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First of all, many thanks to Kevin Buzzard for his kind help, and for his willingness to answer even the
stupidest questions that I had in mind.

Second of all, I tried to be as complete as possible while solving this exercises, however it is maybe worth
mentioning that when the exercises were giving statements about global fields, I always had in mind the
number field case. Therefore, there may be special cases for function fields that I haven’t treated.

Exercise 1: The Power Residue Symbol
Exercise 1.1.
m
√
a is a root of Xm − a whose roots are the ξ m

√
a with ξ ∈ µm, in K( m

√
a) because µm ⊂ K.

And FL/K(b) ∈ Gal(L/K), so FL/K(b)( m
√
a) = ξ m

√
a for a ξ ∈ µm.

Therefore
(
a
b

)
= ξ is a mth root of 1.

Moreover, if ξ0 ∈ µm,

FL/K(b)(ξ0
m
√
a) = ξ0FL/K(b)( m

√
a)

= ξ0

(
a

b

)
m
√
a

Therefore,
(
a
b

)
is independent of the choice of m

√
a.

Exercise 1.2.
In order to use Chapter VII, §3.2, let’s check that S(a, a′) contains the primes ramified in L′ = K( m

√
a, m
√
a′).

Let p /∈ S(a, a′). p does not divide m (i.e. m /∈ p), a, a′ ∈ o∗p.
Therefore, by Chapter III §2 Lemma 5, m, a /∈ p implies that p is unramified in L = K( m

√
a). Let P|p in this

extension. m, a′ /∈ P because P ∩K = p. Therefore, we can apply again this lemma 5, and P is unramified
in L′ = K( m

√
a, m
√
a′).

Hence p is unramified in L′.

Therefore, Chapter VII §3.2 applies and we have the following commutative diagram.
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IS(a,a′)
FL′/K//

NK/K=Id

��

Gal(L′/K)

Res

��
IS(a,a′)

FL/K// Gal(L/K)

And by symmetry, this diagram is valid for L = K( m
√
a) and for L = K( m

√
a′).

Finally, if b ∈ IS(a,a′), (
aa′

b

)
m
√
a
m
√
a′ = FL′/K(b)( m

√
a
m
√
a′)

= FL′/K(b)( m
√
a)FL′/K(b)(

m
√
a′)

= FL1/K(b)( m
√
a)FL2/K(b)(

m
√
a′)

=

(
a

b

)
m
√
a

(
a′

b

)
m
√
a′

Hence, (
aa′

b

)
=

(
a

b

)(
a′

b

)

Exercise 1.3.
Let a ∈ K∗, b, b′ ∈ IS(a), we have

FL/K(bb′)( m
√
a) = FL/K(b)(FL/K(b′)( m

√
a))

= FL/K(b)(

(
a

b′

)
m
√
a)

=

(
a

b′

)
FL/K(b)( m

√
a)

=

(
a

b′

)(
a

b

)
m
√
a

because
(
a
b′

)
∈ µm ⊂ K.

Therefore, (
a

bb′

)
=

(
a

b

)(
a

b′

)

Exercise 1.4.
We have v /∈ S(a), so v /∈ S and pv does not divide m.
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Therefore Xm − 1 is separable in k(v). (gcd(Xm − 1,mXm−1) = 1). So the surjection ov � k(v) induces an
injective morphism of µm in k(v)∗. Thus,

m|Nv − 1

FL/K(v) is defined by the following property:
∀x ∈ ov,

FL/K(v)(x) = xNv (mod pv)

Therefore,

FL/K(v)( m
√
a) = m

√
a
Nv

(mod pv)(
a

v

)
m
√
a = m

√
a
Nv

(mod pv)

And finally, (
a

v

)
= m
√
a
Nv−1

= a
Nv−1
m (mod pv)

Exercise 1.5.
Suppose (i), we have a

Nv−1
m = 1 in k(v). Let’s show (ii).

Let x be a solution of Xm − a in a algebraic closure of k(v). We have

xNv−1 = (xm)
Nv−1
m = a

Nv−1
m = 1

Therefore x ∈ k(v), and xm = a is solvable in k(v).

Suppose (ii), let’s show (i).
Let x ∈ k(v) such that xm = a. Then a

Nv−1
m = 1 in k(v).

Thus
(
a
v

)
= 1 in k(v).

We already seen that µm → k(v) is injective. Therefore(
a

v

)
= 1

Suppose (iii), let’s show (ii).
Let x ∈ Kv such that xm = a. We have v(a) = 0. Therefore x ∈ ov.
Thus, projecting mod pv, we have xm = a in ov/pv ∼= k(v). And xm = a is solvable in k(v).

Suppose (ii), let’s show (iii).
Let f(X) = Xm − a.
We have a x ∈ ov such that f(x) ∈ pv. And f ′(x) = mxm−1 /∈ pv because a /∈ pv.
Hence, |f(x)|v < 1 and |f ′(x)|v = 1. Therefore, we can apply Hensel’s lemma in Kv (Chapter II, App. C),
and we have then a solution x ∈ Kv to xm = a.
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Exercise 1.6.
By exercise 1.4, if v is prime to m, we have(

ξ

v

)
= ξ

Nv−1
m (mod pv)

Again, µm → k(v) is injective, therefore (
ξ

v

)
= ξ

Nv−1
m

If b =
∑
nvv prime to m. Then by the remark in the statement of the exercise.

Nb− 1

m
=
∑

nv
Nv − 1

m
(mod m)

Therefore, (
ξ

b

)
=
∏(

ξ

v

)nv
=
∏

ξnv
Nv−1
m

= ξ
Nb−1
m

Exercise 1.7.
By exercise 1.6.,

(
1
b

)
= 1. So by exercise 1.2., it suffices to show

(
c
b

)
= 1 if c = 1 (mod b).

And as
(
ξ
b

)
=
∏( ξ

v

)nv
, if suffices to show

(
c
v

)
= 1 if c = 1 (mod pv). (because we have b ⊂ pv as b is

integral, therefore c = 1 (mod b) implies c = 1 (mod pv)).
And

(
c
v

)
= c

Nv−1
m = 1 (mod pv).

Again, µm is one-to-one to k(v), thus (
c

v

)
= 1

and this concludes.

Exercise 1.8.
By exercise 1.3., it suffices to show that the Artin’s reciprocity law implies that if c ∈ K∗ is such that
c ∈ (K∗v )m for all v ∈ S(a), then

(
a

(c)S(a)

)
= 1.

As in Chapter VII, §3.3, by the weak approximation theorem, there is c′ ∈ K∗ such that

∀v ∈ S(a), |c′−mc− 1|v < ε

(The ε is the one from the reciprocity law, §3.3). Therefore we can apply the reciprocity law and FL/K((c′−mc)S(a)) =
1.
And finally,

FL/K(cS(a)) = FL/K(c′S(a))mFL/K((c′−mc)S(a)) = FL/K(c′S(a))m = 1

(Gal(L/K) is of order dividing m).
By definition of

(
a

(c)S(a)

)
, we have (

a

(c)S(a)

)
= 1
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Exercise 1.9.
If p is an odd prime, then the squares in Qp are the p2Nu, with u ∈ Z∗p such that the image of u in F∗p is a
square.
If p = 2, then the squares in Q2 are the 22Nu, with u ∈ Z∗2 such that u verifies u = 1 (mod 8). (See [Ser94],
Chapter 2).
Let P,Q be positive odd primes such that (a, P ) = (a,Q) = 1 and P = Q (mod 8a0) (a = 2va0 with a0 odd).
Then, PQ−1 is a square in Qv for v(a) 6= 0, and in Q2 (m=2). Hence, by exercise 1.8., we have(

a

P

)
=

(
a

Q

)

Exercise 1.10.
By exercise 1.4., we have

(−1
P

)
= (−1)(P−1)/2 (mod P ). Thus,(

−1

P

)
= (−1)(P−1)/2

By exercise 1.9.,
(

2
P

)
depends only on P (mod 8). Thus we can compute

(
2
P

)
for 17, 3, 5, 7, using exercise

1.5.

(
2
17

)
=
(

36
17

)
= 1 = (−1)

172−1
8 ,

(
2
3

)
= −1 = (−1)

32−1
8 ,(

2
5

)
= −1 = (−1)

52−1
8 ,

(
2
7

)
=
(

9
7

)
= 1 = (−1)

72−1
8

Thus, because (−1)
P2−1

8 also depends only on P (mod 8)(
2

P

)
= (−1)

P2−1
8

By the explications in exercise 1.10., if P = Q (mod 8), then(
P

Q

)(
Q

P

)
= (−1)

P−1
2

Q−1
2

And if P 6= Q (mod 8),
(
P
Q

)(
Q
P

)
only depend on P (mod 8) and on Q (mod 8).

(
3
5

) (
5
3

)
= 1 = (−1)

3−1
2

5−1
2 ,

(
3
7

) (
7
3

)
= −1 = (−1)

3−1
2

7−1
2 ,

(
3
17

) (
17
3

)
= 1 = (−1)

17−1
2

3−1
2 ,(

5
7

) (
7
5

)
= 1 = (−1)

5−1
2

7−1
2 ,

(
5
17

) (
17
5

)
= 1 = (−1)

17−1
2

5−1
2 ,

(
7
17

) (
17
7

)
= 1 = (−1)

17−1
2

7−1
2

Thus, because (−1)
P−1

2
Q−1

2 also depends only on P (mod 8) and Q (mod 8)(
P

Q

)(
Q

P

)
= (−1)

P−1
2

Q−1
2
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Exercise 2: The Norm Residue Symbol
Exercise 2.1.
As in exercise 1.1.
m
√
a is a root of Xm − a whose roots are the ξ m

√
a with ξ ∈ µm, in Kv( m

√
a) because µm ⊂ Kv.

And Ψv(b) ∈ Gal(Lv/Kv), so Ψv(b)( m
√
a) = ξ m

√
a for a ξ ∈ µm.

Therefore (a, b)v = ξ is a mth root of 1.

Moreover, if ξ0 ∈ µm,

Ψv(b)(ξ0
m
√
a) = ξ0Ψv(b)(

m
√
a)

= ξ0(a, b)v
m
√
a

Therefore, (a, b)v is independent of the choice of m
√
a.

Exercise 2.2.
As in exercise 1.3., the fact that (a, bb′)v = (a, b)v(a, b

′)v comes from the fact that Ψv : K∗v → Gv is a group
homomorphism and that µm is fixed by Gv.
And as in exercise 1.2., (aa′, b)v = (a, b)v(a

′, b)v comes from the fact that we have the following commutative
diagram for K ⊂ L ⊂ L′:

Kv
iv //

Id

��

JK
ΨL′/K //

NK/K=Id

��

Gal(L′v/Kv)

Res

��
Kv

iv // JK
ΨL/K // Gal(Lv/Kv)

And recall that Ψv = ΨL/K ◦ iv.

Exercise 2.3.
If there is a c ∈ K∗v such as b = cm then Ψv(b) = Ψv(c)

m = Id because the order of Gv divide m.
Thus, in this case

(a, b)v = 1

If there is a c ∈ K∗v such as a = cm then m
√
a is in K∗v , and Ψv(b) is trivial on K∗v .

Thus, in this case
(a, b)v = 1

Let’s now define the unique extension of (·, ·)v to K∗v ×K∗v .
As µm is of order m, (·, ·)v has to be trivial on K∗mv ×K∗mv . Thus we need to have to following commutative
diagram.
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K∗ ×K∗
(·,·)v

**��
K∗v ×K∗v

(·,·)v //

��

µm

K∗v/K
∗m
v ×K∗v/K∗mv

44

Furthermore K∗mv is open in K∗v and K∗ is dense in K∗v . Thus we can choose a set of representatives (xλ)λ∈Λ

for K∗v/K∗mv in K∗. And then, we need to have

(xλ1
K∗mv , xλ2

K∗mv )v = (xλ1
, xλ2

)v

Thus this show the uniqueness and define the extension to K∗v ×K∗v . And this definition does not depend
on the choice of the representatives (by the beginning of this exercise and by bilinearity).

Exercise 2.4.
Let first remark that Kv( m

√
a) is finite extension of Kv. Thus, there is a unique valuation extending v on

Kv( m
√
a), which is, by restriction, a valuation on K( m

√
a) extending v. Furthermore, K( m

√
a) is dense in

Kv( m
√
a), so Kv( m

√
a) is a completion for this given valuation.

Thus by chapter VII §6.2, Ψv(NKv( m
√
a)/Kv (Kv( m

√
a)∗)) = 1.

So if b ∈ N(Kv( m
√
a)∗), Ψv(b)( m

√
a) = m

√
a. And thus,

(a, b)v = 1

Conversely, if (a, b)v = 1, then Ψv(b)( m
√
a) = m

√
a, i.e. Ψv(b) = Id (because it is in Gal(Kv( m

√
a)/Kv)). And

thus, b ∈ ker(Ψv) = NKv( m
√
a)/Kv (Kv( m

√
a)∗).

Exercise 2.5.
As mentioned in the exercise, if a + b = xm with x ∈ Kv then b = xm − a is a norm for the extension
Kv( m

√
a)/Kv. Therefore, by exercise 2.4,

(a, b)v = 1

Exercise 2.6.
By bilinearity and the fact that (c,−c)v = 1, we have

1 = (ab,−ab)v = (a,−a)v(a, b)v(b, a)v(b,−b)v = (a, b)v(b, a)v

Exercise 2.7.
We have

Q ⊂ K ⊂ C
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Therefore, if v is archimedean, we have
R ⊂ Kv ⊂ C

Thus, Kv = R or Kv = C.
If Kv = C then Kv = Km

v . Thus, by exercise 2.5, (·, ·)v = 1.
If Kv = R then m = 2. Thus, in this case,

(a, b)v = 1 if and only if a > 0 or b > 0, (i.e. a or b is a norm for Kv(
√
a) = R or C)).

Exercise 2.8.
If v /∈ S(a), then v in unramified in K( m

√
a)/K. Thus, if b ∈ Kv∗ then iv(b) ∈ JS(a)

K . Thus,

Ψv(b) = ΨL/K(iv(b))

= FL/K(iv(b)
S(a))

= FL/K(v(b)v)

= FL/K(v)v(b)

And then,

Ψv(b)(
m
√
a) = FL/K(v)v(b)( m

√
a)

=

(
a

v

)v(b)
m
√
a

= (a, b)v
m
√
a

Hence, (
a

v

)v(b)

= (a, b)v

In the general case, if v /∈ S,

(a, b)v = (πv(a)a0, π
v(b)b0)v

= (πv(a), πv(b))v(π
v(a), b0)v(a0, π

v(b)b0)v

= (π, π)v(a)v(b)
v (b0, π

v(a))−1
v

(
a0

v

)v(b)

=

(
−1

v

)v(a)v(b)(
b0
v

)−v(a)(
a0

v

)v(b)

=

(
c

v

)
with c = (−1)v(a)v(b)av(b)b−v(a).
((π, π)v =

(−1
v

)
because 1 = (−π, π)v = (−1, π)v(π, π)v)

Exercise 2.9.
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We know that ΨL/K is trivial on K∗. Therefore if b ∈ K∗, we have

ΨL/K(b) =
∏
v

Ψv(b) = 1

Thus ∏
v

Ψv(b)(
m
√
a) =

∏
v

(a, b)v
m
√
a = m

√
a

And ∏
v

(a, b)v = 1

Exercise 2.10.
We have (

a

b

)(
b

a

)−1

=
∏

v/∈S(a)

(
a

v

)v(b) ∏
v/∈S(b)

(
b

v

)−v(a)

=
∏

v/∈S(a)

(a, b)v
∏

v/∈S(b)

(b, a)−1
v

=
∏

v/∈S(a)

(a, b)v
∏

v/∈S(b)

(a, b)v

=
∏
v

(a, b)v
∏

v/∈S(a)∩S(b)

(a, b)−1
v

=
∏

v/∈S(a)∩S(b)

(a, b)−1
v

Thus (
a

b

)(
b

a

)−1

=
∏

v/∈S(a)∩S(b)

(b, a)v

Applications: If S(a) ∩ S(b) = S, then (
a

b

)(
b

a

)−1

=
∏
v/∈S

(b, a)v

If S(λ) = S, then for all v /∈ S, v(λ) = 0, thus
(
b
λ

)
= 1 and then(

λ

b

)
=
∏
v/∈S

(b, λ)v
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Exercise 2.11.
Firstly, let’s remark that the symbol

(
a
p

)
define in exercise 2.10 and exercise 1.8 coincide in this case, because

the only v /∈ S(a) such that v(p) 6= 0 is vp.
Secondly, we have (x, P )∞ = 1 because P is a norm in R(

√
a)/R (if either case where R(

√
a) = R or

R(
√
a) = C).

Then, as S(−1) = S, we have(
−1

P

)
=
∏
v∈S

(P,−1)v = (P,−1)∞(P,−1)2 = (P,−1)2

And, as S(2) = S, we have (
2

P

)
=
∏
v∈S

(P, 2)v = (P, 2)∞(P, 2)2 = (P, 2)2

And, as S(Q) ∩ S(P ) = S, we have(
P

Q

)(
Q

P

)
=

(
P

Q

)(
Q

P

)−1

=
∏
v∈S

(Q,P )v = (Q,P )∞(Q,P )2 = (Q,P )2

Therefore, the result in exercise 1.10 are indeed equivalent to

(P,−1)2 = (−1)
P−1

2 , (P, 2)2 = (−1)
P2−1

8 , and (Q,P )2 = (−1)
P−1

2
Q−1

2

Using the fact given in the exercise, if P = 1 (mod 4), we have

(P,−1)2 = 1 = (−1)
P−1

2 , (P, 2)2 = (−1)
P−1

4 = (−1)
P2−1

8

If either P = 1 (mod 4) or Q = 1 (mod 4),

(P,Q)2 = 1 = (−1)
P−1

2
Q−1

2

If P = 3 (mod 4) and Q = 3 (mod 4), it is standard fact that

(P,−1)2 =

(
−1

P

)
= −1 = (−1)

P−1
2

We have −P = 1 (mod 4), thus

(−P, 2)2 = (−1)
P+1

4 = (−1)
P2−1

8 = (−1, 2)2(P, 2)2 = (P, 2)2

(because (−1, R)2 =
(−1
R

)
by the preceding exercise) and

(−P,Q)v = 1 = (−1, Q)v(P,Q)v = −(P,Q)v

Thus
(P,Q)v = −1 = (−1)

P−1
2

Q−1
2
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And this concludes for quadratic reciprocity.

Exercise 2.12.
ξ is a root of X

p−1
X−1 .

Thus, λ is a root of
(1−X)p − 1

1−X − 1
=

p−1∑
k=0

(
p

k + 1

)
(−X)k

Thus,
p−1∑
k=0

(
p

k + 1

)
(−λ)k = 0

λp−1 = −p−
p−2∑
k=1

(
p

k + 1

)
(−λ)k

Therefore,

λp−1 = −p (mod pλ)
λp−1/p = −1 (mod λ)

And, by chapter 3, §1, p = λp−1
p−1∏
k=1

1−ξk
1−ξ and 1−ξk

1−ξ is a unit for 0 ≤ k ≤ p− 1.

Thus v(p) 6= 0 implies v(λ) 6= 0.
Therefore,

λp−1/p = −1 (mod pv)

Now, if a = 1 (mod pλov) then

a = 1 + pλc′, with c′ ∈ ov
a = 1 + λp p

λp−1 c
′

a = 1 + λpc

And c = p
λp−1 c

′ is in ov.

If f(X) ∈ ov[X] is such that f(X) = Xp −X − c (mod pv). Then f ′(X) = −1 (mod pv). Therefore, if x is a
root of f(X), then x is a integral element and f(x) = 0 (mod pv), f ′(x) = −1 (mod pv).
This polynomial is the following: if αp = a and α = 1 + λx, let

f(X) =
1

λp
((1 + λX)p − a)

= Xp +

p−1∑
k=2

1

λp−1

(
p

k

)
λk−1Xk +

1

λp−1
pX − c

x is a root of f(X).
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If c = 0 (mod pv), then by Hensel’s lemma, f has a root in Kv (i.e. a ∈ (K∗v )p), Kv(x) = Kv( p
√
a) = Kv,

then a is indeed v-primary. We also have

(a, b)v = 1 = ξ−S(0)v(b)

As f(X) is irreducible (because Xp−a is irreducible), f(X) is the minimal polynomial of x. Furthermore,
the image of f(X) in the residue field is separable (f ′(X) = −1 6= 0 ( mod pv) ). Thus Kv( p

√
a) = Kv(x) is

unramified over Kv (see lemma in appendix) and x is v-primary.
v is unramified in K( p

√
a), thus iv(b) is in JSK .

If c 6= 0 (mod pv).
Thus,

Ψv(b) = ΨL/K(iv(b))

= FL/K(iv(b)
S)

= FL/K(v(b)v)

= FL/K(v)v(b)

By definition,
FL/K(x) = xNv = x+ S(c̄) (mod pv)

Let αi = ξiα = 1 + λxi. We have

xi+1 = (αi+1 − 1)/λ

= (ξαi − 1)/λ

= −1 + ξxi

= −1 + (1− λ)xi

Thus,
xi+1 = xi − 1 (mod pv)

Finally, if FL/K(v)(α) = ξiα, then FL/K(v)(x) = (FL/K(v)(α)− 1)/λ = (αi − 1)/λ = xi.
And thus

x+ S(c̄) = xi (mod pv)
= x− i (mod pv)

And this allow us to conclude
(a, b)v = ξ−S(c̄)v(b)

Exercise 2.13.
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(a) As ηj + λjηi = ηi+j , we have

1 = (ηj/ηi+j , λ
jηi/ηi+j)v

= (ηj , λ
j)v(ηj , ηi)v(ηj , ηi+j)

−1
v (ηi+j , λ

j)−1
v (ηi+j , ηi)

−1
v (ηi+j , ηi+j)v

= (ηi, ηj)
−1
v (ηj+i, ηj)v(ηi+j , λ)−jv (ηi, ηi+j)v

Thus
(ηi, ηj)v = (ηi, ηi+j)v(ηj+i, ηj)v(ηi+j , λ)−jv

(b) If i+ j ≥ p+ 1, we have ηj+i ∈ Up+1 ⊂ K∗pv . Therefore by (a), we have (ηi, ηj)v = 1.

If a ∈ Ui and b ∈ Uj , then a = ηαii η
αi+1

i+1 ...η
αp
p xa with xa ∈ Up+1 and b = η

βj
j η

βj+1

j+1 ...η
βp
p xb with xb ∈ Up+1.

Therefore the bilinearity property concludes.

(c) By the preceding exercise,

(ηp, λ)v = (1− λp, λ)v

= ξ−S(−1)v(λ)

= ξ−S(−1)

= ξ−(−1) (because f=1)
= ξ

(d) By bilinearity, it suffices to show the uniqueness on (K∗v )/(K∗pv )× (K∗v )/(K∗pv ), and thus, on λ, η1, ..., ηp.
And this is done easily with a descending recursion (for i from p to 1, for j from p to 1).

Exercise 2.14.
Let a, b ∈ R such that a = ±1 (mod 3R) and b = ±1 (mod 3R).
We have S = {∞, λ} (with λ = 1− ξ). Exercise 2.7 tells us that (·, ·)∞ = 1. Therefore,(

a

b

)(
b

a

)−1

= (a, b)vλ

And 3R = λ2R, thus a = ±1 (mod 3R) and b = ±1 (mod 3R) est equivalent to ±a ∈ U2 and ±b ∈ U2.
By exercise 2.13 (b), we have

(±a,±b)vλ = 1

But (−1, x)vλ = 1 because (−1, x)2
vλ

= 1 and (−1, x)vλ ∈ µ3.
Therefore, (

a

b

)
=

(
b

a

)
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If a = ±(1 + 3(m+ nξ)). We have(
ξ

a

)
=

(
ξ

(a)S

)
=

(
ξ

(a)

)
(because vλ(a) = 0)

= ξ
Na−1

3 (Exercise 1.6)

We have N(a) = (1 + 3m− 3n/2)2 + (3
√

3n/2)2, and

Na− 1

3
= 3(m+ n−mn) + 2m− n

Therefore, (
ξ

a

)
= ξ−m−n

By exercise 2.10, we have
(
λ
a

)
= (a, λ)vλ .

And as, (−1, x)vλ = 1, we will work with a = 1 + 3(m+ nξ).

Firstly, if x = 1 + kλ2, then we have
x(1− λ2)k ∈ U4

And because (1− λ2, λ)vλ = 1, therefore (x, λ)vλ = 1.
If x = 1 + kλ3, then we have

x(1− λ3)k ∈ U4

And because (1− λ3, λ)vλ = ξ, therefore (x, λ)vλ = ξ−k.

Then,

1 + 3(m+ nξ) = 1 + 2(m+ n)λ2 − (m+ 3n)λ3 + nλ4

= (1 + 2(m+ n)λ2)(1− ((m+ 3n)λ3 + nλ4)x1) with x1 = (1 + 2(m+ n)λ2)−1 ∈ U2

= (1 + 2(m+ n)λ2)(1− (m+ 3n)λ3 + λ4x2) with x2 ∈ R
= (1 + 2(m+ n)λ2)(1− (m+ 3n)λ3)(1 + λ4x3) with x3 ∈ R

Thus,
(1 + 3(m+ nξ), λ)vλ = ξm+3n = ξm

And this concludes.

By quadratic reciprocity, a theorem from Lagrange and h(-3) = 1, we have

q = 1 (mod 3) ⇐⇒ −3 is a square mod 4q

⇐⇒ there is a form of discriminant −3 representing q

⇐⇒ there are x, y ∈ Z such that q = x2 − xy + y2

⇐⇒ there is π ∈ Z[ξ], such that q = ππ̄

14



Furthermore, by explicit calculation mod 3 on q = x2− xy+ y2, we have either ±x = 1 or ±y = 1, so we can
choose π = 1 (mod 3R).

Thus, by Z/qZ ∼= R/πR (because g = 2 so f = 1),

2 is a cubic residue (mod q) ⇐⇒ 2 is a cubic residue (mod π)

⇐⇒
(

2

π

)
= 1

⇐⇒
(
π

2

)
= 1

⇐⇒ π is a cubic residue (mod 2R)
⇐⇒ π = 1 (mod 2R) (1 is the only cube (mod 2R))
⇐⇒ π = 1 + 6(n′ +m′ξ)

Thus, if 2 is a cubic residue (mod q) implies q = (1+6(n′+m′ξ))(1+6(n′+m′ξ2)) = (1+6n′−3m′)2 +27m′2.
Reciprocally, if q = x2 + 27y2, then x2 = 1 (mod 3) and we can choose x = 1 (mod 3). Then

q = (1 + 3x′)2 + 27y2

= (1 + 3(x′ + y)− 3y)2 + 27y2

= ππ̄

with π = 1 + 3(x′ + y + 2yξ). We have

q = (1 + 3x′)2 + 27y2 (mod 2)
= 1 + 3x′ + 27y (mod 2)
= 1 + x′ + y (mod 2)

And q = 1 (mod 2). Thus x′ + y is even, and π = 1 + 6(n′ +m′ξ). This concludes our discussion.

Exercise 2.15.
Firslty, if p = 1 (mod 3). We have

FL/Q(p)(ξ) = ξp (mod p)
= ξ (mod p)

Thus,
FL/Q(p)(ξ) = ξ

(because, as p 6= 3, X3 − 1 is separable mod p).

And, similarly, if p = 2 (mod 3). We have

FL/Q(p)(ξ) = ξ2

15



Now,

p = 1 (mod 3), p = x2 + 27y2 =⇒ 2 cubic residue (mod p)

=⇒ FL/Q(p)(
3
√

2) =
3
√

2

(True locally, and as p 6= 2, 3, X3 − 2 is separable mod p)
Thus,

FL/Q(p) = Id

And,

p = 1 (mod 3), p not of the form x2 + 27y2 =⇒ 2 not a cubic residue (mod p)

=⇒ 2
p−1
3 6= 1 (mod p)

=⇒ FL/Q(p)(
3
√

2) =
3
√

2
p

= ξi
3
√

2 (mod p)

with i = 1 or 2. Thus, FL/Q(p) is a 3-cycle.

Finally, if p = −1 (mod p). There are two cases.
If FL/Q(p)( 3

√
2) = ξi 3

√
2 with i 6= 0

FL/Q(p)(ξi
3
√

2) = ξ2iξi
3
√

2 =
3
√

2

If FL/Q(p)( 3
√

2) = 3
√

2

FL/Q(p)(ξ
3
√

2) = ξ2 3
√

2

FL/Q(p)(ξ2 3
√

2) = ξ
3
√

2

Thus, in either case, FL/Q(p) is a 2-cycle.

Exercise 2.16.
Let’s first work out the exemple. It is clear that, apart from JL = L∗JL,T ′ , the data verifies the condition of
the theorem.
We are now looking for a T -unit x such that

(x,−14)∞ = −1 , (x,−14)2 = −1 , (x,−14)7 = 1

As x ∈ QT , x is of the form ±2n7m.
The condition (x,−14)∞ = −1 imposes x to be of the form −2n7m.
By chapter V I, the norm subgroup NQ7(

√
−14)∗ of Q∗7 is of order 2 (the order of the Galois group) and

contains Q∗27 .
We have Q∗7/Q∗27 =< −1, 7 > (for a description of the squares in Qp see [Ser94], Chapter 2), and as 2 is a
square in Q∗7 and 14 is a norm, thus 7 is norm. Thus

(x,−14)7 = (−1,−14)7 = −1 6= 1
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Therefore, we can’t find such an x.

Suppose JL = L∗JL,T ′ , and let a ∈ A such that πv(a) ∈ πv(A0) for all v ∈ T .
First, let’s lift a to an element ã of KT .
The hypothesis tells us that ∀v′ ∈ T ′, m

√
ã ∈ Kv( m

√
ai) = Lv′ .

Now, let M = L( m
√
ã) then for all w dividing v′ ∈ T ′, we have Mw = Lv′ .

Therefore, NMw/Lv′
(M∗w) = L∗v′ for v

′ ∈ T ′.
On the other hand, if v′ /∈ T ′, then v′ is unramified (ã ∈ KT ) and NMw/Lv′

(Uw) = Uv′ (Chapter VI, §1.2,
proposition 1, q = 0).

Therefore, JL,T ′ =
∏

v′∈T ′
Lv′

∏
v′ /∈T ′

Uv′ ⊂ NM/L(JM ).

And thus, the hypothesis JL = L∗JL,T ′ tells us that Gal(M/L) ∼= JL/L
∗NM/L(JM ) ∼= 1.

Thus, M = L and m
√
ã ∈ L.

Now as in the proof of lemma 3 in Chapter III §2. If m
√
ã ∈ K ′( m

√
a1), let’s take σ generating the Galois

group, i.e. σ( m
√
a1) = ξ m

√
a1. σ( m

√
ã) = ξj m

√
ã. Thus by decomposing m

√
ã on the basis given by the powers

of m
√
a1, and by looking at the effect of σ. We obtain m

√
ã = cj m

√
a1
j , with cj ∈ K ′.

By induction, we obtain m
√
ã = c m

√
a1
j1 ... m
√
ar
jr , and thus

ã = cmaj11 ...a
jr
r

And, therefore, in X, we have a ∈ A0.

Let’s prove the theorem now.
Let define f : X → µm by f((yv)) =

∏
v∈T

(xv, yv)v =< (xv), (yv) >.

Firstly remark that f is trivial on A0. In fact,

f(ai) =
∏
v∈T

ζv,i = 1

Now, define B0 the subgroup of X generated by the iv(ai).
We can now reformulate the problem, we are looking for an x ∈ A such that < x, · >|B0

= f|B0
.

Indeed, in that case, by evaluating on iv(ai), we would have < x, ai >=< xv, ai >, and this for all v ∈ T and
i ∈ {1, ..., r}.

By the duality A ≈ hom(X/A, µm), it suffices to find g ∈ hom(X,µm) such that g|A = 1 and g|B0
= f|B0

.

Now, by the preceding discussion, we have A ∩ B0 = A0. As f|A0
= 1, we can define g̃ on A × B0 ⊂ X by

g̃|A = 1 and g̃|B0
= f|B0

.

If we can extend this g̃ to X, that concludes the exercise.
Let’s make this a lemma:

Lemma: Let G be a finite group of m-torsion, H a subgroup of G. Then Res : hom(G,µm) → hom(H,µm)
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is surjective.

Proof: First let prove that Res : hom(G,C∗) → hom(H,C∗) is surjective. Let ϕ ∈ hom(H,C∗), x /∈ H. x
is of order n in G/H. Let’s now define ϕ′ :< H, x >→ C∗ by sending h ∈ H to ϕ(h) and x to any nth-root
of ϕ(xn).
(For one to convince himself that it is well-defined, one can use the isomorphism
< H, x >∼= (H⊕ < x >)/ < (xn, x−n) >).
Thus, we can extend ϕ to G.
Now, suppose that ϕ ∈ hom(H,µm). Then, we can extend ϕ to ϕ′ : G → C∗, but as G is of m-torsion, we
have ϕ′(G) ⊂ µm.

That concludes.
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Exercise 3: The Hilbert Class Field

Firstly,

v split completely in L ⇐⇒ Lv = Kv (because [Lv : Kv] = #Gv = ef)
⇐⇒ Gal(Lv/Kv) = 1

⇐⇒ Gv = 1

⇐⇒ ψv = 1 (equivalent because ψv : Kv → Gv is surjective)
⇐⇒ ψL/K ◦ iv = 1

⇐⇒ iv(K
∗
v ) ⊂ ker(ψL/K) = K∗NL/K(JL)

Secondly, by chapter 4, §2.7, ψv : Uv → Gal(Lv/Lvnr) is surjective. Therefore

v is unramified in L ⇐⇒ Lv = Lvnr

⇐⇒ Gal(Lv/Lvnr) = 1

⇐⇒ ψv(Uv) = 1

⇐⇒ ψL/K(iv(Uv)) = 1

⇐⇒ iv(Uv) ⊂ ker(ψL/K) = K∗NL/K(JL)

We have JK/K∗JK,S ∼= IK/PK ∼= HK which is finite. Thus K∗JK,S is of finite index in JK . And JK,S is
open in JK , therefore K∗JK,S is open JK .
Hence, we can use the existence theorem, and the previous remark and the unicity in the existence theorem
tells us that we then have the maximal abelian extension K’ of K which is unramified at all non-archimedean
places and split completely at all archimedean places.
And the isomorphism JK/K

∗JK,S ∼= HK gives us that FK′/K induces indeed an isomorphism beetween HK

and Gal(K ′/K).

The residue class degree of a non-archimedean prime ideal in K’ (which is therefore unramified) is determined
by the order of its image in Gal(K ′/K) ∼= HK .
In particular,

a split completely in L ⇐⇒ its residue class degree is 1
⇐⇒ its image in Gal(K ′/K) is 1
⇐⇒ FK′/K(a) = 1

⇐⇒ a = 1 in HK

⇐⇒ a is principal

Let’s work out the first three examples.

To show that an extension which is of degree the class number (the Hilbert class field degree) is the Hilbert
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class field, it suffices, by unicity, to show that all archimedean primes split completely and that all non-
archimedean primes are unramified.
In the cases we are interested in, the only archimedean prime is already complex and therefore split com-
pletely in any extension. Therefore, we only have to show that all non-archimedean primes are unramified.

1- Let’s prove that the Hilbert class field K of Q(
√
−15) is obtained by adding the roots of X2 + 3.

We have K = Q(
√
−15)(

√
−3) = Q(

√
−15)(

√
5), thus the discriminant of K divides 223 and 225 (chapter 3,

) and thus divides 22.
Hence, if a prime v of K does not divide 2, then v is unramified.
Now, if v divides 2. As a = −3 = 1 + 22(−1) = 1 +λ2c, we can apply exercise 2.12, and K is unramified at v.
Conclusion: K is unramified at all non-archidean places, and thus is the Hilbert class field.

2- Let’s prove that the Hilbert class field K of Q(
√
−5) is obtained by adding the roots of X2 + 1. We have

K = Q(
√
−5)(

√
−1),thus the discriminant of K divides −22.

Hence, if v prime of K does not divide 2, then v is unramified.
Now, if v divides 2. We have the following extensions: K

Q(
√
−1)

e=1

Q(
√
−5)

e=?

Q
e=2 e=2

The index are the ramification indexes of 2Z. Let’s justify them.
Top left: K = Q(

√
−1)(

√
5). So if v divides 2. As a = 5 = 1 + 22 = 1 + λ2c, we can apply exercise 2.12, and

K is unramified at v.
Bottom left: 2 = −i(1 + i)2. Bottom right: As OQ(

√
−5) = Z[

√
−5] (−5 = 3 mod 4), we can apply Kummer’s

theorem (see chapter III, Appendix), and we have 2OQ(
√
−5) = (2OQ(

√
−5) + (

√
−5 + 1)OQ(

√
−5))

2.

Finally, by multicativity of the ramification index. If v is a prime dividing 2 in Q(
√
−5), then v in unramified

in K.
Hence, K is indeed the Hilbert class field of Q(

√
−5).

3- Let’s prove that the Hilbert class field K of Q(
√
−23) is obtained by adding the roots of X3 − X − 1

(namely x1, x2, x3).
Firstly, as −23 is the discriminant of X3 − X − 1, we have K = Q(

√
−23)(x1, x2, x3) = Q(x1, x2, x3) =

Q(
√
−23)(xi), for any xi (see [Con]).

Furthermore, a calculus shows that X3 − X − 1 is separable mod p if and only if p does not divide 23. In
the case p|23, gcd(X3 −X − 1, 3X2 − 1) = X − 2/3 = X − 16 mod 23. Thus, if p does not divide 23, p is
unramified in K (see the lemma in appendix).
Let work out the case p divides 23, i.e. p = (

√
−23). Let P be a prime in K dividing p.

We have 23 = (x1 − x2)2(x1 − x3)2(x2 − x3)2. Therefore e(P|23) ≥ 2. We have seen that X3 − X − 1 is
reducible and have 16 as a double root (by the above calculation of the gcd). Therefore X3−X−1 also have

20



a single root in Z/23Z. By the existence of this single root and by Hensel’s lemma, there is a root in Q23. It
is the image a xi in Q23.
Therefore, we have K23 = Q23(

√
−23, xi) = Q23(

√
−23). And K23/Q23 is of degree 2 = e(P|23)f((P|23)).

Hence e(P|23) = 2.
Thus, e(P|p) = e(P|23)/e(p|23) = 1. And p is unramified in K.
And finally, K is indeed the Hilbert class field of Q(

√
−23).

Let’s prove that JK/(K∗J+
K,S) ∼= IK/P

+
K .

First JK/(K∗J+
K,S) ∼= (IK × {±1}r1)/Im(K∗), where r1 is the number of real places.

Then, by the weak approximation theorem : the map K∗ → IK × {±1}r1 → {±1}r1 is surjective of kernel
K∗+. (the last map is the projection onto {±1}r1).
Thus,

(IK × {±1}r1)/Im(K∗) ∼= IK/Im(K∗+)

And finally,
JK/(K

∗J+
K,S) ∼= IK/P

+
K

K is real quadratic so the global units are KS = {±1}× < ε > where ε is a fundamental unit.
Let σ ∈ Gal(K/Q) be the non trivial element.
If Nε = 1.

Either ε > 0, σ(ε) > 0 then K+
S =< ε >

Or ε < 0, σ(ε) < 0 then K+
S =< −ε >

In both case (KS : K+
S ) = 2, thus (PK : P+

K ) = 2 and [K1 : K ′] = 2.

If Nε = −1.
Either ε > 0, σ(ε) < 0 then K+

S =< ε2 >
Or ε < 0, σ(ε) > 0 then K+

S =< ε2 >
In both case (KS : K+

S ) = 4, thus (PK : P+
K ) = 1 and [K1 : K ′] = 1.
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Exercise 4: Numbers Represented by Quadratic Forms
Exercise 4.1.
For all x ∈ K∗, f(x) = x2 6= 0 so f does not represent 0.

Exercise 4.2.
Let f = X2 − bY 2.
f represents 0 implies that there is (x, y) ∈ K2 − {0} such that f(x, y) = x2 − by2 = 0. y = 0 ⇒ x = 0,
therefore y 6= 0.
Hence, f represents 0 implies that there is (x, y) ∈ K2 − {0} such that b = (x/y)2, and thus b is in (K∗)2.
Reciprocally, if b is a square b = z2, then f(z, 1) = 0, i.e. f represents 0.

Exercise 4.3.
Let f = X2 − bY 2 − cZ2.
There are two cases depending on whether b is a square or not.
If b is a square : f represents 0 and c is a norm from K(

√
b) = K.

If b is not a square: f(X,Y, 0) does not represent 0, so if f(x, y, z) = 0 then z 6= 0 and c = (x/z)2 − b(y/z)2

is a norm from K(
√
b).

Reciprocally, if c = x2 − by2 is a norm from K(
√
b) then f(x, y, 1) = 0 and f represents 0.

Hence,

f represents 0 if and only if c is a norm from K(
√
b).

Exercise 4.4.
To whole solution is detailed in the statement of the exercise in the book.

Exercise 4.5.
Let f = X2 − bY 2 − cZ2.

f represent 0 in Kv if and only if c is norm from Kv(
√
b) (Exercise 4.3)

if and only if (b, c)v = 1 (Exercise 2.4)

By exercise 2.8, for v /∈ S(b, c), we have (b, c)v = 1.
Thus, (b, c)v = 1 for almost all v.
As (b, c)v ∈ {±1}, and by exercise 2.9, as ∏

v

(a, b)v = 1

the number of v such that f does not represent 0 in Kv (i.e. such that (a, b)v = −1) is even.

Exercise 4.6.
Let f = X2 − bY 2 − cZ2 + acT 2. And suppose that f does not represent 0 in Kv.
If a ∈ (Kv)

2, then f(0, 0,
√
a, 1) = 0. Thus, a /∈ (Kv)

2.
If b ∈ (Kv)

2, then f(
√
b, 1, 0, 0) = 0. Thus, b /∈ (Kv)

2.
As f does not represent 0, we have c /∈ NKv(

√
a)∗ and c /∈ NKv(

√
b)∗. And

NKv(
√
b)∗ ∩ cNKv(

√
a)∗ = ∅
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As a, b /∈ (Kv)
2, the norm subgroups NKv(

√
a)∗ and NKv(

√
b)∗ of K∗v are of index 2 (the order of the Galois

groups Gal(Kv(
√
a)/Kv) and Gal(Kv(

√
b)/Kv)). Thus as

K∗v = NKv(
√
a)∗ t cNKv(

√
a)∗

we have NKv(
√
b)∗ ⊂ NKv(

√
a)∗. And thus

NKv(
√
a)∗ = NKv(

√
b)∗

By chapter VI, §2.6, that implies that
Kv(
√
a) = Kv(

√
b)

which is equivalent to
ab ∈ (K∗v )2

Conversely, as f = (X2 − bY 2)− c(Z2 − aT 2) then

f(K4
v ) = NKv(

√
b)− cNKv(

√
a)

The set of elements A represented by f is A = (N − cN) ∪ (−cN) ∪N where N = NKv(
√
a)∗.

And as c /∈ N , we have N ∩ cN = ∅, and f does not represent 0.

Furthermore, let’s suppose that A 6= K∗v .
If −1 ∈ N then cN ∪N ⊂ A and we would have A = K∗v (N of index 2 in K∗v ), so −1 /∈ N .
If c ∈ N +N = N − cN (because −1, c /∈ N), then cN ⊂ N +N ⊂ A, impossible. Therefore cN ∩N +N = ∅,
and N +N ⊂ N .

Let’s distinguish two cases:
Function Field Case: As N + N ⊂ N and 1 ∈ N , thus p − 1 ∈ N where p is the characteristic of the field.
Thus −1 ∈ N .
And therefore, we cannot have A 6= K∗v .

Number Field Case: If Kv is an extension of Qp, then as (pn − 1)n∈N is a sequence of elements of N
(N +N ⊂ N and 1 ∈ N), and as N is closed in K∗v (see chapter VI, §2.7). Then, −1 ∈ N .
And therefore, we cannot have A 6= K∗v .

If Kv = C, it is clear that −1 ∈ N .
If Kv = R, if f is not definite, f represents R∗, and if f is definite positive, then f represents R∗+.

Hence, the only case where f does not represent all K∗v is Kv = R and f definite positive.

Exercise 4.7.
Firstly, if Kv = R, then it is trivial that

f represents 0 if and only if f is not definite.
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Suppose now that Kv is not real. It suffices to show that any form f in 5 variables represents 0.
The preceding exercise tells us that any form in 4 variables either represents 0 or every element of K∗v (by
multiplication by a scalar we can obtained any form in 4 variables, and the properties "represents 0" and
"represents K∗v" are stable by multiplication by a scalar).
Let f = aX2

1 + g(X2, X3, X4, X5). Then if g represents 0 we are done. And if g does not represent 0, g
represent −a and we are also done.

Exercise 4.8.
Case n = 1: trivial

Case n = 2: Let f = X2 − bY 2, and suppose that f represents 0 in Kv, for all v.
Let L = K(

√
b). By Tchebotarev density theorem, the density of primes that split completely in L is

1/#Gal(L/K). (The image of v by FL/K must of order ef = 1, must be IdK/L).
But, for all v, we have Kv(

√
b) = Kv.

Thus #Gal(L/K) = 1, and L = K, i.e. b is a square in K, i.e. f represents 0.

Case n = 3: Without loss of generality, we can take f = X2 − bY 2 − cZ2. Let L = K(
√
b), L is cyclic,

therefore the Hasse norm theorem applies (Chapter VII, §9.6), and

f represents 0 in K if and only if c ∈ NL/K(L∗)

if and only if c ∈ NLv/Kv (Lv∗), for all v
if and only if f represents 0 in Kv, for all v.

Case n=4: Without loss of generality, we can take f = X2 − bY 2 − cZ2 + acT 2. Let g = X2 − bY 2 − cZ2.
By exercise 4.4 and case n = 3, we have

f represents 0 in K if and only if g represents 0 in K(
√
ab)

if and only if g represents 0 in Kv(
√
ab), for all v

if and only if f represents 0 in Kv, for all v.

Case n ≥ 5: Let f = aX2
1 + bX2

2 − g(X3, ..., Xn), and suppose that f represents 0 in Kv for all v.
By exercise 4.5, and because g is a form in n− 2 ≥ 3 variables, g represents 0 in Kv for all v outside a finite
set S.
For v ∈ S, there is (x1,v, ..., xn,v) ∈ (K∗v )n such that g(x3,v, ..., xn,v) = ax2

1,v + bx2
2,v.

As (K∗v )2 is open in K∗v , g(K∗v , ...,K
∗
v ) is open. Therefore by the weak approximation theorem, there is

(x1, x2) ∈ (K∗)2 such that ax2
1 + bx2

2 is sufficiently close to ax2
1,v + bx2

2,v for all v ∈ S, i.e. such that
ax2

1 + bx2
2 ∈ g(K∗v , ...,K

∗
v ) for all v ∈ S.

Therefore if c = ax2
1 + bx2

2, c is represented by g in Kv, for all v ∈ S. For v /∈ S, g represents 0 and therefore
represents c.
By induction, the form cY 2 − g(X3, ..., Xn) in n− 1 variables represents 0 in K. Hence f does.

Exercise 4.9.
Let f be a form in n ≥ 5 variables.
By exercise 4.7 and 4.8, we have

f represents 0 in K if and only if f represents 0 in Kv, for all v
if and only if for all v, such that Kv = R, f is not definite
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Exercise 4.10.
Let c ∈ Q.
c is represented by X2 +Y 2 +Z2 is equivalent to f = X2 +Y 2 +Z2−cT 2 represents 0 in Q which is equivalent
to f = X2 + Y 2 + Z2 − cT 2 represents 0 in Qp for all p and in R.

Condition for R: f represents 0 in R if and only if f is not definite if and only if c > 0.

Condition for Qp, p 6= 2: As (−1,−1)p = 1 (exercise 2.8 because p /∈ S(−1) = S = {∞, 2} and vp(−1) = 0),
thus X2 + Y 2 +Z2 represents 0 in Qp (exercise 4.5). And therefore, f always represents 0 in Qp, it does not
depends on c.

Condition for Q2: For this case, let’s specialize a demonstration from [Ser94].
Firstly, let’s consider Hε

a = {x ∈ Q∗2/(Q∗2)2|(x, a)2 = ε}.
Let suppose that a 6= 1 in Q∗2/(Q∗2)2. Then, NK∗v (

√
a) is of index two in K∗v (#Gal(Kv(

√
a)/Kv) =

2). Thus the homomorphism from Q∗2/(Q∗2)2 to {±1} which send x to (x, a)2 is surjective. Thus #Hε
a =

#(Q∗2/(Q∗2)2)/2 = 4.
If a = 1 in Q∗2/(Q∗2)2, then #H1

1 = 8 and #H−1
1 = 0.

Thus
Hε
a ∩Hε′

a′ = ∅ ⇐⇒ a = a′ and ε = −ε′

Now, X2
1 +X2

2 +X2
3 − cX2

4 represents 0 is equivalent to

{x ∈ Q2|x is represented by X2
1 +X2

2} ∩ {x ∈ Q2|x is represented by −X2
3 + cX2

4} 6= ∅

{x ∈ Q2|X2
1 +X2

2 − xY 2represents 0 } ∩ {x ∈ Q2|X2
3 − cX2

4 + xY 2represents 0 } 6= ∅

{x ∈ Q2|(−1, x)2 = 1} ∩ {x ∈ Q2|(c,−x)2 = 1} 6= ∅

H1
−1 ∩H

(c,−1)2
c 6= ∅

And by the preceding argument H1
−1 ∩H

(c,−1)2
c = ∅ if and only if c = −1 in Q∗2/(Q∗2)2 and (c,−1)2 = −1

if and only if c = −1 in Q∗2/(Q∗2)2 (because (−1,−1)2 = −1).

Conclusion: c ∈ Q is a sum of three rational squares if and only if c > 0 and −c /∈ (Q∗2)2 (i.e. v2(c) is not
even or −c 6= 1 (mod 8), which, if we write c = 4nr where 4 does not divide r, is equivalent to r 6= 7 (mod 8)).

Let c ∈ Q and c > 0. Write c = 4nr where 4 does not divide r.
Two cases: Firstly, if r 6= 7 (mod 8), then c is a sum of 3 rational squares, so indeed of 4 rational squares.
Secondly, if r = 7 (mod 8), then 4n(r− 1) is a sum of 3 rational squares, so c is the sum of this three squares
plus (2n)2.

Exercise 4.11.
We just have to verify that x′ can be written with the common denominator |a|2d.
This point is the following:
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x′ = −2(a, x)

|a|2
a+ x

=
|x− a|2 − |x|2 − |a|2

|a|2
a+ x

= (
|z|2 − c
|a|2

− 1)a+ x

=
|z|2 − c
|a|2

a+ z

=
|z|2 − c
d|a|2

da+ z

And that concludes, as da and z are points with integer coordinates.

Exercise 4.12.
The properties "represents 0" and "being a coset of (K∗v )2 in K∗v" are stable by multiplication by an element
of K.
Thus, without loss of generality, let assume that f = X2− bY 2− cZ2, and that f does not represent 0 in Kv.
Now, by exercise 4.6,

{d ∈ K∗v | f represents d} = {d ∈ K∗v |X2 − bY 2 − cZ2 − dT 2 does not represent 0}

= {d ∈ K∗v |(−d/c) /∈ (K∗v )2, b /∈ (K∗v )2, b(−d/c) ∈ (K∗v )2, c /∈ NKv(
√
b)}

= {d ∈ K∗v |(−d/c) /∈ (K∗v )2, b(−d/c) ∈ (K∗v )2}
= {d ∈ K∗v |(−d/c) /∈ (K∗v )2, (−d/c) ∈ b(K∗v )2}
= {d ∈ K∗v |(−d/c) ∈ b(K∗v )2}
= −bc(K∗v )2

Let have f positive definite and K = Q.
f does not represent 0 in R, and by exercise 4.5, the number of places where f does not represent 0 is even.
Therefore, there is a prime p such that f does not represent 0 in Qp. Therefore f only represent a coset of
(Q∗p)

2 in Q∗p. In particular, (Q∗p)
2 and p(Q∗p)2 are two different cosets. Hence f does not represent 1 or p in

Qp, and thus, in Q either.
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Exercise 5: Local Norms Not Global Norms, ect.
Exercise 5.1.
Let x ∈ N1, we have z ∈ K∗1 , then

x2 = N1(z)2 = z2+2σ = z1+ρ+σ+τ = N(z)

as zρ = z and zσ = zτ .
Therefore N1 ⊂ {x ∈ K∗|x2 ∈ N}, and by symmetry, Ni ⊂ {x ∈ K∗|x2 ∈ N}. And as {x ∈ K∗|x2 ∈ N} is
stable by multiplication, we have

N1N2N3 ⊂ {x ∈ K∗|x2 ∈ N}

Reciprocally, let x ∈ K∗ such that x2 ∈ N , i.e. x2 = y1+ρ+σ+τ , for a y ∈ L.
We are gonna use Hilbert’s theorem 90.
Let u = x−1y1+ρ, we have uρ = u, with u ∈ K1, which is a finite extension of K with Galois group
Gal(K1/K) = {1, σ} = {1, τ}.
Thus by Hilbert’s theorem 90, there is y1 ∈ K∗1 (yρ1 = y1) such that yσ−1

1 = yτ−1
1 = x−1y1+ρ.

Same for K2, there is y2 ∈ K∗2 (yσ2 = y2) such that yρ−1
2 = yτ−1

2 = x−1y1+σ.

Now, let y3 = y1y
ρ/y2. We have

yτ3 = yτ1 (yρ)τ/yτ2

= y1x
−1y1+ρyσ/(y2x

−1y1+σ)

= y1y
ρ/y2

= y3

Therefore y3 ∈ K∗3 . Furthermore
y1+ρ

3 = (y1y
−1
2 )2xyρ−σ

Hence,
x = (y−1

1 )1+σy1+τ
2 y1+ρ

3

And that concludes:
N1N2N3 ⊂ {x ∈ K∗|x2 ∈ N}

Exercise 5.2.
Let’s suppose that the local degree of L over K is 4 for some prime, then the elements which are local norms
everywhere are global norms.
We have N1N2N3 ⊂ {x ∈ K∗|x2 ∈ N}, let’s show that if x ∈ K∗ then x2 is in N . We can equivalently show
that x2 is a local norm at every prime. In fact K∗v/NLv∗ ∼= Gal(Lv/Kv) ⊂ G, so the elements of K∗v/NLv∗
are of order 1 or 2. Therefore x2 ∈ NLv∗ for all v, and thus x2 ∈ N .
Hence,

N1N2N3 = K∗
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Suppose now that all the local degrees are 1 or 2.
Remember that (a, b)v = 1 if and only if b is a norm from Kv(

√
a)/Kv.

Now let v ∈ S1, we haveKv(
√
a1) = Kv, thus as a3 = a2a1, we haveKv(

√
a2) = Kv(

√
a3), i.e. a2/a3 ∈ (K∗v )2.

And thus, (a2, x)v = (a3, x)v.
Thus, ∏

v∈S1

(a2, x)v =
∏
v∈S1

(a3, x)v∏
v∈S2

(a3, x)v =
∏
v∈S2

(a1, x)v∏
v∈S3

(a2, x)v =
∏
v∈S3

(a1, x)v

Let’s prove now that
∏
v∈S1

(a3, x)v =
∏
v∈S2

(a3, x)v. For that purpose, we will need the following facts:

Fact 1: If v ∈ S3, then (a3, x)v = 1.

Fact 2:
∏

v∈MK

(a3, x)v = 1. (Exercise 2.9).

Fact 3: S1 ∩ S2 ⊂ S3. (Because
√
a1,
√
a2 ∈ Kv, implies that

√
a1a2 ∈ Kv).

Fact 4: S1 ∪ S2 ∪ S3 = MK (Because if v ∈ MK , as G is abelian, all its conjugates are in Gv, therefore v
split completely in Fix(H) = Ki or L, if Gv is of order, respectively, two or one. See exercise 6.2).

We have then:

1 =
∏

v∈S1∪S2∪S3

(a3, x)v =
∏

v∈S1∪S2

(a3, x)v

=
∏
v∈S1

(a3, x)v
∏
v∈S2

(a3, x)v
∏

v∈S2∩S1

(a3, x)−1
v

=
∏
v∈S1

(a3, x)v
∏
v∈S2

(a3, x)v

Thus, ∏
v∈S1

(a3, x)v =
∏
v∈S2

(a3, x)v

Hence, we have indeed:

ϕ(x) =
∏
v∈S1

(a2, x)v =
∏
v∈S1

(a3, x)v =
∏
v∈S2

(a3, x)v

=
∏
v∈S2

(a1, x)v =
∏
v∈S3

(a1, x)v =
∏
v∈S3

(a2, x)v = ±1
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By this definition-proposition, it is now trivial that N1N2N3 ⊂ Kerϕ.
With the notation of chapter VII, §11.4, have f : Ĥ0(G,L∗)→ Ĥ0(G, JL).

Kerf =

(
a ∈ K∗|a is a local norm everywhere

a ∈ K∗|a is a global norm

)

And Kerf = Coker g, Coker g is dual to Ker(res : H3(G,Z)→
∏
v
H3(Gv,Z)).

For all v, H3(Gv,Z)) = 0, and H3(G,Z) = Z/2.
Therefore #Kerf = 2.

Now, consider K∗ // Kerf

x � // x2

.

This application is well defined, because the locals degrees are 1 or 2 (and therefore K∗v/NLv∗ ≤ 2). And by
exercise 5.1, it factorises by N1N2N3.
Thus, K∗/(N1N2N3) is of order less than 2.
As N1N2N3 ⊂ Kerϕ ⊂ K∗, we have

Kerϕ = N1N2N3 or Kerϕ = K∗

Now, as long as one of the (a2, .)v with v ∈ S1, and a (a2, .)v with v /∈ S1 are non trivial homomorphisms,
we can use exercise 2.16 to prove the existence of an x such that ϕ(x) = −1, which would implies that
Kerϕ 6= K∗, i.e. Kerϕ = N1N2N3.
This condition is equivalent to S1 6⊂ S2 and S3 6⊂ S2.
In fact by the different form of ϕ, it suffices to show that (S1 6⊂ S2 and S3 6⊂ S2) or (S2 6⊂ S1 and S3 6⊂ S1)
or (S1 6⊂ S3 and S2 6⊂ S3). And this is easy, because if it was not true, we would have Si = MK for a certain
i, but by Tchebotarev density theorem, this is possible only if Ki = K.

Exercise 5.3.
Firstly, let’s verify that all the local degrees are 1 or 2.
For the infinite places, it is always the case.
For p prime, it suffices to show that either 13, 17 or 13 · 17 are squares in Qp.

First case: p /∈ {2, 13, 17}. We have

13 square in Qp ⇐⇒
(

13

p

)
= 1

17 square in Qp ⇐⇒
(

17

p

)
= 1

13 · 17 square in Qp ⇐⇒
(

13 · 17

p

)
= 1

And by multiplicativity of the Legendre symbol, we are done.

Second case: p = 13 or p = 17. As
(

17
13

)
= 1 and

(
13
17

)
= 1 (it is nice to prove it with the quadratic reciprocity

proven exercise 1 and 2), 13 is a square in Q17 and 17 is a square in Q13.

Third case: p = 2, 17 ∼= 1 (mod 8), and therefore 17 is a square in Q2.
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Hence, we are in the setup of exercise 5.2.
Then, recall that for Q(

√
13), if p is prime,(

p

13

)
= 1 ⇐⇒ p splits in Q(

√
13)

Therefore S1 = {p|
(
p
13

)
} ∪∞.

By exercise 2.8, we have if p /∈ {2, 13, 17,∞},

(17, x)p =

(
17

p

)vp(x)

(17, x)17 =

(
c

17

)
where c = (−1)v17(x)17−v17(x)x.

Thus, if x is a product of primes p such that
(
p
13

)
= −1. We have

ϕ(x) =
∏
v∈S1

(17, x)v

If v =∞, (17, x)v = 1 as 17 > 0.
If v = vp with p = 17, (17 ∈ S1 as

(
17
13

)
= 1) (17, x)v =

(
c
17

)
=
(
x
17

)
.

If v = vp with
(
p
13

)
= 1 and p 6= 17, then as vp(x) = 0, we have (17, x)p =

(
17
p

)vp(x)

= 1.

Thus,

ϕ(x) =

(
x

17

)
For example, ϕ(5) = −1, thus 5 /∈ Kerϕ = N1N2N3 = {x ∈ Q∗|x2 ∈ N}. And thus 52 is not a global norm,
but 52 is a local norm everywhere (as it is a square, and the local degrees are 1 or 2).

Exercise 5.4.
Let’s consider the short exact sequence:

0 // L∗
f // JL

g // CL // 0

And the associated long exact sequence of cohomology :

Ĥ−2(G, JL)
g // Ĥ−2(G,CL) // Ĥ−1(G,L∗)

f // Ĥ−1(G, JL)
g // Ĥ−1(G,CL)

Given this long exact sequence, to show that Ĥ−1(G,L∗) = 0, it suffices to show that:

1) That g : Ĥ−2(G, JL)→ Ĥ−2(G,CL) is surjective.

2) That g : Ĥ−1(G, JL)→ Ĥ−1(G,CL) is injective.
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Remark: In the following, we will, as in chapter VII, identify Ĥr(G, JL) with
⊕

v∈MK

Ĥr(Gv, (Lv)∗).

Let’s prove the following lemma:
Lemma: Let w be a prime such that the local degree at w is the global degree of the extension.
Then the following diagram is commutative: ⊕

v∈MK

Ĥr(Gv, (Lv)∗)
g // Ĥr(G,CL)

Ĥr(Gw, L∗w)

iw

OO

Ĥr−2(G,Z)
uLw/Kw ·

oo

uL/K ·

OO

Where iw is the inclusion, uLw/Kw · is the cup product with uLw/Kw the canonical generator of Ĥ2(G,Lw∗),
and uL/K · is the cup product with uL/K the canonical generator of Ĥ2(G,CL).

Proof of the lemma Firstly, let’s remark that this diagram is well defined as Ĥr−2(Gw,Z) = Ĥr−2(G,Z)
(because Gw = G).
Then, the key is in the construction of uL/K .
Chapter VII, §11.2 gives us the following commutative diagram:

⊕
v∈MK

Ĥ2(Gv, (Lv)∗)
g //

inv1

((

Ĥ2(G,CL)

inv

��
1
nZ/Z

with inv1 =
∑
v
invv, and n = #G.

Thus, as uL/K is the element of Ĥ2(G,CL) such as inv(uL/K) = 1
n . Thus any element x of

⊕
v∈MK

Ĥ2(Gv, (Lv)∗)

with inv1(x) = 1
n maps to uL/K through g. And, in particular, as the local degree of w is n, iw(uLw/Kw) =

(1, 1, ..., uLw/Kw , ...) maps to uL/K through g.
And that (with the fact that g is a homomorphism) suffices to conclude the commutativity of the diagram.

Let’s now apply this lemma to r = −2. As the cup product with uL/K is an isomorphism (and surjective
in particular), the lemma proves 1).
Let’s apply the lemma to r = −1. In that case, if v 6= w, Gv is cyclic, thus Ĥ−1(Gv, (Lv)∗) = Ĥ1(Gv, (Lv)∗) =
0 by Hilbert’s theorem 90.
Thus, i0 : Ĥ−1(Gw, L∗w) →

⊕
v∈MK

Ĥ−1(Gv, (Lv)∗) is an isomorphism. As all the arrow in the diagram are

isomorphisms, g is an isomorphism from
⊕

v∈MK

Ĥ−1(Gv, (Lv)∗) to Ĥ−1(G,CL). In particular, we have proven

2).

And that concludes that
Ĥ−1(G,L∗) = 1
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As Ĥ−1(G,L∗w) ∼= Ĥ−3(G,Z).
And by the perfect duality, we have Ĥ−3(G,Z)× Ĥ3(G,Z) ∼= Ĥ0(G,Z) ∼= Z/4Z. And as Ĥ3(G,Z) ∼= Z/2Z.
Thus,

Ĥ−1(G,L∗w) = Z/2Z

Concrete illustration: K = Q, L = Q(i,
√

2) = Q(ξ) with ξ4 = −1.

If p 6= 2, by multiplicativity of the Legendre symbol Qp(
√
−1,
√

2) is of degree 1 or 2 over Qp.
If p = 2, (p) = ((ξ + 1)4), because (ξ + 1)4 = 2i(1 +

√
2)2. Therefore, 2 is totally ramified and Q2(ξ)/Q2 is

of degree 4.

Let M = Q(i), LW ,Mv the completions at the primes above 2 (Mv = Q2(i) and Lw = Q2(i,
√

2)).
We have the following commutative diagram:

N−1
L/Q({1}) �

� //

NLw/Mv
����

N−1
Lw/Q({1})

NL/M
����

NL/M (L∗) ∩N−1
M/Q({1}) �

� // NLw/Mv
(L∗w) ∩N−1

Mv/Q({1})

Remark: we have (NLw/Mv
)|L = NL/M . Thus by continuity of NLw/Mv

, if N−1
L/Q({1}) is dense in N−1

Lw/Q({1}),
then NL/M (L∗) ∩N−1

M/Q({1}) is dense in NLw/Mv
(L∗w) ∩N−1

Mv/Q({1}).

Now let z = 2+i
2−i .

It is clear that NMv/Q(z) = 1. Let’s prove that z ∈ NLw/Mv
(L∗w). We have

z =
2 + i

2− i
=

(2 + i)2

5

As (2 + i)2 = NLw/Mv
(2 + i), it suffices to prove that 5 is norm from Lw.

Let x ∈ Q2 such that x2 = −7. We have

NLw/Mv
(ix+

√
2i) = (ix)2 − 2i2 = 5

Thus, z ∈ NLw/Mv
(L∗w) ∩N−1

Mv/Q({1}).

z(M∗v )2 induces an open subset in NLw/Mv
(L∗w) ∩N−1

Mv/Q({1}) containing z.
Let’s show that X = z(M∗v )2 ∩ (NL/M (L∗) ∩N−1

M/Q({1})) = ∅.

Remark: from now on, we will make an extensive use of the fact that Z[i] the ring of integers of Q(i) is
factorial. The primes in Z[i] are the following :

• if p = 3 (mod 4), p is prime in Z[i].

• if p = 1 (mod 4), there are two primes dividing p, π and π̄.
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• if p = 2, there is one prime dividing p. Explicitly, 2 = −i(1 + i)2.

Firstly, let x ∈ Q(i)∗ such that NM/Q(x) = 1. By writing x as y1
y2

with y1, y2 coprime in Z[i], by decomposing
y1 and y2 into their prime factors, and by taking the norm, we see that we must have x = uyȳ , with u a unit,
i.e. u ∈ {±1,±i}.
As 1+i

1−i = i, we can assume that u ∈ ±1.

Let’s say y = v + iu and m = u2 + v2, such that x = ±1y
2

m = t2

m .

Now, x = t2

m ∈ z(M
∗
v )2 = z(Q2(i)∗)2 = 5(Q2(i)∗)2 is equivalent to 5m ∈ (Q2(i)∗)2.

As 5m is real, it implies that ±5m ∈ Q2
2.

Write m = 2v2(m)m0, it implies that v2(m) is even and ±5m0 = 1 (mod 8) ( i.e. m = ±5 (mod 8)).

Let’s prove that all the positive integers represented by X2 + Y 2 are of the form

m = 2α2

∏
p=1 (mod 4)

pαp
∏

p=3 (mod 4)

p2βp

by making it a direct application of exercise 4.

m is represented by X2 + Y 2 in Z ⇐⇒ m is represented by X2 + Y 2 in Q (exercise 4.9)

⇐⇒ m is represented by X2 + Y 2 in Qv,∀v (exercise 4.8)

⇐⇒ X2 + Y 2 −mZ2 respresents 0 in Qv,∀v
⇐⇒ (−1, n)v = 1, for all v (exercise 4.5)

⇐⇒ (−1, n)p = 1, for all odd primes p ((−1, n)∞ = 1 and
∏

(−1, n)v = 1)

And, as, for p = 1 (mod 4), (−1, n)p =
(
−1
p

)vp(n)

= 1, and for p = 3 (mod 4), (−1, n)p =
(
−1
p

)vp(n)

=

(−1)vp(n), then

m is represented by X2 + Y 2 in Z ⇐⇒ for all prime p = 3 (mod 4), vp(n) is even.

Let’s come bake to our m. The preceding fact tells us that m0 =
∏

p=1 (mod 4)
pαp

∏
p=3 (mod 4)

p2βp , which implies

that m0 = 1 (mod 4). And as we had m0 = ±5 (mod 8), we finally have

m0 = 5 (mod 8)

As m0 = 5 (mod 8), there is a prime p0 = 5 (mod 8) such that αp0 is an odd positive integer.

Suppose now that x = t2

m is in NL/M (L∗), which is equivalent to m ∈ NL/M (L∗), i.e. m = u2 − 2v2 with
u, v ∈ Q(i). Let multiply by d2 where d is the common denominator d of u, v and divide by d′2 where d′ is
gcd(du, dv).
Therefore, we have m′ = u′2− 2v′2, with u′, v′,m′ ∈ Z[i], u′, v′ are coprime and p0|m′, as we have divided by
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a square and α0 was odd.

Now, we have
0 = ū′

2 − 2v̄′
2 (mod p0Z[i])

But as p0 = 5 (mod 8), 2 is not a square in Z/p0Z, and Z/p0Z = Z[i]/p0Z[i], as −1 is square in Z/p0Z (p0 = 1
(mod 4)). (See exercise 1.10 for the criterion of being a square).
Therefore, it follows that v̄′ = 0 (mod p0Z[i]) and ū′ = 0 (mod p0Z[i]), i.e. p0|u′ and p0|v′. Contradiction
with the fact that u′ and v′ are coprime.

Hence, as announced,
z(M∗v )2 ∩ (NL/M (L∗) ∩N−1

M/Q({1})) = ∅
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Exercise 6: On Decomposition of Primes
Exercise 6.1.
Let ML/K be the compositum of M and L. And let S contains the archimedean primes and the primes
ramified in ML.
Then,

p ∈ SplS(LM/K) ⇐⇒ FML/K(p) = (1) (as a conjuguacy class of Gal(ML/K))
⇐⇒ FML/K(p)|M = (1) and FML/K(p)|L = (1)

⇐⇒ FL/K(p) = (1) and FM/K(p) = (1) (by the demonstration of §3.2, chapter VII)
⇐⇒ p ∈ SplS(L/K) and p ∈ SplS(M/K)

Thus,
SplS(LM/K) = SplS(L/K) ∩ SplS(M/K)

Then,

L ⊂M ⇒ SplS(M/K) ⊂ SplS(L/K) (as FM/K(p)|L = FL/K(p))
⇒ SplS(LM/K) = SplS(M/K)

⇒ [LM : K] = [M : K] (By Tchebotarev density theorem)
⇒ L ⊂M

Thus
L = M ⇐⇒ SplS(M/K) = SplS(L/K)

Application:
Firstly, we can take f unitary.
Secondly, choice of S: S will contain the following primes

• the archimedean primes

• the primes p such that f /∈ Op[X]

• the primes p such that f does not split mod p

• the primes p dividing the discriminant of f

Assertion: For all prime p outside S, p splits completely in the splitting field of f .

Thirdly, let’s consider K(α)/K with α separable and let f = πα,K the minimal polynomial of α. Have p
outside S.
f is separable. And if f is the image of f mod p, then f is separable because if αi, αj are different roots of
f in an algebraic closure, then p 6 |αi − αj , as p does not divide the discriminant of f .
Thus, if f splits mod p, we can Hensel’s lemma, and f split in Kp. Therefore,

K(α)⊗K Kp = K
deg(f)
p

i.e. p splits completely in K(α).
Now, the general case of the assertion is obtained by induction and by the following facts:
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• If g|f and f is separable and splits mod p, then g does too.

• If K ⊂M ⊂ L, if p splits completely, into the product of p1, ..., pn, primes in M , and if each primes pi
splits completely in L, then p splits completely in L.

Therefore, the assertion is true.

Now, as the splitting field of f is Galois over K, and as SplS(K) = MK − S ⊂ SplS(L), then L ⊂ K. And
thus,

L = K, i.e. f splits into linear factors in K.

Exercise 6.2.
Suppose that v splits completely in E (i.e. Gv = {Id}). Let σ ∈ Gw with w a prime in L above v, and let
wE the corresponding prime in E.
We have σ|E ∈ GwE . But GwE = {Id}. Therefore σ|E = Id and σ ∈ Gal(L/E). Thus Gw ⊂ Gal(L/E), and
this is true for all w above v (i.e. for all conjugates of Gv).

Reciprocally, suppose that for all w prime in L above v, Gw ⊂ H.
Let wE be a prime in L above v.
Let σE ∈ GwE and σ ∈ Gal(L/K) such that σ|E = σE .
Then, let w prime in L above wE , and w′ = σ(w).
There is τ ∈ Gal(L/E) such that τ(w′) = w.
Therefore

(τ ◦ σ)w = w

i.e. τ ◦ σ ∈ Gw ⊂ H, and σ ∈ τ−1H = H. Therefore σE = σ|E = Id. And GwE = {Id}, and this is true for
all wE , therefore v splits completely in E.
Finally,

v splits completely in E if and only if all the conjugates of Gv are contained in H

Now, suppose that v has a split factor in E.
There is wE above v such that GwE = {Id}. Then, for all w prime in L above wE , if σ ∈ Gw, σ|E ∈ GwE
(i.e. σ|E = Id). Thus Gw ⊂ H.

Reciprocally, suppose that Gw ⊂ H, with w prime in L. w is above wE prime in E.
And, let σE ∈ GwE , σ ∈ Gal(L/K) such that σ|E = σE . Then, w′ = σ(w) and there is τ ∈ Gal(L/E) such
that τ(w′) = w.
Therefore

(τ ◦ σ)w = w

i.e. τ ◦ σ ∈ Gw ⊂ H, and σ ∈ τ−1H = H. Therefore σE = σ|E = Id. And GwE = {Id}, therefore v has a
split factor in E.
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Let S contains the archimedean primes, and the primes that ramify in L. We have

Spl′S(E/K) = {v /∈ S, v has a split factor in E}
= {v /∈ S, ∃ρ ∈ G, ρGvρ−1 ⊂ H}
= {v /∈ S, ∃ρ ∈ G,FL/K(v) is the conjugacy class of an element in ρ−1Hρ}
= {v /∈ S, FL/K(v) is the conjugacy class of an element in H}

=
⊔

<σ>,σ∈H
{v /∈ S, FL/K(v) =< σ >}

Thus by Tchebotarev density theorem (and S finite),

Spl′S(E/K) has density |
⋃
ρ∈G

ρHρ−1|/|G|.

We have
⋃
ρ∈G

ρHρ−1 =
⋃

ρ∈G/H
ρHρ−1 =

( ⋃
ρ∈G

ρ(H − 1)ρ−1

)⋃
{1}.

Thus

|
⋃
ρ∈G

ρHρ−1| ≤ |G/H|(|H| − 1) + 1

≤ |G| − |G/H|+ 1

Therefore, if H is a proper subgroup, then |
⋃
ρ∈G

ρHρ−1| < |G|.

If Spl′S(E/K) has density 1, then H = G and E = K.

Application: Let f be an irreducible separable polynomial. Let L be the splitting field of f . And E = K(α),
with α a root of f .
Let S contains the following primes:

• the archimedean primes

• the primes p such that f has no root mod p,

• the primes p such that f /∈ Op[X]

• the primes p dividing the discriminant of f

The same reasoning as in exercise 6.1 applies, and, therefore by Hensel’s lemma, f has a root in Kp for all
p /∈ S.
Thus, for all p /∈ S, p has a spit factor in E.
Therefore Spl′S(E/K) has density 1. And E = K.
And therefore f has a root in K (i.e. f = X − α).

Example of what can happen for f reducible: Let f = (X − a)(X − b)(X − ab) with a, b, ab non squares in
Qp. (This is always possible in Qp, see [Ser94], Chapter 2).
In a finite field, the product of two non squares is a square. Therefore, f has a root mod p for all p. But f
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has no root in Qp.

Exercise 6.3.
Let ρ : G→ Aut(C[G/H]) and ρ′ : G→ Aut(C[G/H ′]) the permutation representations of G corresponding,
respectively, to H and H ′.

ρ ∼ ρ′ ⇐⇒ χρ = χρ′

Fact:
χρ(g) = tr(ρ(g)) = #{g′H ∈ G/H, gg′H = g′H} = #{g′H ∈ G/H, g′−1gg′ ∈ H}

Thus, g = 1 gives us #G/H = #G/H ′, i.e. #H = #H ′.
And thus χρ(g) = #{g′ ∈ G, g′−1gg′ ∈ H}/#H = #(< g > ∩H)#CG(g)/#H.
Thus,

ρ ∼ ρ′ ⇐⇒ #(< g > ∩H) = #(< g > ∩H ′),∀g ∈ G

Remark: If H C G, χρ = 1H . Therefore, this phenomenon happens only if H = H ′.

Let H = {1, (X1 X2)(X3 X4), (X1 X3)(X2 X4), (X1 X4)(X2 X3)}
and H ′ = {1, (X1 X2)(X3 X4), (X1 X2)(X5 X6), (X3 X4)(X5 X6)}.

Fact: In S6, every product of two disjoint transpositions are conjugates. Therefore, H and H ′ satisfy the
above condition.
But we also have #supp(H) = #supp(gHg−1) and #supp(H) 6= #supp(H ′), therefore H and H ′ are not
conjugates.

Exercise 6.4.
A correction of this exercise can be found in [Per77].
For the sake of completeness, and because the demonstration is not in [Per77] but is said to be in [Has70]
(which seems impossible to find), let’s highlight the link between the Galois group and the decomposition of
primes. This is all taken from [Kli98] (chapter 1).

Firstly, let’s define the decomposition type.

Definitions:

a) Let K/k be an extension of number fields, p a prime of k.
If p has exactly r prime divisors in K with residue degrees f1 ≤ ... ≤ fr, we call

AK/k(p) = (f1, ..., fr)

the decomposition type of p in K.

b) If a permutation σ of n objects decomposes into a product of r disjoint cycles of length f1 ≤ ... ≤ fr
with all fixed points included as cycles of length 1 (hence f1 + ...+ fr = n), then we call (f1, ..., fr) the
cycle type of σ.
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Theorem:
Let K = k(a)/k be a finite extension of number fields. N/k a Galois extension containing K with Galois
group G = Gal(N/k).
Then, for any prime ideal p of k which is unramified in N the following statements are equivalent:

i) p has decomposition type (f1, ..., fr) in K

ii) The Frobenius automorphism F of any prime O of N over p acting on n conjugates of a has cycle type
(f1, ..., fr).

Proof: Let O prime of N dividing p, F = FN/k(O) and Pσ = Oσ ∩K.
Then

Pσ = Pσ′ ⇐⇒ Oσ conjugate to Oσ′ over K

⇐⇒ Oσ = Oσ′τ for some τ ∈ Gal(N/K)

⇐⇒ σ′τσ−1 ∈ GO for some τ ∈ Gal(N/K)

⇐⇒ σ′τ = Fmσ for some m ∈ Z, τ ∈ Gal(N/K)

⇐⇒ σ′(a) = Fmσ(a) for some m ∈ Z
⇐⇒ σ′(a) belongs to the orbit of σ(a) under < F >

⇐⇒ σ′(a) and σ(a) belongs to the same cycle of F

Hence there are as many different prime divisors Pσ of p in K as there are cycles of F under its action on
the conjugates of a.
To conclude, we are going to use a combinatorial argument. As the sum of the length of the cycles must be
n which is also the sum if the local degrees (as p is unramified), it suffices to prove:

Fm(σ(a)) = σ(a) ⇐⇒ f(Pσ|p) divides m

And

Fm(σ(a)) = σ(a) ⇐⇒ σ−1Fmσ ∈ Gal(N/K)

⇐⇒ (Fσ)m ∈ Gal(N/K) ∩GOσ = DN/K(Oσ)

⇐⇒ (Fσ)m ∈< FN/K(Oσ) >=< (Fσ)f(Pσ|p) >

⇐⇒ m = df(Pσ|p) mod ord(Fσ)

⇐⇒ f(Pσ|p)|m (because ord(Fσ) = f(Oσ|p) = f(Oσ|Pσ)f(Pσ|p))

That concludes.

We have now the following corollary:

Corollary:
Let K/k be a finite extension of number fields, N/k a Galois extension containing K with G = Gal(N/k) its
Galois group and H = Gal(N/K) the subgroup corresponding to K.
Let χH denote the character of the permutation representation of G corresponding to H.
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Then for all primes p of K which are unramified in N , the decomposition type in K is uniquely determined
by the character χH .
Explicitly: If F = FN/k(O), with O dividing a unramified prime p, then the decomposition type (f1, ..., fr)
of p in K is recursively given by by the formulae:

χH(F s) =
∑

i∈{1,...,r},fi|s

fi

for s ∈ N∗.

Proof: As G acts transitively on the conjugates of a, and as the stabilizer subgroup of a is H, the action of
G on ConjN/k(a) is the same as on G/H.
In fact, we have the following commutative diagram: G

ww ''
G/H

∼ // ConjN/k(a)

Thus, by the previous theorem, it suffices to show that the cycle type of F acting on G/H is determined by
χH .

Let σ =
r∏
i=1

σi and with fi the length of σi, and with the σi are of disjoint support.

Then, σs =
r∏
i=1

σsi and χH(σs) =
r∑
i=1

χi(σ
s
i ), with χi compting the number of fixed points by permutations

of the elements of the support of σi.
As the σi are cycles, χi(σsi ) = 0 if fi 6 |s or χi(σsi ) = fi if fi|s.
Therefore,

χ(σs) =
∑

i∈{1,...,r},fi|s

fi

That concludes.
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Exercise 7: A Lemma on Admissible Maps
Exercise 7.1.
Let ϕ : IS → H be an admissible homomorphism.
By chapter VII, §4.1, there is β : CK → H such that

• β is continuous

• β(x̄) = φ((x)S), for all x ∈ JSK

As β is continuous and H discrete, Ker(β) is open.
By the existence theorem (chapter VII, §5.1), there is an abelian extension L/K such thatKer(β) = NL/KCL
and ΨL/K : CK/Ker(β)

∼−→ Gal(L/K).

Let v be outside S and x ∈ Uv, ϕ((x)S) = ϕ(0) = 1. Thus, the image of iv(Uv) in CK is in Ker(β). Therefore,
by exercise 3.1, v is unramified in L/K.

Let α be such that the following diagram is commutative: Gal(L/K)
α

''
CK/Ker(β)

β̄ //

ΨL/K 77

H

α = β̄ ◦Ψ−1
L/K is injective as β̄ and Ψ−1

L/K are injective.

If a ∈ IS and x ∈ JSK such that (x)S = a, then

ϕ(a) = ϕ((x)S) = β(x̄) = β̄(¯̄x) = α ◦ΨL/K(¯̄x) = α(FL/K((x)S)) = α(FL/K(a))

Exercise 7.2.
As α is injective, ϕ(v) = 1 for all prime v in a set of density 1 implies FL/K(v) = 1 for all prime v in a set of
density 1.
But, by Tchebotarev density theorem, {v ∈MK |FL/K(v) = 1} has density 1

#Gal(L/K) .
Therefore, #Gal(L/K) = 1 and L = K. And FL/K = 1. And ϕ = α ◦ FL/K = 1.

Exercise 7.3.
By "transport de structure", let’s suppose that L and L′ live in the same algebraic closure.
Firstly, α′ ◦ FL′/K is an admissible homomorphism since FL′/K is an admissible homomorphism.
Thus, by exercise 7.2, α′ ◦ FL′/K = ϕ = α ◦ FL/K .

Now, let M be the compositum of L and L′.
Then, we have the following diagrams from chapter VII, §3.2:

IS
FM/K //

Id

��

Gal(M/K)

θ′

��
IS

FL′/K // Gal(L′/K)
α′ // H

41



IS
FM/K //

Id

��

Gal(M/K)

θ

��
IS

FL/K // Gal(L/K)
α // H

Thus, α′ ◦ θ′ ◦ FM/K = α ◦ θ ◦ FM/K .

As FM/K is surjective (consequence of Tchebotarev density theorem) and α, α′ is injective, Kerθ = Kerθ′.
Thus, Gal(M/L) = Gal(M/L′), i.e. L = L′.
And again by surjectivity, α′ ◦ FL/K = α ◦ FL/K implies α = α′.

Thus, in the general case (we do not impose that L and L′ are in the same algebraic closure), by "transport
de structure" (α,L) and (α′, L′) share the same properties.
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Exercise 8: Norms from Non-abelian Extensions
The following diagram is commutative:

Hab ∼ //

θ

��

CE/NL/ECL

NE/K

��
Gab

∼ // CK/NL/KCL

Thus,

Gal(M/K) ' Gab/θ(Hab) '
CK/NL/KCL

NE/KCE/NE/KNL/ECL
' CK/NE/KCE

(As NE/KNL/E = NL/K).

As, by class field theory, Gal(M/K) ' CK/NM/KCM , NM/KCM and NE/KCE have the same index in CK .

As NM/KNE/M = NE/K , we have NE/KCE ⊂ NM/KCM .
Thus,

NE/KCE = NM/KCM
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Appendix
Let’s state a useful criterion for a separable extension to be unramified at a certain prime.
A more complete result can be found in [Cox13] (chapter 5, proposition 5.11).

Lemma: Let L/K be a Galois extension, where L = K(α) for some α ∈ OL. Let f(x) be the monic minimal
polynomial of α over K, so that f(x) ∈ OK [x]. If p is prime in OK and f(x) is separable modulo p, then p
is unramified in L.

Proof: Let P be a prime of OL containing p, and let GP be the associated decomposition subgroup. GP is
of order ef .

Let f(x) = f1(x)...fr(x) (mod p) where the fi(x) are distinct and irreducible mod p. Then as f(α) = 0,
f1(α)...fg(α) ∈ p ⊂ P. Thus, fi(α) ∈ P for some i. Let’s assume f1(α) ∈ P, i.e. f1(α) = 0 in OL/P.
Thus, deg(f1(x)) = [(OK/p)(α) : OK/p] ≤ [OL/P : OK/p] = f .

Now, f1(σ(α)) ∈ P for all σ ∈ GP. As f(x) is separable mod p, the σ(α) for σ ∈ G = Gal(L/K) are all
different in OL/P (they run through all the roots of f mod p). Therefore #GP ≤ deg(f1(x)).
Hence, as #GP = ef . We have e = 1, f = deg(f1(x)). And p is unramified in L.

Furthermore, this reasoning tells us that, for all i, there is an associated coset σGP such that the roots
of fi in OL/P are the images of α by this coset. (You first take σ such that α is a root of fi ◦σ = 0 in OL/P
and then fi ◦ σ|f ◦ σ = f , thus fi ◦ σ = f1 mod p). Therefore, all polynomial fi have the same degree f , and
therefore the number of polynomial g is the number of prime in L dividing p.

We can therefore state an easy corollary of this demonstration.

Corollary: In addition, if f has a root in OK/p, then p splits completely in L.
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