 t
0 1

)
(i))|t=0

= (d/dt)(t 7→ α(i+ t))|t=0

= α′(i)

and

Fφ(g) = (d/dt)(t 7→ α|k
(
1 0
t 1

)
(i))|t=0

= (d/dt)((it+ 1)−kα(i+ t+ · · · ))|t=0

= −ikα(i) + α′(i).

Note that this is not enough to compute EFφ; we need to do it all again. We find

EFφ(g) = (d2/dt1dt2)[(t2i+ 1)−kα(i/(t2i+ 1) + t1)]

= (d/dt2)(α′(i+ t2)(t2i+ 1)−k)

= α′′(i)− kiα′(i)
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and

FEφ(g) = (d2/dt1dt2)((α|k
(

1 t2
t1 1+t1t2

)
)(i))|ti=0

= (d2/dt1dt2)((it1 + 1 + t1t2)−kα(i+ t1 + t2 − 2it1t2 + . . .))|ti=0

= (d/dt1)[−kt1(it1 + 1)−k−1α(i+ t1) + (it1 + 1)−k(1− 2it1)α′(i+ t1)]|t1=0

= −kα(i)− (k + 2)iα′(i) + α′′(i).

Now if H =
(
1 0
0 −1

)
then etH =

(
et 0
0 e−t

)
so

Hφ(g) = (d/dt)(α|k
(
et 0
0 e−t

)
(i))|t=0

= (d/dt)(ektα(e2ti))|t=0

= (d/dt)(ektα(i+ 2it+ · · · ))|t=0

= kα(i) + 2iα′(i)

which is a relief, because EF − FE = H! Furthermore,

HHφ(g) = (d2/dt1dt2)(α|k
(
et1+t2 0

0 e−t1−t2

)
)|ti=0

= (d2/dt1dt2)(ek(t1+t2)α(e2(t1+t2)i))|ti=0

= (d2/dt1dt2)(ekt1ekt2α(i+ 2it1 + 2it2(1 + 2t1) + . . .))|ti=0

= (d/dt1)(kekt1α(i+ 2it1) + ekt1(2i)(1 + 2t1)α′(i+ 2it1))

= k2α(i) + (2ik + 2ik + 4i)α′(i)− 4α′′(i).

Finally, if Z =
(
1 0
0 1

)
then

Zφ(g) = (d/dt)(e2stα|k
(
et 0
0 et

)
))|t=0

= (d/dt)(e2t(s+k−1)e−ktα(i))|t=0 = (2s+ k − 2)α(i)

So ((H2 + 2EF + 2FE)φ)(g) = (k2 − 2k)α(i) = (k2 − 2k)φ(g) and Zφ = (2s + k − 2)φ and
axiom (c) is verified.

Next let’s try axiom (d). If x ∈ GL2(Af ) then write x = γκu with κ ∈ K1(N), γ ∈ GL2(Q)
and u ∈ GL+

2 (R). If y ∈ GL2(R) then there are two cases:
(i) det(y) > 0: then xy = γκ(uy), and
(ii) det(y) < 0. Then with the usual w =

(−1 0
0 1

)
and the usual abuse of notation, we have

xy = (γw)(w−1κ)(w−1uy) and the third bracket has positive determinant (and the second is still
in K1(N)).

So we must check that the following function on GL2(R) is slowly increasing: y ∈ GL+
2 (R) 7→

(f |k(uy))(i)(detuy)s and y ∈ GL−2 (R) 7→ (f |kw−1uy)(i)(det(w−1uy))s. Now x ∈ GL2(Af ) and
hence u ∈ GL+

2 (Q), as is w−1uw, and so f|ku and fk(w−1uw) will be modular forms of some
level. We are left to check that if F and G are modular forms for some congruence subgroup,
then the function on GL2(R) sending y ∈ GL+

2 (R) to (F |ky)(i)(det y)s and sending y ∈ GL−2 (R)
to (G|k(w−1y))(i)(det(w−1y))s is slowly increasing. Now the determinant is just noise, because if
ad− bc > 0 then ad− bc ≤ |ad|+ |bc| ≤ a2 + b2 + c2 + d2 so this is slowly increasing, and the two
components are just noise, and we’re left with showing that if F is a modular form for a congruence
subgroup then the function on GL+

2 (R) sending y to (F |ky)(i) is slowly increasing, or equivalently
again that the function sending y =

(
a b
c d

)
to (ci+d)−kF (yi) is slowly increasing. Now if F were a

cusp form we’d be away, because for a cusp form it’s well-known that |F (z)|(=(z))k/2 is bounded
on all the upper half plane, and hence |F (yi)|(det(y)/|ci + d|2)k/2 is bounded, and we’re home.
On the other hand if F is an Eisenstein series, well, it also looks fine doesn’t it, really.

I am pretty sure that the usual cuspidality condition translates exactly into the cuspidality
condition defined above, and I am too lazy to check this carefully.

4



2.3 Central characters and normalisations for φ.

The automorphic representation associated to φ (as above) is just the space spanned by the images
of φ under the Hecke action. Borel and Jacquet seem to want the action on the right, but I don’t
really understand this, because the compact open naturally acts on the left by (kf)(g) = f(gk).

Regardless of whether things are left or right, one can compute the central character of this
represesentation by computing it on φ. If z ∈ GL1(A) then z can be written as γκu with γ ∈
GL1(Q), κ ∈ Ẑ× and u ∈ R>0. All of these things can be thought of as lying in the centres of
the appropriate GL2s, and κ ∈ K0(N). Hence φ(xz) = φ(x)χ(κ)−1uk−2+2s so there’s the central
character. Note in particular that one can now guess which normalisations people usually use
for s:

Gelbart in his orange book: firstly he uses a not d. He defines what it means to have character
χ by putting in χ(a)−1 instead of χ(d), and then uses a in his adelic definition. This is tantamount
to twisting by χ and means his level K1(N) is not the same as mine. Note that his definition of
j(γ, z) is also not the same as mine; he inserts a factor of det(γ)−1/2. His choice of s is hence such
that s + k − 1 = k/2, the left hand side being the power of det I use at the end of the day, and
the right hand side being what he uses. So his s is 1 − k/2 and note that this makes his central
character unitary (in fact his central character is the inverse of the Dirichlet character associated
to f).

Taylor in his CalTech notes: he goes for s + k − 1 = 1, that is s = 2 − k, and we’ll see the
motivation for this later: it makes the Hecke operator Tp work compatibly on the adelic side of
things.

Carayol: he wants the central character on R>0 to be t 7→ t−w for some arbitrary integer w
congruent to k mod 2, so he uses k − 2 + 2s = −w, that is, s = (2− w − k)/2.

Nyssen: she wants w = k so she sets s = 1− k.
Deligne: didn’t look yet.
Hooray! Everyone uses a different choice!

2.4 Hecke operators.

At the finite places, the natural thing to use is I think the matrix tp which is
(
p 0
0 1

)
at p and

the identity elsewhere. Because f is invariant under the compact open, we have to decompose
K1(N)tpK1(N) into

∐
i γiK1(N). If p|N then we can set γi =

(
p i
0 1

)
(at p) for 0 ≤ i < p. If p - N

then we also have to use
(
1 0
0 p

)
. Note that there is currently no issues with characters, not like in

the messy SL2(Z) case.
The adelic definition of a Hecke operator is now (Tpφ)(x) =

∑
φ(xγi). If one writes x = γκu

with κ ∈ K1(N) (warning: γ is embedded diagonally, but the γi are concentrated at p) then
xγi = γκγiu = γγjκ

′u where κ′ ∈ K1(N) still. Now γj ∈ GL2(Q) so we can incorporate it into γ
and the result is that u changes to γ−1j u and furthermore if p - N then κ′ changes to γ−1j κ′ (with

γ−1j now meaning something which is trivial at p and γ−1j at all the other finite places!), so

(Tpφ)(x) =
∑
j

χ(γ−1j )−1 det(γ−1j u)s(f |kγ−1j u)(i)

= det(u)sp−s
∑

χ(γj)(f |kγ−1j u)(i)

= det(u)sp−s
∑

χ(γj)(f |kp−1(pγ−1j )(u))(i)

= det(u)sp−sp2−k
∑

χ(γj)(f |k(pγ−1j )(u))(i)
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Now if p | N then this becomes

det(u)sp2−k−s
∑
j

(f |k
(
1 −j
0 p

)
(u))(i)

= detusp2−k−s(Tpf)|ku(i)

= detusp2−k−sapf |ku(i)

= p2−k−sapφ(x)

and if p - N then it becomes

det(u)sp2−k−s

∑
j

(f |k
(
1 −j
0 p

)
(u))(i) + χ(p)(f |k

(
p 0
0 1

)
(u))(i)


= detusp2−k−s((Tpf)|ku)(i)

= detusp2−k−sapf |ku(i)

= p2−k−sapφ(x)

where ap is the Tp-eigenvalue for f . Note that Taylor’s choice of s gives p2−k−s = 1, which
was his motivation.

Now Sp, p - N , is much easier: Spφ(x) = φ(x$) where $ is p at p and trivial elsewhere.
Writing this as γκu as usual with κ ∈ K0(N) central gives κ = p−1 at all primes dividing N , and
u = p−1 too, so one ends up multiplying φ by χ(p)p−2s+2−k.

Now Langlands’ normalisations of the Satake parameters must be as follows: if π has trivial
central character then it descends to an automorphic form on PGL2 and hence the Satake param-
eters should land in SL2(C). Hence if p - N then the Satake parameters (for Langlands) are γ and
δ at p, with (γ+δ)

√
p = λ(Tp) and γδ = λ(Sp), where λ(X) denotes the eigenvalue of X, so we get

(X − γ)(X − δ) = X2− app3/2−k−sX + p−2s+2−kχ(p). If (X −α)(X −β) = X2− apX + pk−1χ(p)
then one sees instantly that γ = p3/2−k−sα and δ = p3/2−k−sβ. If you follow Gelbart and put
s = 1−k/2 then γ = p1/2−k/2α and because |α| = p(k−1)/2 we see that |γ| = 1 which is presumably
what he was gunning for.

2.5 The L-function.

If f is a cusp form with trivial character (and hence even weight) then L(f, s) =
∑
an/n

s, and if
N is the level of f and Λ(f, s) = Ns/2Γ(s)(2π)−sL(f, s) then

Λ(f, k − s) = ε.(−i)k.Nk/2−1.Λ(f, s)

with ε the eigenvalue of the Atkin-Lehner involution wN .
More on this later.

2.6 Carayol’s normalisation and Galois representations.

The construction above gives a πf,s associated to an eigenform f and a complex number s. Now
which ones would Carayol attach Galois representations to? Well he demands k ≥ 2, and he
sets s = (2 − w − k)/2 for some integer w congruent mod 2 to k. He then gets an automorphic
representation πf which looks the way he wants to look at infinity1 , and hence he gets a Galois 1
representation. For p an unramified prime, his representation sends a geometric Frobenius to
something with eigenvalues p1/2/γ and p1/2/δ so the eigenvalues look like pk+s−1α and so on.
Because s = 1− w/2− k/2 we get pk/2−w/2α etc for our eigenvalues of geometric Frobenius, and
lo and behold this looks exactly right. Finally, Nyssen sets w = k so we really do deduce that for
the automorphic representation she associates to a modular form coming from an elliptic curve E,
the associated Galois representation is H1(E,Zp).

1I should check this. I’ve only checked the central char is right. I bet it’s easy.
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2.7 Various notions of algebraicity.

At the minute we have four definitions for GL2 and two near-definitions. For an automorphic
representation π = πf ⊗ π∞ of GL2, we say π is C-arithmetic if πf is defined over a number field,
L-arithmetic if the Satake parameters at the unramified primes are defined over a number field,
L-algebraic if the Weil rep attached to π∞ (restricted to C×) looks integral, C-algebraic if it looks
like Clozel wants it to look (that is, a shift of 1/2 from integrality), and then two conditions on
the infinitesimal character involving the induced linear form on the complexification of the Cartan
landing in some lattice perhaps shifted by ρ, and at the time of writing I still haven’t figured these
out.

But we can collect up what we know. It follows easily from what we have said earlier that, for
a modular form of weight 1 or more, and with notation as above, the corresponding automorphic
rep is C-arithmetic if s ∈ Z, L-arithmetic if s − 1

2 ∈ Z. In his paper Clozel asserts without
proof that the representation of C× attached to π∞ via local Langlands and restriction sends z
to (zpzq, zqzp) with (WLOG) p − q = k − 1 (this fixes the order of p and q). I am guessing that
p+ q matches up with the central character so I think it should be (see below) p+ q = 2s+ k− 2.
If I’ve for all his right then p = s + k − 3

2 and q = s − 1
2 . Clozel says it’s C-algebraic iff s ∈ Z,

which sounds OK, and if he’s right we can deduce that it’s L-algebraic iff s− 1
2 ∈ Z. I should be

able to check this rigorously but have no time at the time of writing.
Finally, we have done enough to read off the infinitesimal character of π, the automorphic

representation associated to the pair (f, s). We know by the Harish-Chandra homomorphism
that the centre of the universal enveloping algebra of the complexified Lie algebra of GL2(R) is
a polynomial ring generated by Z and H2 + 2EF + 2FE, and we have computed the eigenvalues
of these operators on φ earlier. Now the Harish-Chandra homomorphism sends Z to Z, and
H2 + 2EF + 2FE = H2 + 2H + 4FE to, well, the un-normalised one sends it to H2 + 2H, and
now we replace H by H − 1 to see that the normalised one (which is the one we want because
it’s the normalised one that is canonical, that is, independent of the choice of positivity) sends
H2 + 2EF + 2FE to (H − 1)2 + 2(H − 1) = H2 − 1.

We conclude that φ has infinitesimal character sending Z to 2s+ k− 2 and H2− 1 to k2− 2k,
and hence the linear forms on the Cartan it induces send H to ±(k − 1) and Z to 2s + k − 2.
The choice of sign is because really we can only see an orbit of linear maps under the Weyl group.
Finally, the “canonical lattice” that Toby and I are looking for is presumably just the lattice of
characters of the torus? If this is so then for a pair λ(H), λ(Z) of eigenvalues to lie in this lattice
we must have λ(H)+λ(Z) and λ(H)−λ(Z) both even integers, which is true iff s− 1

2 ∈ Z. Finally,
half the sum of the positive roots is the map sending H to 1 and Z to zero, so the shift of the
lattice by this has an eigenvalue λ in it iff λ(H)± λ(Z) are odd integers, which is true iff s ∈ Z.

3 Maass forms.

3.1 Review of the basics of Maass forms.

We’re going to play exactly the same game now, in the non-holomorphic case. I have never worked
out for myself exactly how Maass forms with non-trivial and non-quadratic character work out, so
let’s just take the same normalisations as in the holomorphic case and define K1(N), for example,
as in the holomorphic case, and assume that it’s OK. With this assumption (which I’m sure is fine
and would be tedious to check) we see that we should make the following definition:

Let ε be a sign (i.e., ε ∈ {+1,−1}), let N be a positive integer, let χ be a Dirichlet character of
level N . and let λ be a complex number (although other things will force λ to be a positive real).
A cuspidal Maass form of level N , character χ, sign ε and eigenvalue λ is a smooth complex-
valued function F on the upper half plane such that F ((az + b)/(cz + d)) = χ(d)F (z) for all(
a b
c d

)
∈ Γ0(N), and such that ∆F = λF (∆ a certain second order differential operator, the

Laplace-Beltrami operator −y2(∂2/∂x2 + ∂2/∂y2)) and F satisfies a boundedness condition (F
tends to zero at all cusps, which means that for all γ ∈ SL2(Z) we have F (γ(x + iy)) → 0 as
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y → ∞). Oh, lastly, F (−z) = εF (z). I know examples of forms with the same level, character
and eigenvalue, and different signs, for what it’s worth.

For such a form let me keep track of not one but two “q-expansion coefficients”. Firstly some
standard arguments imply that F has a Q-expansion

F (z) =
∑
n≥1

bnQ
ε
n(z)

. satisfying the usual bounds. Furthermore for a Hecke eigenform normalised with b1 = 1, the bn
will satisfy the usual bounds and recurrence relations for bpr (r = 0, 1, 2, . . .) as modular forms of
weight 0. So we should have |bp| ≤ 2p−1/2 for example. The Qεn are functions I define in my Maass
form notes, and Q+

n (x+ iy) =
√
nyKν(2πny) cos(2πnx) (and Q−n has a sin instead of a cos). The

thing is that sometimes people drop the
√
n from Qn, which motivates the definition an = bn

√
n.

For the an we have |ap| ≤ 2 conjecturally, and it’s the an that are used in the definition of the
L-function

∑
n an/n

s associated to the Maass form.
I have no idea what the classical normalisation of a Hecke operator is, if any, so let’s just

make one up inspired by the holomorphic case: write Γ1(N)
(
1 0
0 p

)
Γ1(N) =

∐
j Γ1(N)γj and define

(Tpf)(z) = p−1
∑
j f(γjz); this is well-defined and so on. If p | N then we can take the γj to

be
(
1 j
0 p

)
for 0 ≤ j ≤ p − 1, and an easy calculation shows that Tp has eigenvalue bp. If p - N

then we need one extra γ, namely W
(
p 0
0 1

)
as in the holomorphic case, and we get an extra factor

of p−1f(W
(
p 0
0 1

)
z) which gives the usual p−1χ(p)

∑
bnQ

ε
np(z) and so again we see that Tp has

eigenvalue bp.

3.2 “The” automorphic form associated to a Maass form.

Let F be a level N Maass form on the upper half plane with ∆-eigenvalue λ (∆ the Laplace-
Beltrami operator) and sign ε. The sign is all to do with ρ(c) and is a phenomenon that one
doesn’t see in the holomorphic case. Say F has character χ (a Dirichlet character of level N),
by which I will mean the following: extend χ to a function Γ0(N) → C× by χ(

(
a b
c d

)
) := χ(d),

and then we ask that for γ ∈ Γ0(N) we have F (γτ) = χ(γ)F (τ). Also extend χ to a function on
K0(N) by χ(κ) = χ(d) where d is the bottom right hand entry of the image of κ in GL2(Z/NZ).

Let s be an arbitrary complex number, as in the holomorphic case, and define2 a function φ
on GL2(A) = GL2(Q)K0(N) GL+

2 (R) by φ(γκu) = χ(κ)−1(detu)sF (ui). As ever, we must check
that this is well-defined, and it is because if γ1κ1u1 = γ2κ2u2 then t := γ−12 γ1 ∈ GL2(Q) and
t = κ2κ

−1
1 and t = u2u

−1
1 , so t ∈ GL2(Q) ∩K0(N) ∩GL+

2 (R) and hence t ∈ Γ0(N), and tu1 = u2
and tκ1 = κ2 so

χ(κ2)−1(detu2)sF (u2i)

= χ(tκ1)−1(detu1)sF (tu1i)

= χ(t)−1χ(κ1)−1(detu1)sχ(t)F (u1i)

which is what we wanted. Note also that because 1 ∈ GL2(A) can actually be written as γκu
with γ = κ = u = −1 we see that if F 6= 0 then χ(−1) = 1.

As in the holomorphic case we should strictly speaking check that this guy is an automorphic
form. I’ll run through this noting any differences between this case and the holomorphic case.
Axioms (a) and (b1) are again clear. Axiom (b2) is a bit different this time. We have SO2(R)
acting trivially but to see the action of w =

(−1 0
0 1

)
we float it through as in the holomorphic

case and see that φ(γκuw) = φ((γw)(w−1κ)(w−1uw)) and so the only change from φ(γκu) is that

2To be completely careful I should note the following: I have just made an arbitrary choice of “orientation” for
χ here; I have never checked that when one unravels everything on Q-expansions one gets the “usual” formulae for
Tp, or whether there’s perhaps a χ−1(p) in there instead of a χ(p). I am not sure that I care at this point because
I’m more concerned about algebraic automorphic forms here, but perhaps one day I’ll check to see if I’ve got it
right.
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F (ui) becomes F (w−1uwi), or, in other words, F (z) gets changed to F (−z) = εF (z) if ε is the
sign of the Maass form. So we can take ρ 1-dimensional in this case, depending on the sign of F .

The computation of the action of the universal enveloping algebra really is different this time,
not least because the analogue of the function α in the holomorphic case is something typically
non-holomorphic and one has to keep track of whether one is differentiating with respect to x or
y.

I will use notation as in the holomorphic case. Fix g = γκu with κ ∈ K1(N), and let α be
the function on the upper half plane defined by α(τ) = det(u)sF (uτ), so α(i) = φ(g) (note α
depends on g). Now F is a Maass form so ∆F = λF for some λ, with ∆ the Laplace-Beltrami
operator. This implies that α is also an eigenfunction of ∆, because ∆α = det(u)s∆(F ◦ u) =
det(u)s(∆F ) ◦ u = det(u)sλF ◦ u = λα.

First let’s recall the definition of the Lie algebra action, and what it boils down to in this case.
We see that for Xi in the Lie algebra of GL2(R) we have etXi ∈ GL+

2 (R) and hence for g = γκu
with κ ∈ K1(N) we have

(X1X2 . . . Xnφ)(g) = (dn/dt1dt2 . . . dtn)(φ(geX1t1eX2t2 . . . eXntn))|ti=0

= (dn/dti)(det(ueX1t1eX2t2 . . . eXntn)sF (ueX1t1eX2t2 . . . eXntni))|ti=0

= (dn/dti)(det(eX1t1eX2t2 . . . eXntn)sα(eX1t1eX2t2 . . . eXntni))|ti=0

OK so now let’s go. Let φ be attached to F as above. Then we have

(Eφ)(g) = (d/dt)
(
t 7→ α

((
1 t
0 1

)
i
))
|t=0

= (d/dt)α(i+ t)|t=0

= αx(i)

and

(Fφ)(g) = (d/dt)(t 7→ α(
(
1 0
t 1

)
i))|t=0

= (d/dt)α(i+ t+ . . .)|t=0

= αx(i)

and

(EFφ)(g) = (d2/dt1dt2)(α(
(
1 t1
0 1

)(
1 0
t2 1

)
i))|ti=0

= (d2/dt1dt2)(α(i+ t1 + t2 + · · · ))|ti=0

= (d/dt1)αx(i+ t1)|t1=0

= αxx(i)

and

(FEφ)(g) = (d2/dt1dt2)(α(
(

1 0
t1 1

)(
1 t2
0 1

)
i))|ti=0

= (d2/dt1dt2)(α(i+ t1 + t2 − 2it1t2 + · · · ))|ti=0

= (d/dt1)(αx(i+ t1 + · · · )− 2t1αy(i+ t1 + · · · ))|t1=0

= αxx(i)− 2αy(i).

Note for that last calculation that when expanding as a power series in t1 and t2 one only needs to
consider the constant term and the coefficients of t1, t2 and t1t2. Note also that the FE calculation
is proof that you can’t just naively “do E then F”; it’s somehow more complicated than that.

Next

(Hφ)(g) = (d/dt)α(e2ti)|t=0

= (d/dt)α(i+ 2it+ · · · )|t=0

= 2αy(i)
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and our sanity check, that EF − FE = H, works again. Next

(HHφ)(g) = (d2/dt1dt2)α(e2t1+2t2i)|ti=0

= (d2/dt1dt2)α(i+ 2it1 + 2it2 + 4it1t2 + · · · )|ti=0

= (d/dt1)((2 + 4t1)αy(i+ 2it1 + · · · ))|t1=0

= 4αy(i) + 4αyy(i)

and finally

(Zφ)(g) = (d/dt)(e2stα(i))|t=0

= 2sα(i) = 2sφ(g)

and so the central character sends Z to 2s and H2 + 2EF + 2FE to the map g 7→ 4αy(i) +
4αyy(i) + 2αxx(i) + 2αxx(i)− 4αy(i) = 4αyy(i) + 4αxx(i). Now (∆α)(i) = −(αxx(i) + αyy(i)), so
(H2 + 2EF + 2FE)φ sends g to −4(∆α)(i) = −4λα(i) = −4λφ(g).

(d) and (e) I will currently pass on.
The central character for φ is easy to work out: if z ∈ GL1(A) then z = γκu with γ ∈ GL1(Q)

and so on (all embedded diagonally), and φ(xz) = φ(x)χ(κ)−1u2s so the central character sends
γκu to χ(κ)−1u2s.

4 Hecke operators.

We just need to unravel, as in the holomorphic case. Exactly the same calculation (with the γj
representing the matrices in the adelic, not the classical, calculation) gives us that

Tpφ(x) =
∑
j

χ(γ−1j )−1 det(γ−1j u)sF (γ−1j ui)

and again we split up into the cases p | N and p - N . If p | N then the sum becomes

p−1∑
j=0

p−s det(u)sF (
(
1 −j
0 p

)
ui)

= p−s det(u)sp(TpF )(ui)

= p1−s det(u)sbpF (ui)

= p1−sbpφ(x)

and if p - N then we get

p−1∑
j=0

p−s det(u)sF (
(
1 −j
0 p

)
ui) + χ(p)p−s det(u)−sF (pui)

= p−s det(u)sp(TpF )(ui)

= p1−s det(u)sbpF (ui)

= p1−sbpφ(x)

so in either case the eigenvalue is p1−sbp.
As usual Sp is much easier, we just need to compute the central character evaluated at γκu

with κ = u = p−1 so it’s χ(p)p−2s.
To get the Satake parameters we divide the Tp eigenvalue by

√
p; the parameters are the roots

of X2 − p1/2−sbpX + χ(p)p−2s, which can also be written X2 − p−sapX + χ(p)p−2s. Recall that
in the Maass forms induced from finite order Grossencharacters on real quadratic fields we have
λ = 1/4 and ap the sum of two roots of unity.
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5 Various notions of algebraicity.

For π to be defined over a number field you certainly need the Tp and Sp to be, for all good p,
and this should happen when λ = 1/4 and p1/2−sap is in a number field (independent of p), so
s − 1/2 ∈ Z conjecturally, so C-arithmetic iff s − 1/2 ∈ Z and λ = 1/4 conjecturally. For the
Satake parameters to be defined over a number field we again conjecture that this happens iff
λ = 1/4 and s ∈ Z, so L-arithmetic iff s ∈ Z.

Now for the infinitesimal character computation: The infinitesimal character sends H2 − 1
goes to −4λ and Z to 2s, so it sends H to ±

√
1− 4λ and because λ is going to be a positive real

for a cusp form, this is an integer iff λ = 1/4, and in this case it’s zero. So we’re in the lattice
(L-algebraic) iff s ∈ Z and in the shift by δ (C-algebraic) iff s− 1/2 ∈ Z.

6 L-functions a la Tate.

Here’s something that really bewilders me. If f is a cusp form then there’s an “elementary” proof
that the L-function of f has a meromorphic continuation and functional equation. But there’s also
a “general machine” proof, and the “general machine” proof seems to use the Fourier Inversion
theorem. What is going on here?

6.1 The elementary proof.

Let f : H→ C be a cuspidal newform of level Γ1(N) and weight k. Write f =
∑
n≥1 anq

n. Now
define

Λ(f, s) :=

∫ ∞
y=0

f(iy)ys−1dy.

I claim that this converges for Re(s) sufficiently large, and the proof is that if we substitute in the
power series for f we see

Λ(f, s) =
∑
n≥1

∫ ∞
y=0

ane
−2πnyys−1dy

=
∑
n≥1

an

∫ ∞
y=0

e−2πnyys−1dy

and making the substitution x = 2πny we get

Λ(f, s) =
∑
n≥1

an

∫
x = 0∞e−x(x/2πn)sdx/x

=
∑
n≥1

an(2πn)−s
∫ ∞
x=0

e−sxs−1dx

= (2π)−sΓ(s)
∑
n≥1

ann
−s

so by standard bounds we have convergence for Re(s) sufficiently large.
But now if we write w =

(
0 −1
N 0

)
then f |kw is a cusp form for w−1Γ1(N)w which is Γ1(N)

again, and hence g(z) := (Nz)−kf(−1/(Nz)) is also a cusp form for Γ1(N) (it’s some constant
times the conjugate of f , in fact), and we see that for 0 < t <∞ we have

Λ(f, s) =

∫ t

y=0

f(iy)ys−1dy +

∫ ∞
y=t

f(iy)ys−1dy,

with the second integral converging for all s, because f(iy) will be about e−2πy which beats ys−1

for all s. Moreover, setting z = i/(Ny) in the definition of g we see that g(i/(Ny)) = (i/y)−kf(iy)
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and hence ∫ t

y=0

f(iy)ys−1dy =

∫ t

y=0

(i/y)kg(i/(Ny))ysdy/y,

so writing u = 1/(Ny) we get that this integral is∫ ∞
u=1/(Nt)

(iuN)kg(iu)(1/(Nu))sdu/u

= (iN)kN−s
∫ ∞
u=1/Nt

uk−s−1g(iu)du

and this latter integral again converges for all s, giving the holomorphic continuation of Λ(f, s).
Even better, if we define R(f, s) := Λ(f, s).Ns/2 then we see R(f, s) = Ns/2

∫∞
y=t

f(iy)ysdy/y +

ikNk/2N (k−s)/2 ∫∞
u=t

uk−s(ikNk/2g)(iu)du/u and one can go on to check that something like

R(f, s) = R(h, k − s) will hold, if h = ikNk/2g. I am too lazy to do this properly. I need to
compute h|w etc; there’s very little left. Maybe this will come back to haunt me.

6.2 Tate’s way.

I’m now following Godement-Jacquet, the thrust of which is actually rather easy to see once you’ve
read Tate’s thesis.

The local story is this. Recall that for GL1, Tate’s local zeta integrals in the unramified case
worked like this. If χ : Qp → C× is unramified then let Φ be the characteristic function of Zp and
consider ∫

Q×
p

Φ(x)χ(x)|x|sd×x

with d×x the multiplicative Haar measure on Q×p normalised in such a way that the integral of Z×p
is 1. The integrand is constant on pnZ×p , the measure of this latter set is also 1, and the integrand
is zero if n < 0. So the integral is∑

n≥0

χ(p)np−ns = (1− χ(p)p−s)−1

which is precisely the local L-factor. In Godement-Jacquet the correct analogue of this for
GLn(Qp) is given. The idea is that Φ is a Bruhat-Schwarz function on Mn(Qp) and that χ
is a matrix coefficient for the representation χ of GLn(Qp). If we now go to infinite-dimensional
representations, they still have matrix coefficients, and if π is unramified principal series corre-
sponding (via Satake normalised in Langlands’ way) to the pair of non-zero complex numbers
(z1, z2) and we choose s1, s2 with p−si = zi then the matrix coefficient corresponding to the
K := GL2(Zp)-fixed vectors is (up to scalar) equal to ω : g 7→

∫
K
φ(kg)dk, with φ defined by

φ
((

a b
0 d

)
k
)

= |a|1/2+s1 |d|−1/2+s2 .

Now for Φ the characteristic function of M2(Zp), and Haar measure d×g on GL2(Qp) normalised
such that the integral of K is 1, we can attempt to compute∫

GL2(Qp)

Φ(g)ω(g)|det(g)|s+1/2d×g

This is the analogue of the local L-factor for π. Note the |.|s+1/2; the +1/2 is some kind of
appropriate normalising factor to make things unitary, I think. Writing d for d× out of laziness,
we get that this local factor is∫

g∈GL2(Qp)

Φ(g)

∫
k∈GL2(Zp)

φ(kg)|det(g)|s+1/2dgdk
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and if we switch the integrals and then write g′ = kg we see that, because Φ(g′) = Φ(g) and so
on, the k vanishes completely and we just get (writing g for g′)∫

g∈GL2(Qp)

Φ(g)φ(g)|det(g)|s+1/2dg.

Now the integrand is zero off the semigroup S, the matrices in M2(Zp) with non-zero determinant.

We can write S as a disjoint union K
(
pm+n 0

0 pn

)
K with 0 ≤ m,n, by some standard result, and

because φ is right K invariant we may as well break the double coset above up into single cosets: up

to a factor of pn in the centre, it’s K
(
pm 0
0 1

)
K = ∪

( pe i

0 pf

)
K with 0 ≤ e, f , e+ f = m, 0 ≤ i < pe,

and (pe, pf , i) = 1. Hence we can write S = ∪
( pe i

0 pf

)
K with 0 ≤ e, f and 0 ≤ i < pe. Now we can

do the integral; it’s

∑
e,f≥0

pe−1∑
i=0

p−e(1/2+s1)p−f(−1/2+s2)p(−e−f)(s+1/2)

=
∑
e,f≥0

ze1z
f
2 p
−esp−fs

=
∑
e,f≥0

(z1p
−s)e(z2p

−s)f

= (1− p−sz1)−1(1− p−sz2)−1

which, surprise surprise, is the usual local L-factor.
I am guessing that at the ramified places the story is different but I’m not sure I know enough

about matrix coefficients to be able to work it out myself.
There is a general result in Godement-Jacquet that says that if you know the integrals for π

(a rep of the Levi) then you know them for Ind(π) and hence you know a lot about them for the
subquotients of this induction. In the arch case it’s Theorem 8.8 and Corollary 8.9.

But let’s try to do the infinite places by myself. I think that the discrete series representations
look like this: let Dk (k ≥ 2) denote the following representation of SL±2 (R) (the matrices with
determinant ±1): the underlying space is the holomorphic functions C\R → C with ||f ||2 :=∫
x∈R

∫
y∈R× |f(x+iy)|2|y|n−2dxdy finite, and let

(
a b
c d

)
send f to the function z 7→ (bz+d)−nf((az+

c)/(bz + d)). This is irreducible and unitary. Extend to a representation of GL2(R) by “pasting
on” a character of R>0. Note that our action of GL2(R) is on the left; the usual action on modular
forms is on the right, so we have applied that funny involution ι.

When you unravel things, you have to choose a matrix coefficient, and hence a function in Dn.
I think (z + i)−n (on the upper half plane) is the natural choice, but now I can’t do the integrals.
Aah well.

Globally, let Φ be a Bruhat-Schwarz function on GL2(A), let π be a unitary cuspidal irreducible
automorphic representation of GL2(A), let ω be a matrix coefficient, and set

Z(Φ, ω, s) =

∫
GL2(A)

Φ(g)ω(g)|det(g)|s+1/2dg.

Note I’m assuming π is unitary so the functional equation should relate s to 1 − s. The global
integral breaks up as a product of local integrals, so for some sensible choices of Φ and ω (for
example, ω can be thought of as g 7→

∫
GL2(Q)\GL2(A)1

f1(hg)f2(h)dh for f1 and f2 in π) we should

get the L-function attached to the modular form giving rise to π. Just as in the GL1 case one
can analytically continue the integral to all s ∈ C but this seems to use Poisson summation—and
that is what baffles me.
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