
M2PM3 HANDOUT: THE ABEL AND DIRICHLET TESTS FOR
CONVERGENCE

The Abel and Dirichlet tests for convergence of series belong to Real Anal-
ysis rather than, or as much as, to Complex Analysis. We give them here since
they are necessary for handling convergence and absolute convergence of Dirich-
let series – series of the form

∑∞
n=1an/n

s, with s a complex variable. These,
and in particular the most important special case, the Riemann zeta function
ζ(s) :=

∑∞
n=1an/n

s, are important in Analytic Number Theory; the zeta func-
tions is crucial for the study of the distribution of prime numbers. In this course,
the main importance of the zeta functions is as an example of the crucially im-
portant concept of analytic continuation (III.8). See Coursework 1 (2010).

Abel’s Lemma below is the discrete analogue of integration by parts, or par-
tial integration. It is accordingly also called partial summation. In what follows,
an, vn are real.

Theorem (Abel’s Lemma, or Partial Summation).
Write sn := a1 + . . .+ an. Show that

(i) a1v1 + . . .+ anvn = s1(v1 − v2) + . . .+ sn−1(vn−1 − vn) + snvn.
(ii) If m ≤ a1 + . . .+ an ≤ M for all n, and vn is positive and decreasing, then
mv1 ≤ a1v1 + . . .+ anvn ≤ Mv1.
(iii) If in (ii) |sn| ≤ M for all n, then |a1v1 + . . . anvn| ≤ Mv1 for all n.

Proof. (i)

a1v1 + . . . anvn = s1v1 + (s2 − s1)v1 + . . .+ (sn − sn−1)vn

= s1(v1 − v2) + s2(v2 − v3) + . . .+ sn−1(vn−1 − vn) + snvn.

(ii) As vn ↓, vk − vk+1 ≥ 0. This and m ≤ sk ≤ M give

m(vk−vk+1) ≤ sk(vk−vk+1) ≤ M(vk−vk+1) (k = 1, . . . , n−1), mvn ≤ snvn ≤ Mvn.

Sum over k = 1 to n− 1: the left and right telescope. Using (i) for the middle
gives

mv1 ≤ a1v1 + . . .+ anvn ≤ Mv1.

(iii) If |sn| ≤ M for all n, taking m = −M in (ii) gives

|a1v1 + . . .+ anvn| ≤ Mv1. //

Theorem (Dirichlet’s Text for Convergence).
If (an) has bounded partial sums sn =

∑n
1 ak and vn ↓ 0, then

∑
anvn is con-

vergent.

Proof. As vn ↓ 0: ∀ϵ > 0 ∃N such that for n ≥ N , 0 ≤ vn < ϵ. As the partial
sums of

∑
an are bounded, for some M |

∑n
1 ak| ≤ M for all n. So

|
n∑
m

ak| = |
n∑
1

ak −
m−1∑
1

ak| ≤ 2M ∀m,n (m ≤ n).
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So by (iii) of Abel’s Lemma, |
∑n

m akvk| ≤ 2Mϵ for all m,n ≥ N . By Cauchy’s
General Principle of Convergence,

∑
anvn converges (as it is Cauchy).//

Theorem Abel’s Test for Convergence.
If
∑

an converges and vn ↓ ℓ for some ℓ, then
∑

anvn converges.

Proof. As the series
∑

an converges, its sequence sn :=
∑n

1 ak of partial sums
converges. So (sn) is bounded. As vn ↓ ℓ, wn := vn − ℓ ↓ 0. So by Dirichlet’s
Test,

∑
anwn converges, to c say:

a1w1 + . . . anwn → c (n → ∞).

That is
a1v1 + . . . anvn − ℓ(a1 + . . .+ an) → c (n → ∞).

But a1 + . . . an → b :=
∑∞

1 ak. So

a1v1 + . . . anvn → c+ ℓ.b (n → ∞),

i.e.
∑

anvn converges. //

We include the following results (used in Coursework 1, 2010, and III.8,
2011) for completeness.

Theorem (Alternating Series Test). If an ↓ 0,
∑

(−1)nan converges.

Proof. Write sn :=
∑n

1 ak.

s2n = (a1 − a2) + . . .+ (a2n−1 − a2n). (1)

Since an ↓, each bracket on RHS is ≥ 0, so s2n ↑. But bracketing differently,

s2n = a1 − (a2 − a3)− . . .− (a2n−2 − a2n−1)− a2n. (2)

Each bracket on RHS is ≥ 0 as an ↓, and a2n ≥ 0. So s2n ≤ a1. So s2n is ↑ and
bounded above, so

s2n ↑ s < ∞.

Also s2n+1 = s2n + a2n+1. But s2n → s, a2n+1 → 0, so

s2n+1 → s+ 0 = s.

Combining the odd and even subsequences gives sn → s, as required. //

Theorem (Integral Test). If f(x) is decreasing and non-negative on [1,∞),∑∞
1 f(n) and

∫∞
1

f(x)dx converge or diverge together.

We omit the proof (see a textbook on Analysis); you may quote the result.
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