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Preface

These notes cover the essential material of the LTCC course ‘Fundamental
Theory of Statistical Inference’. They are extracted from the key reference for
the course, Young and Smith (2005), which should be consulted for further
discussion and detail. The book by Cox (2006) is also highly recommended
as further reading.

The course aims to provide a concise but comprehensive account of the es-
sential elements of statistical inference and theory. It is intended to give
a contemporary and accessible account of procedures used to draw formal
inference from data.

The material assumes a basic knowledge of the ideas of statistical inference
and distribution theory. We focus on a presentation of the main concepts and
results underlying different frameworks of inference, with particular emphasis
on the contrasts among frequentist, Fisherian and Bayesian approaches.

G.A. Young and R.L. Smith. ‘Essentials of Statistical Inference’. Cambridge
University Press, 2005.

D.R. Cox. ‘Principles of Statistical Inference’. Cambridge University Press,
2006.

The following provide article-length discussions which draw together many
of the ideas developed in the course:

M.J. Bayarri and J. Berger (2004). The interplay between Bayesian and
frequentist analysis. Statistical Science, 19, 58–80.

J. Berger (2003). Could Fisher, Jeffreys and Neyman have agreed on testing
(with discussion)? Statistical Science, 18, 1–32.

B. Efron. (1998). R.A. Fisher in the 21st Century (with discussion). Statis-
tical Science, 13, 95–122.

G. Alastair Young
Imperial College London
November 2021

ii



1 Approaches to Statistical Inference

1 Approaches to Statistical Inference

What is statistical inference?

In statistical inference experimental or observational data are modelled as
the observed values of random variables, to provide a framework from which
inductive conclusions may be drawn about the mechanism giving rise to the
data.

We wish to analyse observations y = (y1, . . . , yn) by:

1. Regarding y as the observed value of a random variable Y = (Y1, . . . , Yn)
having an (unknown) probability distribution, conveniently specified by
a probability density, or probability mass function, f(y).

2. Restricting the unknown density to a suitable family or set F . In
parametric statistical inference, f(y) is of known analytic form, but
involves a finite number of real unknown parameters θ = (θ1, . . . , θd).
We specify the region Ωθ ⊆ Rd of possible values of θ, the parameter
space. To denote the dependency of f(y) on θ, we write f(y; θ) and refer
to this as the model function. Alternatively, the data could be modelled
nonparametrically, a nonparametric model simply being one which does
not admit a parametric representation. We will be concerned entirely
with parametric statistical inference.

The objective that we then assume is that of assessing, on the basis of the
observed data y, some aspect of θ, which for the purpose of the discussion
in this paragraph we take to be the value of a particular component, θi say.
In that regard, we identify three main types of inference: point estimation,
confidence set estimation and hypothesis testing. In point estimation, a sin-
gle value is computed from the data y and used as an estimate of θi. In
confidence set estimation we provide a set of values which, it is hoped, has a
predetermined high probability of including the true, but unknown, value of
θi. Hypothesis testing sets up specific hypotheses regarding θi and assesses
the plausibility of any such hypothesis by assessing whether or not the data
y support that hypothesis.

Of course, other objectives might be considered, such as: (a) prediction of the
value of some as yet unobserved random variable whose distribution depends
on θ, or (b) examination of the adequacy of the model specified by F and
Ωθ. These are important problems, but are not the main focus here.
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1 Approaches to Statistical Inference

How do we approach statistical inference?

Following Efron (1998), we identify three main paradigms of statistical in-
ference: the Bayesian, Fisherian and frequentist. A key objective of
this course is to develop in detail the essential features of all three schools
of thought and to highlight, we hope in an interesting way, the potential
conflicts between them. The basic differences that emerge relate to interpre-
tation of probability and to the objectives of statistical inference. To set the
scene, it is of some value to sketch straight away the main characteristics
of the three paradigms. To do so, it is instructive to look a little at the
historical development of the subject.

The Bayesian paradigm goes back to Bayes and Laplace, in the late 18th
century. The fundamental idea behind this approach is that the unknown
parameter, θ, should itself be treated as a random variable. Key to the
Bayesian viewpoint, therefore, is the specification of a prior probability dis-
tribution on θ, before the data analysis. We will describe in some detail in
Chapter 3 the main approaches to specification of prior distributions, but this
can basically be done in either some objective way, or in a subjective way
which reflects the statistician’s own prior state of belief. To the Bayesian,
inference is the formalization of how the prior distribution changes, to the
posterior distribution, in the light of the evidence presented by the avail-
able data y, through Bayes’ formula. Central to the Bayesian perspective,
therefore, is a use of probability distributions as expressing opinion.

In the early 1920’s, R.A. Fisher put forward an opposing viewpoint, that
statistical inference must be based entirely on probabilities with direct ex-
perimental interpretation. As Efron (1998) notes, Fisher’s primary concern
was the development of a logic of inductive inference which would release the
statistician from the a priori assumptions of the Bayesian school. Central
to the Fisherian viewpoint is the repeated sampling principle. This dictates
that the inference we draw from y should be founded on an analysis of how
the conclusions change with variations in the data samples which would be
obtained through hypothetical repetitions, under exactly the same condi-
tions, of the experiment which generated the data y in the first place. In a
Fisherian approach to inference a central role is played by the concept of like-
lihood, and the associated principle of maximum likelihood. In essence, the
likelihood measures the probability that different values of the parameter θ
assign, under a hypothetical repetition of the experiment, to re-observation
of the actual data y. More formally, the ratio of the likelihood at two different
values of θ compares the relative plausibilities of observing the data y under
the models defined by the two θ values. A further fundamental element of
Fisher’s viewpoint is that inference, in order to be as relevant as possible to
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1 Approaches to Statistical Inference

the data y, must be carried out conditional on everything that is known and
uninformative about θ.

Fisher’s greatest contribution was to provide for the first time an optimality
yardstick for statistical estimation, a description of the optimum that it is
possible to do in a given estimation problem, and the technique of maximum
likelihood, which produces estimators of θ that are close to ideal in terms
of that yardstick. As described by Pace and Salvan (1997), spurred on by
Fisher’s introduction of optimality ideas, in the 1930’s and 1940’s, Neyman,
E.S. Pearson and, later, Wald and Lehmann, offered the third of the three
paradigms, the frequentist approach. The origins of this approach lay in
a detailed mathematical analysis of some of the fundamental concepts de-
veloped by Fisher, in particular likelihood and sufficiency. With this focus,
emphasis shifted from inference as a summary of data, as favoured by Fisher,
to inferential procedures viewed as decision problems. Key elements of the
frequentist approach are the need for clarity in mathematical formulation,
and that optimum inference procedures should be identified before the ob-
servations y are available, optimality being defined explicitly in terms of the
repeated sampling principle.
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2 Decision Theory

2 Decision Theory

In this chapter we give an account of the main ideas of decision theory. Our
motivation for beginning our account of statistical inference here is simple.
As we have noted, decision theory requires formal specification of all elements
of an inference problem, so starting with a discussion of decision theory allows
us to set up notation and basic ideas that run through the remainder of the
course in a formal but easy manner. In later sections, we will develop the
specific techniques and ideas of statistical inference that are central to the
three paradigms of inference.

Central to decision theory is the notion of a set of decision rules for an
inference problem. Comparison of different decision rules is based on exam-
ination of the risk functions of the rules. The risk function describes the
expected loss in use of the rule, under hypothetical repetition of the sam-
pling experiment giving rise to the data y, as a function of the parameter of
interest. Identification of an optimal rule requires introduction of fundamen-
tal principles for discrimination between rules, in particular the minimax
and Bayes principles.

2.1 Formulation

A full description of a statistical decision problem involves the following
formal elements.

(1) A parameter space Ωθ, which will usually be a subset of Rd for some
d ≥ 1, so that we have a vector of d unknown parameters. This represents
the set of possible unknown states of nature. The unknown parameter value
θ ∈ Ωθ is the quantity we wish to make inference about.

(2) A sample space Y , the space in which the data y lie. Typically we have
n observations, so the data, a generic element of the sample space, are of the
form y = (y1, ..., yn) ∈ Rn.

(3) A family of probability distributions on the sample space Y , indexed
by values θ ∈ Ωθ, {Pθ(y), y ∈ Y , θ ∈ Ωθ}. In nearly all practical cases this
will consist of an assumed parametric family f(y; θ), of probability mass
functions for y (in the discrete case), or probability density functions for y
(in the continuous case).

(4) An action space A. This represents the set of all actions or decisions
available to the experimenter.

Examples of action spaces include the following.
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2.2 The risk function

(a) In a hypothesis testing problem where it is necessary to decide between
two hypotheses H0 and H1, there are two possible actions corresponding to
“accept H0” and “accept H1”. So here A = {a0, a1}, where a0 represents
accepting H0 and a1 represents accepting H1.

(b) In an estimation problem where we want to estimate the unknown pa-
rameter value θ by some function of x = (x1, ..., xn), such as x̄ = 1

n

∑
xi or

s2 = 1
n−1

∑
(xi − x̄)2 or x3

1 + 27 sin(
√
x2), etc., we should allow ourselves the

possibility of estimating θ by any point in Ωθ. So, in this context we typically
have A ≡ Ωθ.

(5) A loss function L : Ωθ × A → R links the action to the unknown
parameter. If we take action a ∈ A when the true state of nature is θ ∈ Ωθ,
then we incur a loss L(θ, a).

Note that losses can be positive or negative, a negative loss corresponding to
a gain. It is a convention that we formulate the theory in terms of trying to
minimise our losses rather than trying to maximise our gains, but obviously
the two come to the same thing.

(6) A set D of decision rules. An element d : Y → A of D is such that
each point y in Y is associated with a specific action d(y) ∈ A.

For example, with hypothesis testing, we might adopt the rule “Accept H0

if ȳ ≤ 5.7, otherwise accept H1”. This corresponds to a decision rule,

d(y) =

{
a0 if ȳ ≤ 5.7,
a1 if ȳ > 5.7.

2.2 The risk function

For parameter value θ ∈ Ωθ, the risk associated with a decision rule d based
on random data Y is defined by

R(θ, d) = EθL(θ, d(Y ))

=


∫
Y L(θ, d(y))f(y; θ)dy for continuous Y ,∑
y∈Y L(θ, d(y))f(y; θ) for discrete Y .

So, we are treating the observed data y as the realised value of a random
variable Y with density or mass function f(y; θ), and defining the risk to be
the expected loss, the expectation being with respect to the distribution of
Y for the particular parameter value θ.

5



2.2 The risk function

The key notion of decision theory is that different decision rules should be
compared by comparing their risk functions, as functions of θ. Note that we
are explicitly invoking the repeated sampling principle here, the definition
of risk involving hypothetical repetitions of the sampling mechanism that
generated y, through the assumed distribution of Y .

When a loss function represents the real loss in some practical problem (as
opposed to some artificial loss function being set up in order to make the
statistical decision problem well defined) then it should really be measured
in units of “utility” rather than actual money. For example, the expected
return on a UK lottery ticket is less than the £1 cost of the ticket; if everyone
played so as to maximise their expected gain, nobody would ever buy a lottery
ticket! The reason that people still buy lottery tickets, translated into the
language of statistical decision theory, is that they subjectively evaluate the
very small chance of winning, say, £1,000,000 as worth more than a fixed
sum of £1, even though the chance of actually winning the £1,000,000 is
appreciably less than 1/1,000,000. There is a formal theory, known as utility
theory, which asserts that provided people behave rationally (a considerable
assumption in its own right!), then they will always act as if they were
maximising the expected value of a function known as the utility function. In
the lottery example, this implies that we subjectively evaluate the possibility
of a massive prize such as £1,000,000 to be worth more than 1,000,000 times
as much as the relatively paltry sum of £1. However in situations involving
monetary sums of the same order of magnitude, most people tend to be risk
averse. For example, faced with a choice between

Offer 1: Receive £10,000 with probability 1,

and

Offer 2: Receive £20,000 with probability 1
2
, otherwise receive £0,

most of us would choose Offer 1. This means that in utility terms, we con-
sider £20,000 as worth less than twice as much as £10,000. Either amount
seems like a very large sum of money, and we may not be able to distin-
guish the two easily in our minds, so that the lack of risk involved in Offer
1 makes it appealing. Of course, if there was a specific reason why we really
needed £20,000, for example because this was the cost of a necessary medical
operation, we might be more inclined to take the gamble of Offer 2.

Detailed accounts of utility theory are given by Ferguson (1967) or Berger
(1985), for example. Instead, in most of the problems we will be considering,
we will use various artificial loss functions. A typical example is use of the
loss function

L(θ, a) = (θ − a)2,
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2.3 Criteria for a good decision rule

the squared error loss function, in a point estimation problem. Then the
risk R(θ, d) of a decision rule is just the mean squared error of d(Y ) as an
estimator of θ, Eθ{d(Y ) − θ}2. In this context, we seek a decision rule d
which minimises this mean squared error.

In hypothesis testing, where we have two hypotheses H0, H1, identified with
subsets of Ωθ, and corresponding action space A = {a0, a1} in which action
aj corresponds to selecting the hypothesis Hj, j = 0, 1, the most familiar loss
function is

L(θ, a) =


1 if θ ∈ H0 and a = a1,
1 if θ ∈ H1 and a = a0,
0 otherwise.

In this case the risk is the probability of making a wrong decision:

R(θ, d) =

{
Prθ{d(Y ) = a1} if θ ∈ H0,
Prθ{d(Y ) = a0} if θ ∈ H1.

In the classical language of hypothesis testing, these two risks are called,
respectively, the type I error and the type II error: see Chapter 6.

2.3 Criteria for a good decision rule

In almost any case of practical interest, there will be no way to find a decision
rule d ∈ D which makes the risk function R(θ, d) uniformly smallest for all
values of θ. Instead, it is necessary to consider a number of criteria which
help to narrow down the class of decision rules we consider. The notion is
to start with a large class of decision rules d, such as the set of all functions
from Y to A, and then reduce the number of candidate decision rules by
application of the various criteria, in the hope of being left with some unique
best decision rule for the given inference problem.

2.3.1 Admissibility

Given two decision rules d and d′, we say that d strictly dominates d′ if
R(θ, d) ≤ R(θ, d′) for all values of θ, and R(θ, d) < R(θ, d′) for at least one
value θ.

Given a choice between d and d′, we would always prefer to use d.

Any decision rule which is strictly dominated by another decision rule (as
d′ is in the definition) is said to be inadmissible. Correspondingly, if a
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2.3 Criteria for a good decision rule

decision rule d is not strictly dominated by any other decision rule, then it
is admissible.

Admissibility looks like a very weak requirement: it seems obvious that we
should always restrict ourselves to admissible decision rules. Admissibility
really represents absence of a negative attribute, rather than a possession of
a positive attribute. In practice, it may not be so easy to decide whether
a given decision rule is admissible or not, and there are some surprising
examples of natural-looking estimators which are inadmissible.

2.3.2 Minimax decision rules

The maximum risk of a decision rule d ∈ D is defined by

MR(d) = sup
θ∈Ωθ

R(θ, d).

A decision rule d is minimax if it minimises the maximum risk:

MR(d) ≤ MR(d′) for all decision rules d′ ∈ D.

Another way of writing this is to say that d must satisfy

sup
θ
R(θ, d) = inf

d′∈D
sup
θ∈Ωθ

R(θ, d′). (2.1)

In most of the problems we will encounter, the supremum and infimum are
actually attained, so that we can rewrite (2.1) as

max
θ∈Ωθ

R(θ, d) = min
d′∈D

max
θ∈Ωθ

R(θ, d′).

[Recall that the difference between supθ and maxθ is that the maximum must
actually be attained for some θ ∈ Ωθ, whereas a supremum represents a least
upper bound, that may not actually be attained for any single value of θ.
Similarly for infimum and minimum.]

The minimax principle says we should use a minimax decision rule.

2.3.3 Unbiasedness

A decision rule d is said to be unbiased if

Eθ{L(θ′, d(Y ))} ≥ Eθ{L(θ, d(Y ))} for all θ, θ′ ∈ Ωθ.
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Recall that in elementary statistical theory, if d(Y ) is an estimator for a
parameter θ, then d(Y ) is said to be unbiased if Eθd(Y ) = θ for all θ. The
connection between the two notions of unbiasedness is as follows. Suppose
the loss function is the squared error loss, L(θ, d) = (θ − d)2. Fix θ and let
Eθd(Y ) = φ. Then for d to be an unbiased decision rule, we require that for
all θ′,

0 ≤ Eθ{L(θ′, d(Y ))} − Eθ{L(θ, d(Y ))}
= Eθ{(θ′ − d(Y ))2} − Eθ{(θ − d(Y ))2}
= (θ′)2 − 2θ′φ+ Eθd2(Y )− θ2 + 2θφ− Eθd2(Y )

= (θ′ − φ)2 − (θ − φ)2.

If φ = θ then this statement is obviously true. If φ 6= θ, then set θ′ = φ to
obtain a contradiction.

Thus we see that if d(Y ) is an unbiased estimator in the classical sense,
then it is also an unbiased decision rule, provided the loss is squared error.
However the above argument also shows that the notion of unbiased decision
rule is much broader: we could have whole families of unbiased decision rules
corresponding to different loss functions.

The role of unbiasedness in statistical decision theory is ambiguous. Of the
various criteria being considered here, it is the only one that does not depend
solely on the risk function. Often we find that biased estimators perform
better than unbiased ones from the point of view of, say, minimising mean
squared error. For this reason, many modern statisticians consider the whole
concept of unbiasedness to be somewhere between a distraction and a total
irrelevance.

2.3.4 Bayes decision rules

Bayes decision rules are based on different assumptions from the other criteria
we have considered, because in addition to the loss function and the class
D of decision rules, we must specify a prior distribution, which represents
our prior knowledge on the value of the parameter θ, and is represented by a
function π(θ), θ ∈ Ωθ. In cases where Ωθ contains an open rectangle in Rd,
we would take our prior distribution to be absolutely continuous, meaning
that π(θ) is taken to be some probability density on Ωθ. In the case of a
discrete parameter space, π(θ) is a probability mass function.

In the continuous case, the Bayes risk of a decision rule d is defined to be

r(π, d) =

∫
θ∈Ωθ

R(θ, d)π(θ)dθ.
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2.4 Randomised decision rules

In the discrete case, the integral in this expression is replaced by a summation
over the possible values of θ. So, the Bayes risk is just average risk, the
averaging being with respect to the weight function π(θ) implied by our
prior distribution.

A decision rule d is said to be a Bayes rule , with respect to a given prior
π(·), if it minimises the Bayes risk, so that

r(π, d) = inf
d′∈D

r(π, d′) = mπ, say. (2.2)

The Bayes principle says we should use a Bayes decision rule.

2.3.5 Some other definitions

Sometimes the Bayes rule is not defined because the infimum in (2.2) is not
attained for any decision rule d. However, in such cases, for any ε > 0 we
can find a decision rule dε for which

r(π, dε) < mπ + ε

and in this case dε is said to be ε-Bayes , with respect to the prior distribution
π(·).
Finally, a decision rule d is said to be extended Bayes if, for , every ε > 0,
we have that d is ε-Bayes with respect to some prior, which need not be the
same for different ε. It is often possible to derive a minimax rule through the
property of being extended Bayes.

2.4 Randomised decision rules

Suppose we have a collection of I decision rules d1, ..., dI and an associated set
of probability weights p1, ..., pI , so that pi ≥ 0 for 1 ≤ i ≤ I, and

∑
i pi = 1.

Define the decision rule d∗ =
∑

i pidi to be the rule “select di with probability
pi”. Then d∗ is a randomised decision rule. We can imagine that we first
use some randomisation mechanism, such as tossing coins or using a computer
random number generator, to select, independently of the observed data
y, one of the decision rules d1, ..., dI , with respective probabilities p1, ..., pI .
Then, having decided in favour of use of the particular rule di, under d∗ we
carry out the action di(y).

For a randomised decision rule d∗, the risk function is defined by averaging
across possible risks associated with the component decision rules:
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2.5 Finite decision problems

R(θ, d∗) =
I∑
i=1

piR(θ, di).

Randomised decision rules may appear to be artificial, but minimax solutions
may well be of this form. It is easy to contruct examples in which d∗ is formed
by randomising the rules d1, ..., dI but

sup
θ
R(θ, d∗) < sup

θ
R(θ, di) for each i,

so that d∗ may be a candidate for the minimax procedure, where none of
d1, ..., dI is.

2.5 Finite decision problems

A finite decision problem is one in which the parameter space is a finite
set: Ωθ = {θ1, ..., θt} for some finite t, with θ1, . . . , θt specified values. In
such cases the notions of admissible, minimax and Bayes decision rules can
be given a geometric interpretation: a full treatment is given by Ferguson
(1967) and Young and Smith (2005).

2.6 Finding minimax rules in general

A complete classification of minimax decision rules in general problems lies
outside the scope of this text, but the following two theorems give simple
sufficient conditions for a decision rule to be minimax. One generalisation
that is needed in passing from the finite to the infinite case is that the class
of Bayes rules must be extended to include sequences of either Bayes rules,
or extended Bayes rules.

Theorem 2.1 If δn is Bayes with respect to prior πn(·), and r(πn, δn) → C
as n→∞, and if R(θ, δ0) ≤ C for all θ ∈ Ωθ, then δ0 is minimax.

Of course this includes the case where δn = δ0 for all n and the Bayes risk of
δ0 is exactly C.

To see the infinite-dimensional generalisation of the condition R1 = R2, we
make the following definition.

Definition. A decision rule d is an equaliser decision rule if R(θ, d) is
the same for every value of θ.

Theorem 2.2 An equaliser decision rule δ0 which is extended Bayes must
be minimax.
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2.7 Admissibility of Bayes rules

In Chapter 3 we will present a general result that allows us to characterise the
Bayes decision rule for any given inference problem. An immediate question
that then arises concerns admissibility. In that regard, the rule of thumb is
that Bayes rules are nearly always admissible. We complete this Chapter
with some specific theorems on this point. Proofs are left as exercises.

Theorem 2.3 Assume that Ωθ = {θ1, . . . , θt} is finite, and that the prior
π(·) gives positive probability to each θi. Then a Bayes rule with respect to
π is admissible.

Theorem 2.4 If a Bayes rule is unique, it is admissible.

Theorem 2.5 Let Ωθ be a subset of the real line. Assume that the risk
functions R(θ, d) are continuous in θ for all decision rules d. Suppose that
for any ε > 0 and any θ the interval (θ − ε, θ + ε) has positive probability
under the prior π(·). Then a Bayes rule with respect to π is admissible.
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3 Bayesian Methods

3.1 Fundamental elements

In non-Bayesian, or classical, statistics Y is random, with a density or prob-
ability mass function given by f(y; θ), but θ is treated as a fixed unknown
parameter value.

Instead, in Bayesian statistics Y and θ are both regarded as random vari-
ables, with joint density (or probability mass function) given by π(θ)f(y; θ),
where π(·) represent the prior density of θ and f(·; θ) is the conditional den-
sity of Y given θ.

The posterior density of θ, given observed value Y = y, is given by applying
Bayes’ law of conditional probabilities:

π(θ|y) =
π(θ)f(y; θ)∫

Ωθ
π(θ′)f(y; θ′)dθ′

.

Commonly we write
π(θ|y) ∝ π(θ)f(y; θ)

where the constant of proportionality is allowed to depend on y but not on
θ. This may be written in words as

posterior ∝ prior × likelihood

since f(y; θ), treated as a function of θ for fixed y, is called the likelihood
function – for example, maximum likelihood estimation (which is not a
Bayesian procedure) proceeds by maximising this expression with respect to
θ.

Example 3.1 Consider a binomial experiment in which Y ∼ Bin(n, θ) for
known n and unknown θ. Suppose the prior density is a Beta density on
(0,1),

π(θ) =
θa−1(1− θ)b−1

B(a, b)
, 0 < θ < 1,

where a > 0, b > 0 and B(·, ·) is the beta function [B(a, b) = Γ(a)Γ(b)/Γ(a+
b), where Γ is the gamma function, Γ(t) =

∫∞
0
xt−1e−xdx]. For the density of

Y , here interpreted as a probability mass function, we have

f(y; θ) =

(
n

y

)
θy(1− θ)n−y.
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Ignoring all components of π and f which do not depend on θ, we have

π(θ|y) ∝ θa+y−1(1− θ)n−y+b−1.

This is also of Beta form, with the parameters a and b replaced by a+ y and
b+ n− y, so the full posterior density is

π(θ|y) =
θa+y−1(1− θ)n−y+b−1

B(a+ y, b+ n− y)
.

This example illustrates an important property of some Bayesian procedures:
by adopting a prior density of Beta form, we obtained a posterior density
which was also a member of the Beta family, but with different parameters.
When this happens, the common parametric form of the prior and posterior
are called a conjugate prior family for the problem. There is no universal
law that says we must use a conjugate prior. However, the conjugate prior
property is often a very convenient one, because it avoids having to integrate
numerically to find the normalising constant in the posterior density. In
non-conjugate cases where we have to do everything numerically, this is the
hardest computational problem associated with Bayesian inference. There-
fore, in cases where we can find a conjugate family, it is very common to use
it. �

3.2 The general form of Bayes rules

We now return to our general discussion of how to solve Bayesian decision
problems. For notational convenience, we shall write formulae assuming both
Y and θ have continuous densities, though the concepts are exactly the same
in the discrete case.

Recall that the risk function of a decision rule d is given by

R(θ, d) =

∫
Y
L(θ, d(y))f(y; θ)dy

and the Bayes risk of d by

r(π, d) =

∫
Ωθ

R(θ, d)π(θ)dθ

=

∫
Ωθ

∫
Y
L(θ, d(y))f(y; θ)π(θ)dydθ

=

∫
Ωθ

∫
Y
L(θ, d(y))f(y)π(θ|x)dydθ

=

∫
Y
f(y)

{∫
Ωθ

L(θ, d(y))π(θ|y)dθ

}
dy.
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3.2 The general form of Bayes rules

In the third line here, we have written the joint density f(y; θ)π(θ) in a
different way as f(y)π(θ|y), where f(y) =

∫
f(y; θ)π(θ)dθ is the marginal

density of Y . The change of order of integration in the fourth line is trivially
justified because the integrand is non-negative.

From the final form of this expression, we can see that, to find the the
action d(y) specified by the Bayes rule for any y, it suffices to minimise the
expression inside the brackets. In other words, for each y we choose d(y) to
minimise ∫

Ωθ

L(θ, d(y))π(θ|y)dθ,

the expected posterior loss associated with the observed y. This greatly
simplifies the calculation of the Bayes rule in a particular case. It also illus-
trates what many people feel is an intuitively natural property of Bayesian
procedures: in order to decide what to do based on a particular observed y,
it is only necessary to think about the losses that follow from one value d(y).
There is no need to worry (as would be the case with a minimax procedure)
about all the other values of Y that might have occurred, but did not. This
property illustrates just one of the features that have propelled many modern
statisticians towards Bayesian methods.

Case 1. Hypothesis testing. Consider testing the hypothesis H0 : θ ∈ Θ0

against the hypothesis H1 : θ ∈ Θ1 ≡ Ωθ \ Θ0, the complement of Θ0. Now
the action space A = {a0, a1}, where a0 denotes ‘accept H0’ and a1 denotes
‘accept H1’. Assume the following form of loss function:

L(θ, a0) =

{
0 if θ ∈ Θ0,
1 if θ ∈ Θ1,

and

L(θ, a1) =

{
1 if θ ∈ Θ0,
0 if θ ∈ Θ1.

The Bayes decision rule is: accept H0 if

Pr(θ ∈ Θ0|y) > Pr(θ ∈ Θ1|y).

Since Pr(θ ∈ Θ1|y) = 1− Pr(θ ∈ Θ0|y), this is equivalent to accepting H0 if
Pr(θ ∈ Θ0|y) > 1/2.

Case 2. Point estimation. Suppose loss is squared error: L(θ, d) =
(θ − d)2. For observed Y = y, the Bayes estimator chooses d = d(y) to
minimise ∫

Ωθ

(θ − d)2π(θ|y)dθ.
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Differentiating with respect to d, we find∫
Ωθ

(θ − d)π(θ|y)dθ = 0.

Taking into account that the posterior density integrates to 1, this becomes

d =

∫
Ωθ

θπ(θ|y)dθ,

the posterior mean of θ. In words, for a squared error loss function, the Bayes
estimator is the mean of the posterior distribution.

Case 3. Point estimation. Suppose L(θ, d) = |θ− d|. The Bayes rule will
minimise ∫ d

−∞
(d− θ)π(θ|y)dθ +

∫ ∞
d

(θ − d)π(θ|y)dθ.

Differentiating with respect to d, we must have∫ d

−∞
π(θ|y)dθ −

∫ ∞
d

π(θ|y)dθ = 0

or in other words ∫ d

−∞
π(θ|y)dθ =

∫ ∞
d

π(θ|y)dθ =
1

2
.

The Bayes rule is the posterior median of θ.

Case 4. Interval estimation. Suppose

L(θ, d) =

{
0 if |θ − d| ≤ δ,
1 if |θ − d| > δ,

for prescribed δ > 0. The expected posterior loss in this case is the posterior
probability that |θ−d| > δ. This can be most easily motivated as a Bayesian
version of interval estimation: we want to find the “best” interval of the
form (d − δ, d + δ), of predetermined length 2δ. “Best” here means the
interval that maximises the posterior probability that θ is within the interval
specified. The resulting interval is often called the HPD (for highest posterior
density) interval.
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3.3 Back to minimax...

We now give an example to show how some of the ideas we have developed
may be applied to solve a non-trivial problem in minimax decision theory.

The problem is: find a minimax estimator of θ based on a single observation
Y ∼ Bin(n, θ) with n known, under squared error loss L(θ, d) = (θ − d)2.

We know by Theorem 2.2 of Chapter 2 that if we can find a Bayes (or
extended Bayes) estimator that has constant mean squared error (i.e. risk),
this will also be a minimax rule.

We do not know all the possible Bayes estimators for this problem, but we
do know a very large class of them, namely, all those that arise from the
conjugate prior, a Beta prior with parameters a > 0, b > 0. For such a prior,
the posterior distribution is Beta with the parameters a and b replaced by
a + Y , b + n − Y . We also know that with squared error loss, the Bayes
estimator is the mean of the posterior distribution,

d(Y ) =
a+ Y

a+ b+ n
.

The question therefore arises: is there any estimator in this class which has
constant mean squared error? If there is, then it is necessarily the minimax
estimator.

Recall EY = nθ, EY 2 = nθ(1− θ) + n2θ2. Writing c = a+ b+ n, we have

E

{(
a+ Y

c
− θ
)2
}

=
1

c2
E{(Y + a− cθ)2}

=
1

c2
{nθ(1− θ) + n2θ2 + 2nθ(a− cθ) + (a− cθ)2}.

This is a quadratic function of θ, and will be constant if the coefficients of θ
and θ2 are 0. This requires

n+ 2na− 2ac = 0, (3.1)

−n+ n2 − 2nc+ c2 = 0. (3.2)

Equation (3.2) has roots c = n±
√
n, but we need c > n for a proper Bayes

rule, so take c = n +
√
n. Then (3.1) gives a =

√
n/2 so the final result is

that

d(Y ) =
Y +
√
n/2

n+
√
n

is the minimax decision rule with respect to squared error loss. A prior with
respect to which the Bayes rule is minimax is called a least favourable
prior.
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3.4 Shrinkage and the James-Stein estimator

We now move on to some broader aspects of the interplay between Bayesian
methods and decision theory. Subject to certain restrictions on the prior,
Bayes decision rules are admissible. However, minimax rules may not be
admissible, and more generally, statistical estimators that are derived from
other criteria may not be admissible. In situations like this, it may be possible
to use Bayesian ideas to improve upon classical estimators, even when they
are assessed by frequentist criteria. The earliest and most famous example
of this is Stein’s paradox, which we now describe.

Example 3.2. Stein’s paradox. Let Y have a p-dimensional (p ≥ 3)
normal distribution with mean vector µ and known covariance matrix equal
to the identity I, meaning that Yi ∼ N(µi, 1), independently, i = 1, . . . , p.

Consider estimation of µ, with loss function L(µ, d) = ‖µ− d‖2 =
∑p

i=1(µi−
di)

2 equal to the sum of squared errors.

If we had just one Y ∼ N(µ, 1), p = 1, we would certainly estimate µ by Y .
In the general case p > 1, if, as we have assumed, the Yi are independent and
we use as loss the sum of squared error losses for the individual components,
it seems obvious that the Yi have nothing to do with one another and that
we should therefore use Y as the multivariate estimator of µ. Stein’s paradox
is so called because what seems obvious turns out not to be true.

Consider the class of “James-Stein estimators” of the form

da(Y ) =

(
1− a

‖Y ‖2

)
Y,

indexed by a ≥ 0, which (at least if ‖Y ‖2 > a) shrink Y towards 0.

Now Y ≡ d0(Y ) has risk

R
(
µ, d0(Y )

)
= E‖µ− Y ‖2 =

p∑
i=1

E(µi − Yi)2 =

p∑
i=1

varYi

= p, irrespective of µ.

Integration by parts shows that, for each i, for suitably behaved real-valued
functions h,

E{(Yi − µi)h(Y )} = E
{
∂h(Y )

∂Yi

}
.
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3.4 Shrinkage and the James-Stein estimator

This result, known as Stein’s Lemma, enables us to compute the risk of the
estimator da(Y ):

R
(
µ, da(Y )

)
= E‖µ− da(Y )‖2

= E‖µ− Y ‖2 − 2aE
[
Y T (Y − µ)

‖Y ‖2

]
+ a2E

[
1

‖Y ‖2

]
.

We have

E
[
Y T (Y − µ)

‖Y ‖2

]
= E

[
p∑
i=1

Yi(Yi − µi)
ΣjY 2

j

]

=

p∑
i=1

E
[
∂

∂Yi

{
Yi

ΣjY 2
j

}]

=

p∑
i=1

E
[

ΣjY
2
j − 2Y 2

i

(ΣjY 2
j )2

]
= E

[
p− 2

‖Y ‖2

]
,

so

R
(
µ, da(Y )

)
= p−

[
2a(p− 2)− a2

]
E
(

1

‖Y ‖2

)
. (3.3)

Remember that here E denotes expectation with respect to the distribution
of Y for the given µ. We then note immediately that R(µ, da(Y )) < p ≡
R(µ, d0(Y )), provided 2a(p − 2) − a2 > 0 i.e. 0 < a < 2(p − 2). For
such a, da(Y ) strictly dominates d0(Y ), so that the obvious estimator Y is
inadmissible!

Note also that the risk of da(Y ) is minimised for a = p − 2. When µ = 0,
Y TY ∼ X 2

p , so that E[1/(‖Y ‖2)] = 1
p−2

, by a straightforward direct calcula-

tion. Hence, when µ = 0, dp−2(Y ) has risk p− [(p− 2)2/(p− 2)] = 2, which
is substantially less than the risk of Y if p is large. �

This inadmissibility result was first pointed out by Charles Stein in 1956, but
then proved in more detail by James and Stein (1961). Stein (1981) presented
a simpler proof, on which the above analysis is essentially based. At first
sight, the result seems incredible: there is no apparent “tying together” of the
losses in different components, yet the obvious estimator, the sample ‘mean’
Y , is not admissible. It is now known that this is a very general phenomenon
when comparing three or more populations — the present setting of normal
means with known common variance is just the simplest case.
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3.5 Empirical Bayes

There are, however, many well-documented examples which give intuitive
justification for not using the sample mean in practice. The most famous
of these concerns an analysis of baseball batting data, by Efron and Morris
(1975): see also Efron and Morris (1977).

3.4.1 Some discussion

Admissibility of d(Y ) = Y in dimension p = 1 was established by Blyth
(1951). A simple, direct proof is possible: see, for example Casella and
Berger (1990, Section 10.4). Admissibility is more awkward to prove in the
case p = 2, but was established by Stein (1956). Berger (1985, Chapter 8)
gives the admissibility results a Bayesian interpretation, using the notion of
a generalised Bayes rule. Though the formal definition of a generalised Bayes
rule is mathematically awkward, the rough idea is that of a rule which min-
imises the expected posterior loss, obtained from an improper prior. In the
estimation problem at hand, any admissible estimator is a generalised Bayes
rule, and results are available which determine whether or not a generalised
Bayes estimator is admissible. Since Y is a generalised Bayes estimator in
any dimension p, these latter results lead immediately to the conclusions that
Y is admissible if p = 1 or 2, but not if p ≥ 3.

A point of clarification should be noted here: although the estimator da(Y )
defined in Example 3.2 dominates d0(Y ) = Y for certain values of a, this does
not mean we would actually want to use the estimator da(Y ) in applications.
Once the idea is presented, that we might not want to use Y as our estimator,
then there are many so-called shrinkage estimators which potentially improve
on Y , and the task of deciding which of them to adopt is an important focus
of practical discussion. A key point to note is that the estimator dp−2(Y )
is actually inadmissible: it is strictly dominated by the estimator dp−2

+ (Y ),
which replaces the factor (1− p−2

Y TY
) by zero whenever it is negative.

3.5 Empirical Bayes

In a standard Bayesian analysis, there will usually be parameters in the prior
distribution that have to be specified.

For example, consider the simple normal model in which Y | θ ∼ N(θ, 1) and
θ has the prior distribution θ | τ 2 ∼ N(0, τ 2). If a value is specified for the
parameter τ 2 of the prior, a standard Bayesian analysis can be carried out.
Noting that f(y) =

∫
f(y; θ)π(θ)dθ, it is readily shown that the marginal
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3.5 Empirical Bayes

distribution of Y is N(0, τ 2 + 1), and can therefore be used to estimate τ 2,
in circumstances where a value is not specified.

Empirical Bayes analysis is characterised by the estimation of prior param-
eter values from marginal distributions of data. Having estimated the prior
parameter values, we proceed as before, as if these values had been fixed at
the beginning.

3.5.1 James-Stein estimator, revisited.

In the Stein’s paradox Example 3.2 above, the estimator dp−2(Y ) may be
viewed as an empirical Bayes estimator of µ, the Bayes rule with prior param-
eter values replaced by estimates constructed from the marginal distribution
of the Yi.

Specifically, let Yi | µi be distributed as N(µi, 1), independently i = 1, . . . , p,
and suppose µ1, . . . , µp are independent, identically distributed N(0, τ 2).

If τ 2 is known, the Bayes estimator δτ (Y ), for the given sum of squared errors
loss, of µ = (µ1, . . . , µp)

T is the posterior mean δτ (Y ) = τ2

τ2+1
Y , on observing

that the posterior distribution of µi is N( τ2

τ2+1
Yi,

τ2

τ2+1
), independently for

i = 1, . . . , p. Straightforward calculations then show that the Bayes risk of
δτ (y), r(τ, δτ (Y )), say, in an obvious notation, is given by

r(τ, δτ (Y )) =

p∑
i=1

var (µi|Yi) =

p∑
i=1

τ 2

τ 2 + 1
=

pτ 2

τ 2 + 1
.

Marginally the Yi are independent, identically distributed N(0, τ 2 + 1), so
that Yi/

√
τ 2 + 1 ∼ N(0, 1) and marginally ‖Y ‖2/(τ 2 + 1) ∼ χ2

p. Since we
know that E(1/Z) = 1/(p− 2) if Z ∼ χ2

p and p ≥ 3, we see that taking the
expectation with respect to this marginal distribution of Y gives,

E
[
1− (p− 2)

‖Y ‖2

]
=

τ 2

τ 2 + 1
, (3.4)

if p ≥ 3.

In the case when τ 2 is unknown, estimating τ 2/(τ 2 +1) by 1− (p−2)/(‖Y ‖2)
yields the James-Stein estimator dp−2(Y ).
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3.6 Choice of prior distributions

Under our assumed model, the Bayes risk of the James-Stein estimator
dp−2(Y ) is

r(τ, dp−2(Y )) =

∫
R(µ, dp−2(X))π(µ)dµ

=

∫
Rp

∫
Y

[
p− (p− 2)2

‖y‖2

]
f(y|µ)π(µ)dydµ

=

∫
Y

{∫
Rp

[
p− (p− 2)2

‖y‖2

]
π(µ|y)dµ

}
f(y)dy,

where we have used (3.3) and then changed the order of integration. Now,
the integrand in the inner integral is independent of µ, and

∫
π(µ|y)dµ is

trivially equal to 1, and therefore

r(τ, dp−2(Y )) = p− (p− 2)2E(
1

‖Y ‖2
).

Now the expectation is, as in (3.4), with respect to the marginal distribution
of Y , so that (3.4) immediately gives

r(τ, dp−2(Y )) = p− p− 2

τ 2 + 1
= r(τ, δτ (Y )) +

2

τ 2 + 1
.

The second term represents the increase in Bayes risk associated with the
need to estimate τ 2: the increase tends to 0 as τ 2 →∞.

3.6 Choice of prior distributions

The main approaches to the selection of prior distributions may be sum-
marised as:

(a) physical reasoning (Bayes) – too restrictive for most practical purposes;

(b) flat or uniform priors, including improper priors (Laplace, Jeffreys) – the
most widely used method in practice, but the theoretical justification for this
approach is still a source of argument;

(c) subjective priors (de Finetti, Savage) – used in certain specific situations
such as weather forecasting (though even there it does not tend to be as part
of a formal Bayesian analysis with likelihoods and posterior distributions)
and for certain kinds of business applications where prior information is very
important and it is worthwhile to go to the trouble of trying to establish
(“elicit” is the word most commonly used for this) the client’s true subjective
opinions, but hardly used at all for routine statistical analysis;

(d) prior distributions for convenience, e.g. conjugate priors – in practice
these are very often used just to simplify the calculations.
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3.7 Computational techniques

As mentioned previously, one of the main practical advantages of Bayesian
methods is that they may often be applied in very complicated situations
where both Y and θ are very high-dimensional. In such a situation, the main
computational problem is to compute numerically the normalising constant
that is required to make the posterior density a proper density function.

Direct numerical integration is usually impracticable in more than four or five
dimensions. Instead, Monte Carlo methods – in which random numbers
are drawn to simulate a sample from the posterior distribution – have become
very widely used. The two key algorithms are the Gibbs sampler and the
Hastings-Metropolis algorithm.

3.8 Hierarchical modelling

Another way of dealing with the specification of prior parameter values in
Bayesian inference is with a hierarchical specification, in which the prior
parameter values are themselves given a (second-stage) prior.

For example, in the simple normal model considered previously we might
specify Y | θ ∼ N(θ, 1), θ | τ 2 ∼ N(0, τ 2) and τ 2 ∼ uniform (0,∞), an
example of an improper, diffuse prior. Inference on θ is based on the marginal
posterior of θ, obtained by integrating out τ 2 from the joint posterior of θ
and τ 2:

π(θ | y) =

∫
π(θ, τ 2 | y)dτ 2,

where the joint posterior π(θ, τ 2 | y) ∝ f(y; θ)π(θ | τ 2)π(τ 2).

Hierarchical modelling is a very effective practical tool and usually yields
answers that are reasonably robust to misspecification of the model. Often,
answers from a hierarchical analysis are quite similar to those obtained from
an empirical Bayes analysis. In particular, when the second-stage prior is rel-
atively flat compared to the first-stage prior and the density of the observable
Y , answers from the two approaches are close to one another.

3.9 Predictive distributions

So far, we have stressed use of the posterior distribution π(θ | y) as a means of
making inference about the parameter θ. We may not be interested directly in
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3.9 Predictive distributions

that parameter, but rather in some independent future observation depending
on θ. It is possible to obtain the conditional distribution of the value of a
future observation Y †, given the data y, from the posterior π(θ | y).

Suppose that y = (y1, . . . , yn), with the yi independent from f(y; θ). Since,
given θ, Y † and y are independent and Y † has density f(y†; θ), the posterior
joint distribution of Y † and θ is f(y†; θ)π(θ | y). Integrating out θ gives the
posterior predictive distribution as

g(Y † | y) =

∫
f(Y †; θ)π(θ | y)dθ.

If a point prediction of Y † is required, we might use the mean, median or
other function of this distribution, depending on our loss function.

In the Bayesian paradigm, predictive inference is therefore, in principle,
straightforward, since the logical status of the future observation Y † and the
parameter θ is the same, both being random. This contrasts with methods
for predictive inference in frequentist approaches, which are generally more
difficult, due to the observation and the parameter having different status,
the former as a random variable, and the latter as a fixed value.
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4 Special Families of Models

Two general classes of models particularly relevant in theory and practice
are exponential families and transformation families.

4.1 Exponential families

Suppose that the distribution of Y depends on m unknown parameters, de-
noted by φ = (φ1, . . . , φm)T , to be called natural parameters, through a
density of the form

fY (y;φ) = h(y) exp{sTφ−K(φ)}, y ∈ Y , (4.1)

where Y is a set not depending on φ. Here s ≡ s(y) = (s1, . . . , sm)T , are
called natural statistics. The value of m may be reduced if the components
of φ satisfy a linear constraint, or if the components of s are (with probability
one) linearly dependent. So assume that the representation (4.1) is minimal,
in that m is as small as possible. Provided the natural parameter space Ωφ

consists of all φ such that∫
h(y) exp{sTφ}dy <∞,

we refer to the family F as a full exponential model, or an (m,m) exponential
family.

The exponential form (4.1) is preserved if we apply any fixed nonsingular
linear transformation to s, provided we make the inverse transformation to
φ, leaving sTφ invariant. If 0 ∈ Ωφ, we can without loss of generality take
K(0) = 0 and then h(y) = fY (y; 0). In other cases we can measure φ from
some suitable origin φ0 ∈ Ωφ, by rewriting (4.1) as

fY (y;φ) = fY (y;φ0) exp[sT (φ− φ0)− {K(φ)−K(φ0)}].

We refer to fY (y;φ) as the (m,m) exponential family generated from the
baseline fY (y;φ0), by exponential tilting via s. We generate all the members
of the family by tilting a single baseline density.

We have from (4.1) that the moment generating function of the random
variable S corresponding to s is

M(S; t, φ) = E{exp(ST t)}

=

∫
h(y) exp{sT (φ+ t)}dy × exp{−K(φ)}

= exp{K(φ+ t)−K(φ)},
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from which we obtain

E(Si;φ) =
∂K(φ)

∂φi
,

or
E(S;φ) = ∇K(φ),

where ∇ is the gradient operator (∂/∂φ1, . . . , ∂/∂φm)T . Also,

cov(Si, Sj;φ) =
∂2K(φ)

∂φi∂φj
.

To compute E(Si) etc. it is only necessary to know the function K(φ).

Let s(y) = (t(y), u(y)) be a partition of the vector of natural statistics, where
t has k components and u is m− k dimensional. Consider the corresponding
partition of the natural parameter φ = (τ, ξ). The density of a generic
element of the family can be written as

fY (y; τ, ξ) = exp{τT t(y) + ξTu(y)−K(τ, ξ)}h(y).

Two key results hold, which make exponential families particularly attractive,
as they allow inference about selected components of the natural parameter,
in the absence of knowledge about the other components.

First, the family of marginal distributions of U = u(Y ) is an m − k dimen-
sional exponential family,

fU(u; τ, ξ) = exp{ξTu−Kτ (ξ)}hτ (u),

say.

Secondly, the family of conditional distributions of T = t(Y ) given u(Y ) = u
is a k dimensional exponential family, and the conditional densities are free
of ξ, so that

fT |U=u(t;u, τ) = exp{τT t−Ku(τ)}hu(t),

say.

A proof of both of these results is given by Pace and Salvan (1997, p. 190).
The key is to observe that the family of distributions of the natural statistics
is an m dimensional exponential family, with density

fT,U(t, u; τ, ξ) = exp{τT t+ ξTu−K(τ, ξ)}p0(t, u),

where p0(t, u) denotes the density of the natural statistics when (τ, ξ) = (0, 0),
assuming without loss of generality that 0 ∈ Ωφ.
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In the situation described above, both the natural statistic and the natural
parameter lie in m-dimensional regions. Sometimes, φ may be restricted to
lie in a d-dimensional subspace, d < m. This is most conveniently expressed
by writing φ = φ(θ) where θ is a d-dimensional parameter. We then have

fY (y; θ) = h(y) exp[sTφ(θ)−K{φ(θ)}]

where θ ∈ Ωθ ⊂ Rd. We call this system an (m, d) exponential family, noting
that we required that (φ1, . . . , φm) does not belong to a v-dimensional linear
subspace of Rm with v < m: we indicate this by saying that the exponential
family is curved. Think of the case m = 2, d = 1: {φ1(θ), φ2(θ)} defines a
curve in the plane, rather than a straight line, as θ varies.

Interest in curved exponential families stems from two features, related to
concepts to be discussed. The maximum likelihood estimator is not a suffi-
cient statistic, so that there is scope for conditioning on an ancillary statistic.
Also, it can be shown that any sufficiently smooth parametric family can be
approximated, locally to the true parameter value, to some suitable order,
by a curved exponential family.

4.2 Transformation families

The basic idea behind a transformation family is that of a group of transfor-
mations acting on the sample space, generating a family of distributions all
of the same form, but with different values of the parameters.

Recall that a group G is a mathematical structure having a binary operation
◦ such that

• if g, g′ ∈ G, then g ◦ g′ ∈ G;

• if g, g′, g′′ ∈ G, then (g ◦ g′) ◦ g′′ = g ◦ (g′ ◦ g′′);

• G contains an identity element e such that e ◦ g = g ◦ e = g, for each
g ∈ G; and

• each g ∈ G possesses an inverse g−1 ∈ G such that g◦g−1 = g−1◦g = e.

In the present context, we will be concerned with a group G of transfor-
mations acting on the sample space Y of a random variable Y , and the
binary operation will simply be composition of functions: we have e(y) = y,
(g1 ◦ g2)(y) = g1(g2(y)).
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The group elements typically correspond to elements of a parameter space Ωθ,
so that a transformation may be written as, say, gθ. The family of densities
of gθ(Y ), for gθ ∈ G, is called a (group) transformation family.

Setting y ≈ y′ iff there is a g ∈ G such that y = g(y′) defines an equivalence
relation, which partitions Y into equivalence classes called orbits. These may
be labelled by an index a, say. Two points y and y′ on the same orbit have
the same index, a(y) = a(y′). Each y ∈ Y belongs to precisely one orbit, and
might be represented by a (which identifies the orbit) and its position on the
orbit.

4.2.1 Maximal invariant

We say that the statistic t is invariant to the action of the group G if its
value does not depend on whether y or g(y) was observed, for any g ∈ G:
t(y) = t(g(y)). An example is the index a above.

The statistic t is maximal invariant if every other invariant statistic is a
function of it, or equivalently, t(y) = t(y′) implies that y′ = g(y) for some
g ∈ G. A maximal invariant can be thought of (Davison, 2003, Section 5.3)
as a reduced version of the data that represents it as closely as possible while
remaining invariant to the action of G. In some sense, it is what remains of
Y once minimal information about the parameter values has been extracted.

4.2.2 Equivariant statistics and a maximal invariant

As described, typically there is a one-to-one correspondence between the
elements of G and the parameter space Ωθ, and then the action of G on Y
requires that Ωθ itself constitutes a group, with binary operation ∗ say: we
must have gθ ◦ gφ = gθ∗φ. The group action on Y induces a group action on
Ωθ. If Ḡ denotes this induced group, then associated with each gθ ∈ G there
is a ḡθ ∈ Ḡ, satisfying ḡθ(φ) = θ ∗ φ.

If t is an invariant statistic, the distribution of T = t(Y ) is the same as that of
t(g(Y )), for all g. If, as we assume here, the elements of G are identified with
parameter values, this means that the distribution of T does not depend on
the parameter and is known in principle. T is said to be distribution constant.

A statistic S = s(Y ) defined on Y and taking values in the parameter space
Ωθ is said to be equivariant if s(gθ(y)) = ḡθ(s(y)) for all gθ ∈ G and y ∈ Y .
Often S is chosen to be an estimator of θ, and it is then called an equivariant
estimator.
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4.2 Transformation families

A key operational point is that an equivariant estimator can be used to
construct a maximal invariant.

Consider t(Y ) = g−1
s(Y )(Y ). This is invariant, since

t(gθ(y)) = g−1
s(gθ(y))(gθ(y)) = g−1

ḡθ(s(y))(gθ(y)) = g−1
θ∗s(y)(gθ(y))

= g−1
s(y){g

−1
θ (gθ(y))} = g−1

s(y)(y) = t(y).

If t(y) = t(y′), then g−1
s(y)(y) = g−1

s(y′)(y
′), and it follows that y′ = gs(y′)◦g−1

s(y)(y),

which shows that t(Y ) is maximal invariant.

The statistical importance of a maximal invariant will be illuminated in
Chapter 5. In a transformation family, a maximal invariant plays the role of
the ancillary statistic in the conditional inference on the parameter of inter-
est indicated by a Fisherian approach. The above direct construction of a
maximal invariant from an equivariant estimator facilitates identification of
an appropriate ancillary statistic in the transformation family context.

4.2.3 An example

An important example is the location-scale model. Let Y = η+ τε, where
ε has a known density f , and the parameter θ = (η, τ) ∈ Ωθ = R × R+.
Define a group action by gθ(y) = g(η,τ)(y) = η + τy, so

g(η,τ) ◦ g(µ,σ)(y) = η + τµ+ τσy = g(η+τµ,τσ)(y).

The set of such transformations is closed with identity g(0,1). It is easy to
check that g(η,τ) has inverse g(−η/τ,τ−1). Hence, G = {g(η,τ) : (η, τ) ∈ R×R+}
constitutes a group under the composition of functions operation ◦ defined
above.

The action of g(η,τ) on a random sample Y = (Y1, . . . , Yn) is g(η,τ)(Y ) =
η + τY , with η ≡ η1n, where 1n denotes the n × 1 vector of 1’s, and Y is
written as an n× 1 vector.

The induced group action on Ωθ is given by ḡ(η,τ)((µ, σ)) ≡ (η, τ) ∗ (µ, σ) =
(η + τµ, τσ).

The sample mean and standard deviation are equivariant, because with
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4.2 Transformation families

s(Y ) = (Ȳ , V 1/2), where V = (n− 1)−1
∑

(Yj − Ȳ )2, we have

s(g(η,τ)(Y )) =

(
η + τY ,

{
(n− 1)−1

∑
(η + τYj − (η + τY ))2

}1/2
)

=

(
η + τ Ȳ ,

{
(n− 1)−1

∑
(η + τYj − η − τ Ȳ )2

}1/2
)

=
(
η + τ Ȳ , τV 1/2

)
= ḡ(η,τ)(s(Y )).

A maximal invariant is A = g−1
s(Y )(Y ), and the parameter corresponding to

g−1
s(Y ) is (−Ȳ /V 1/2, V −1/2). Hence a maximal invariant is the vector of resid-

uals

A = (Y − Ȳ )/V 1/2 =

(
Y1 − Ȳ
V 1/2

, . . . ,
Yn − Ȳ
V 1/2

)T
,

called the configuration. It is easily checked directly that the distribution of
A does not depend on θ. Any function of A is also invariant. The orbits
are determined by different values a of the statistic A, and Y has a unique
representation as Y = gs(Y )(A) = Ȳ + V 1/2A.
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5 Principles of Inference and Data Reduction

5.1 Likelihood

We have a parametric model, involving a model function fY (y; θ) for a ran-
dom variable Y and parameter θ ∈ Ωθ. The likelihood function is

L(θ; y) = fY (y; θ).

Usually we work with the log-likelihood

l(θ; y) = log fY (y; θ).

Quite generally, even for dependent random variables, if Y(j) = (Y1, . . . , Yj),
we may write

l(θ; y) =
n∑
j=1

lYj |Y(j−1)
(θ; yj | y(j−1)),

each term being computed from the conditional density given all the previous
values in the sequence.

A simple example concerning Bernoulli trials illustrates this. The log likeli-
hood function corresponding to r successes in n trials is essentially the same
whether (i) only the number of successes in a prespecified number of trials
is recorded or (ii) only the number of trials necessary to achieve a prespec-
ified number of successes is recorded, or (iii) whether the detailed results
of individual trials are recorded, with an arbitrary data-dependent stopping
rule.

5.2 Sufficiency

5.2.1 Definitions

Let the data y correspond to a random variable Y with density fY (y; θ), θ ∈
Ωθ. Let s(y) be a statistic such that if S ≡ s(Y ) denotes the corresponding
random variable, then the conditional density of Y given S = s does not
depend on θ, for all s, so that

fY |S(y | s; θ) = g(y, s) (5.1)

for all θ ∈ Ωθ. Then S is said to be sufficient for θ.
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5.3 Completeness

The definition (5.1) does not define S uniquely. We usually take the minimal
S for which (5.1) holds, the minimal sufficient statistic. S is minimal sufficent
if it is sufficient and is a function of every other sufficient statistic.

The determination of S from the definition (5.1) is often difficult. Instead
we use the factorisation theorem: a necessary and sufficient condition that S
is sufficient for θ is that for all y, θ

fY (y; θ) = g(s, θ)h(y),

for some functions g and h. Without loss of generality, g(s, θ) may be taken
as the unconditional density of S for given θ.

The following result is easily proved (see Young and Smith, 2005, pp.92–
93) and useful for identifying minimal sufficient statistics. A statistic T is
minimal sufficient iff

T (x) = T (y)⇔ L(θ1;x)

L(θ2;x)
=
L(θ1; y)

L(θ2; y)
, ∀θ1, θ2 ∈ Ωθ.

5.2.2 Examples

Exponential models Here the natural statistic S is a (minimal) sufficient
statistic. In a curved (m, d) exponential model the dimension m of the suffi-
cient statistic exceeds that of the parameter.

Transformation models Except in special cases, such as the normal distri-
bution, where the model is also an exponential family model, there is no
reduction of dimensionality by sufficiency: the minimal sufficient statistic
has the same dimension as the data vector Y = (Y1, . . . , Yn).

5.3 Completeness

A sufficient statistic T (Y ) is complete if for any real function g,

Eθ{g(T )} = 0 for all θ

implies
Prθ{g(T ) = 0} = 1 for all θ.

This definition has a number of consequences. For instance, if there exists an
unbiased estimator of a scalar parameter θ which is a function of a complete
sufficient statistic T , then it is the unique such estimator (except possibly on
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5.4 Conditioning

a set of measure 0). This follows because if, for instance, g1(T ) and g2(T ) are
two such estimators, then Eθ{g1(T )− g2(T )} = θ − θ = 0, so g1(T ) = g2(T )
with probability 1.

A key example of a complete sufficient statistic is the following: if S ≡
s(Y ) = (s1(Y ), ..., sm(Y )) is the natural statistic for a full exponential family
in its natural parametrisation, as given by (4.1), and if Ωφ contains an open
rectangle in Rm, then S is complete.

5.4 Conditioning

In connection with methods of statistical inference, probability is used in two
quite distinct ways. The first is to define the stochastic model assumed to
have generated the data. The second is to assess uncertainty in conclusions,
via significance levels, confidence regions, posterior distributions etc. We
enquire how a given method would perform if, hypothetically, it were used
repeatedly on data derived from the model under study. The probabilities
used for the basis of inference are long-run frequencies under hypothetical
repetition. The issue arises of how these long-run frequencies are to be made
relevant to the data under study. The answer lies in conditioning the calcu-
lations so that the long run matches the particular set of data in important
respects.

5.4.1 The Bayesian stance

In a Bayesian approach the issue of conditioning is dealt with automatically.
It is supposed that the particular value of θ is the realised value of a random
variable Θ, generated by a random mechanism giving a known density πΘ(θ)
for Θ, the prior density. Then Bayes’ Theorem gives the posterior density

πΘ|Y (θ | Y = y) ∝ πΘ(θ)fY |Θ(y | Θ = θ),

where now the model function fY (y; θ) is written as a conditional density
fY |Θ(y | Θ = θ). The insertion of a random element in the generation of
θ allows us to condition on the whole of the data y: relevance to the data
is certainly accomplished. This approach is uncontroversial if a meaningful
prior can be agreed. In many applications, there may be major obstacles to
specification of a meaningful prior and we are forced to adopt a less direct
route to conditioning.
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5.5 Ancillarity and the Conditionality Principle

5.4.2 The Fisherian stance

Suppose first that the whole parameter vector θ is of interest. Reduce the
problem by sufficiency. If, with parameter dimension d = 1, there is a one-
dimensional sufficient statistic, we have reduced the problem to that of one
observation from a distribution with one unknown parameter and there is lit-
tle choice but to use probabilities calculated from that distribution. The same
notion occurs if there is a d-dimensional θ of interest and a d-dimensional
sufficient statistic. If the dimension of the (minimal) sufficient statistic ex-
ceeds that of the parameter, there is scope and need for ensuring relevance
to the data under analysis by conditioning.

We therefore aim to

1. partition the minimal sufficient statistic s in the form s = (t, a), so that
dim(t) = dim(θ) and A has a distribution not involving θ;

2. use for inference the conditional distribution of T given A = a.

Conditioning on A = a makes the distribution used for inference involve
(hypothetical) repetitions like the data in some respects.

In the next section we extend this discussion to the case where there are
nuisance parameters.

5.4.3 An example

Suppose that Y1, . . . , Yn are independent and identically uniformly distributed
on (θ−1, θ+1). The (minimal) sufficient statistic is the pair of order statistics
(Y(1), Y(n)), where Y(1) = min{Y1, . . . , Yn} and Y(n) = max{Y1, . . . , Yn}. Sup-
pose we make a (one-to-one) transformation to the mid-range Ȳ = 1

2
(Y(1) +

Y(n)) and the range R = Y(n)− Y(1). The sufficient statistic may equivalently
be expressed as (Ȳ , R). A direct calculation shows that R has a distribu-
tion not depending on θ, so we have the situation where the dimension of
the sufficient statistic exceeds the dimension of θ and the statistic R, being
distribution constant, plays the role of A. Inference should be based on the
conditional distribution of Ȳ , given R = r, which it is easily checked to be
uniform over (θ − 1 + 1

2
r, θ + 1− 1

2
r).

5.5 Ancillarity and the Conditionality Principle

A component a of the minimal sufficient statistic such that the random vari-
able A is distribution constant is said to be ancillary, or sometimes ancillary
in the simple sense.
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5.5 Ancillarity and the Conditionality Principle

The Conditionality Principle says that inference about a parameter of interest
θ is to be made conditional on A = a i.e. on the basis of the conditional
distribution of Y given A = a, rather than from the model function fY (y; θ).

The Conditionality Principle is discussed most frequently in the context of
transformation models, where the maximal invariant is ancillary.

5.5.1 Nuisance parameter case

In our previous discussion, the argument for conditioning on A = a rests
not so much on the distribution of A being known as on its being totally
uninformative about the parameter of interest.

Suppose, more generally, that we can write θ = (ψ, χ), where ψ is of interest.
Suppose that

1. Ωθ = Ωψ × Ωχ, so that ψ and χ are variation independent;

2. the minimal sufficient statistic s = (t, a);

3. the distribution of T given A = a depends only on ψ;

4. one or more of the following conditions holds:

(a) the distribution of A depends only on χ and not on ψ;

(b) the distribution of A depends on (ψ, χ) in such a way that from
observation of A alone no information is available about ψ;

Then the extension of the Fisherian stance of Section 5.4.2 argues that infer-
ence about ψ should be based upon the conditional distribution of T given
A = a, and we would still speak of A as being ancillary and refer to this
stance as the Conditionality Principle. The most straightforward extension
corresponds to (a). In this case A is said to be a cut and to be S-ancillary
for ψ and S-sufficient for χ. The arguments for conditioning on A = a when
ψ is the parameter of interest are as compelling as in the case where A has
a fixed distribution. Condition (b) is more problematical to qualify. See
the discussion in Barndorff-Nielsen and Cox (1994, pp.38–41) for detail and
examples. The same authors discuss problems associated with existence and
non-uniqueness of ancillary statistics.
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6 Key Elements of Frequentist Theory

6 Key Elements of Frequentist Theory

In this section we describe key elements of frequentist theory, starting with
the Neyman-Pearson framework for hypothesis testing. The fundamental
notion is that of seeking a test which maximises power, the probability under
repeated sampling of correctly rejecting an incorrect hypothesis, subject to
some pre-specified fixed size, the probability of incorrectly rejecting a true
hypothesis. We end with a brief discussion of optimal point estimation.

6.1 Formulation of the hypothesis testing problem

Throughout we have a parameter space Ωθ, and consider hypotheses of the
form

H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1

where Θ0 and Θ1 are two disjoint subsets of Ωθ, possibly, but not necessarily,
satisfying Θ0 ∪Θ1 = Ωθ.

If a hypothesis consists of a single member of Ωθ, for example if Θ0 = {θ0}
for some θ0 ∈ Ωθ, then we say that it is a simple hypothesis. Otherwise it
is called composite.

Sometimes hypotheses which at first sight appear to be simple hypotheses
are really composite. This is especially common when we have nuisance
parameters. For example, suppose Y1, ..., Yn are independent, identically
distributed N(µ, σ2), with µ and σ2 both unknown, and we want to test
H0 : µ = 0. This is a composite hypothesis because Ωθ = {(µ, σ2) : −∞ <
µ < ∞, 0 < σ2 < ∞} while Θ0 = {(µ, σ2) : µ = 0, 0 < σ2 < ∞}. Here
σ2 is a nuisance parameter: it does not enter into the hypothesis we want to
test, but nevertheless we have to take it into account in constructing a test.

For most problems we adopt the following criterion: fix a small number α
(often fixed to be 0.05, but any value in (0,1) is allowable), and seek a test
of size α, so that

Prθ{Reject H0} ≤ α for all θ ∈ Θ0.

Thus H0 and H1 are treated asymetrically. Usually H0 is called the null
hypothesis and H1 the alternative hypothesis.
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6.1 Formulation of the hypothesis testing problem

6.1.1 Test functions

The usual way hypothesis testing is formulated in elementary statistics texts
is as follows: choose a test statistic t(Y ) (some function of the observed data
Y ) and a critical region Cα, then reject H0 based on Y = y if and only if
t(y) ∈ Cα. The critical region must be chosen to satisfy

Prθ{t(Y ) ∈ Cα} ≤ α for all θ ∈ Θ0.

We consider here a slight reformulation of this. Define a test function φ(y)
by

φ(y) =

{
1 if t(y) ∈ Cα,
0 otherwise.

So whenever we observe φ(Y ) = 1, we reject H0, while if φ(Y ) = 0, we
accept.

In decision theory it was necessary sometimes to adopt a randomised decision
rule. The same concept arises in hypothesis testing as well: sometimes we
want to use a randomised test. This may be done by generalising the concept
of a test function to allow φ(y) to take on any value in the interval [0, 1].
Thus having observed data y and evaluated φ(y), we use some independent
randomisation device to draw a Bernoulli random number W which takes
value 1 with probability φ(y), and 0 otherwise. We then reject H0 if and
only if W = 1. Thus we may interpret φ(y) to be “the probability that H0

is rejected when Y = y”.

If we want to construct a theory of hypothesis tests of a given size, we have
to allow the possibility of randomised tests, regardless of whether we would
actually want to use a test in a practical problem.

6.1.2 Power

We now need some criterion for deciding whether one test is better than
another. We do this by introducing the concept of power.

The power function of a test φ is defined to be

w(θ) = Prθ{Reject H0} = Eθ{φ(Y )}

which is defined for all θ ∈ Ωθ. When testing a simple null hypothesis against
a simple alternative hypothesis, the term ‘power’ is often used to signify the
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6.2 The Neyman-Pearson Theorem

probability of rejecting the null hypothesis when the alternative hypothesis
is true.

The idea is this: a good test is one which makes w(θ) as large as possible on
Θ1 while satisfying the constraint w(θ) ≤ α for all θ ∈ Θ0.

Within this framework, we can consider various classes of problems:

(i) Simple H0 vs. simple H1: here there is an elegant and complete theory
which tells us exactly how to construct the best test, given by the Neyman-
Pearson Theorem.

(ii) Simple H0 vs. composite H1: in this case the obvious approach is to pick
out a representative value of Θ1, say θ1, and construct the Neyman-Pearson
test of H0 against θ1. In some cases the test so constructed is the same
for every θ1 ∈ Θ1. When this happens, the test is called “uniformly most
powerful” or UMP. We would obviously like to use a UMP test if we can find
one, but there are many problems for which UMP tests do not exist, and
then the whole problem is harder.

(iii) Composite H0 vs. composite H1: in this case the problem is harder
again. It may not be so easy even to find a test which satisfies the size
constraint, because of the requirement that Eθ{φ(X)} ≤ α for all θ ∈ Θ0; if
Θ0 contains a nuisance parameter such as σ2 in the above N(µ, σ2) example,
we must find a test which satisfies this constraint regardless of the value of
σ2.

6.2 The Neyman-Pearson Theorem

Consider the test of a simple null hypothesis H0 : θ = θ0 against a simple
alternative hypothesis H1 : θ = θ1, where θ0 and θ1 are specified. Let the
probability density function or probability mass function of Y be f(y; θ),
specialised to f0(y) = f(y; θ0) and f1(y) = f(y; θ1). Define the likelihood
ratio Λ(y) by

Λ(y) =
f1(y)

f0(y)
.

According to the Neyman-Pearson Theorem, the best test of size α is of the
form: reject H0 when Λ(Y ) > kα where kα is chosen so as to guarantee
that the test has size α. However, we have seen above that this method of
constructing the test can fail when Y has a discrete distribution (or more
precisely, when Λ(Y ) has a discrete distribution under H0). In the following
generalised form of Neyman-Pearson Theorem, we remove this difficulty by
allowing for the possibility of randomised tests.
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6.3 Uniformly most powerful tests

The (randomised) test with test function φ0 is said to be a likelihood ratio
test (LRT for short) if it is of the form

φ0(y) =


1 if f1(y) > Kf0(y),
γ(y) if f1(y) = Kf0(y),
0 if f1(y) < Kf0(y),

where K ≥ 0 is a constant and γ(y) an arbitrary function satisfying 0 ≤
γ(y) ≤ 1 for all y.

Theorem 6.1 (Neyman-Pearson)

(a) (Optimality). For any K and γ(y), the test φ0 has maximum power
among all tests whose size is no greater than the size of φ0.

(b) (Existence). Given α ∈ (0, 1), there exist constants K and γ0 such that
the LRT defined by this K and γ(y) = γ0 for all y has size exactly α.

(c) (Uniqueness). If the test φ has size α, and is of maximum power amongst
all possible tests of size α, then φ is necessarily a likelihood ratio test, except
possibly on a set of values of y which has probability 0 under both H0 and
H1.

Proof of the Theorem is straightforward: see, for example, Young and Smith
(2005, pp.68–69).

6.3 Uniformly most powerful tests

A uniformly most powerful or UMP test of size α is a test φ0(·) for which

(i) Eθφ0(Y ) ≤ α for all θ ∈ Θ0;

(ii) Given any other test φ(·) for which Eθφ(Y ) ≤ α for all θ ∈ Θ0, we have
Eθφ0(Y ) ≥ Eθφ(Y ) for all θ ∈ Θ1.

In general, it is asking a very great deal to expect that UMP tests exist –
in effect, it is asking that the Neyman-Pearson test for simple vs. simple
hypotheses should be the same for every pair of simple hypotheses contained
within H0 and H1. Nevertheless, for one-sided testing problems involving
just a single parameter, for which Ωθ ⊆ R, there is a wide class of parametric
families for which just such a property holds. Such families are said to have
monotone likelihood ratio or MLR.
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6.4 Two-sided tests and conditional inference

6.3.1 Monotone Likelihood Ratio

Definition. The family of densities {f(y; θ), θ ∈ Ωθ ⊆ R} with real scalar
parameter θ is said to be of monotone likelihood ratio (MLR for short)
if there exists a function t(y) such that the likelihood ratio

f(y; θ2)

f(y; θ1)

is a non-decreasing function of t(y) whenever θ1 ≤ θ2.

Note that any family for which the likelihood ratio turned out to be non-
increasing (rather than non-decreasing) as a function of t(y) is still MLR:
simply replace t(y) by −t(y).

The main result of this section is that for a one-sided test in a MLR family a
UMP test exists. For simplicity, we restrict ourselves to absolutely continuous
distributions so as to avoid the complications of randomised tests.

Theorem 6.2 Suppose Y has a distribution from a family which is MLR
with respect to a statistic t(Y ), and that we wish to test H0 : θ ≤ θ0 against
H1 : θ > θ0. Suppose the distribution function of t(Y ) is continuous.

(a) The test

φ0(y) =

{
1 if t(y) > t0,
0 if t(y) ≤ t0,

is UMP among all tests of size ≤ Eθ0{φ0(Y )}.

(b) Given some α, where 0 < α ≤ 1, there exists some t0 such that the test
in (a) has size exactly α.

A proof is provided by Young and Smith (2005, pp.72–73).

6.4 Two-sided tests and conditional inference

Our discussion here is concerned with two separate but interrelated themes.
The first has to do with extending the discussion above to more complicated
hypothesis testing problems, and the second is concerned with conditional
inference.

We will consider first testing two-sided hypotheses of the form H0 : θ ∈
[θ1, θ2] (with θ1 < θ2) or H0 : θ = θ0 where, in each case, the alternative
H1 includes all θ not part of H0. For such problems we cannot expect to
find a uniformly most powerful test However, by introducing an additional
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6.4 Two-sided tests and conditional inference

concept of unbiasedness (Section 6.4.2), we are able to define a family of
uniformly most powerful unbiased, or UMPU, tests. In general, char-
acterising UMPU tests for two-sided problems is a much harder task than
characterising UMP tests for one-sided hypotheses, but for one specific but
important example, that of a one-parameter exponential family, we are able
to find UMPU tests. The details of this are the subject of Section 6.4.3.

The extension to multiparameter exponential families involves the notion of
conditional tests, discussed in Section 6.4.5. In some situations, a statisti-
cal problem may be greatly simplified by working not with the unconditional
distribution of a test statistic, but the conditional distribution given some
other statistic. We discuss two situations where conditional tests naturally
arise, one when there are ancillary statistics, and the other where condi-
tional procedures are used to construct similar tests. Recall that the basic
idea behind an ancillary statistic is that of a quantity with distribution not
depending on the parameter of interest. The Fisherian paradigm then argues
that relevance to the data at hand demands conditioning on the observed
value of this statistic. The notion behind similarity is that of eliminating
dependence on nuisance parameters. We specialise to the case of a multipa-
rameter exponential family in which one particular parameter is of interest
while the remaining m− 1 are regarded as nuisance parameters.

6.4.1 Two-sided hypotheses and two-sided tests

We consider a general situation with a one-dimensional parameter θ ∈ Ωθ ⊆
R. We are particularly interested in the case when the null hypothesis is
H0 : θ ∈ Θ0 where Θ0 is either the interval [θ1, θ2] for some θ1 < θ2, or else
the single point Θ0 = {θ0}, and Θ1 = R \Θ0.

If we have an exponential family with natural statistic S = s(Y ), or a family
with MLR with respect to s(Y ), we might still expect tests of the form

φ(y) =


1 if s(y) > t2 or s(y) < t1,
γ(y) if s(y)) = t2 or s(y) = t1,
0 if t1 < s(y) < t2,

where t1 < t2 and 0 ≤ γ(y) ≤ 1, to have good properties. Such tests are
called two-sided tests.
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6.4 Two-sided tests and conditional inference

6.4.2 Unbiased tests

Definition A test φ of H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1 is called unbiased
of size α if

sup
θ∈Θ0

Eθ{φ(Y )} ≤ α

and
Eθ{φ(Y )} ≥ α for all θ ∈ Θ1.

An unbiased test captures the natural idea that the probability of rejecting
H0 should be higher when H0 is false than when it is true.

Definition A test which is uniformly most powerful amongst the class of all
unbiased tests is called uniformly most powerful unbiased, abbreviated
UMPU.

The requirement that a test be unbiased is one way of resolving the obvious
conflict between the two sides of a two-sided alternative hypothesis. We use it
as a criterion by which to assess two-sided tests. Nevertheless the objections
to unbiasedness that we have noted previously are still present — unbiased-
ness is not by itself an optimality criterion and, for any particular decision
problem, there is no reason why the optimal decision procedure should turn
out to be unbiased. The principal role of unbiasedness is to restrict the class
of possible decision procedures and hence to make the problem of determining
an optimal procedure more manageable than would otherwise be the case.

6.4.3 UMPU tests for one-parameter exponential families

Consider an exponential family for a random variable Y , which may be a
vector of independent, identically distributed observations, with real-valued
parameter θ ∈ R and density of form

f(y; θ) = c(θ)h(y)eθs(y),

where S = s(Y ) is a real-valued natural statistic.

Then S also has an exponential family distribution, with density of form

fS(s; θ) = c(θ)hS(s)eθs.

We shall assume that S is a continuous random variable with hS(s) > 0
on the open set which defines the range of S. By restricting ourselves to
families of this form we avoid the need for randomised tests and make it
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6.4 Two-sided tests and conditional inference

easy to prove the existence and uniqueness of two-sided tests, though in a
more general version of the theory such assumptions are not required: see,
for example Ferguson (1967).

We consider initially the case

Θ0 = [θ1, θ2], Θ1 = (−∞, θ1) ∪ (θ2,∞),

where θ1 < θ2.

Theorem 6.3 Let φ be any test function. Then there exists a unique two-
sided test φ′ which is a function of S such that

Eθjφ′(Y ) = Eθjφ(Y ), j = 1, 2.

Moreover,

Eθφ′(Y )− Eθφ(Y )

{
≤ 0 for θ1 < θ < θ2,
≥ 0 for θ < θ1 or θ > θ2.

Corollary For any α > 0, there exists a UMPU test of size α, which is of
two-sided form in S.

6.4.4 Testing a point null hypothesis

Now consider the case H0 : θ = θ0 against H1 : θ 6= θ0 for a given value of
θ0. By analogy with the case just discussed, letting θ2− θ1 → 0, there exists
a two-sided test φ′ for which

Eθ0{φ′(Y )} = α,
d

dθ
Eθ{φ′(Y )}

∣∣∣∣
θ=θ0

= 0.

Such a test is in fact UMPU, but we shall not prove this directly. We note
in passing that differentiability, as a function of θ, of the power function
(for any test function) is a consequence of our assumption of an exponential
family distribution.

6.4.5 Conditional inference, ancillarity and similar tests

Consider the following hypothetical situation. An experiment is conducted
to measure the carbon monoxide level in the exhaust of a car. A sample of
exhaust gas is collected, and is taken along to the laboratory for analysis.
Inside the laboratory are two machines, one of which is expensive and very
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6.4 Two-sided tests and conditional inference

accurate, the other an older model which is much less accurate. We will use
the accurate machine if we can, but this may be out of service or already
in use for another analysis. We do not have time to wait for this machine
to become available, so if we cannot use the more accurate machine we use
the other one instead (which is always available). Before arriving at the
laboratory we have no idea whether the accurate machine will be available,
but we do know that the probability that it is available is 1

2
(independently

from one visit to the next).

This situation may be formalised as follows: we observe (δ, Y ), where δ (=1
or 2) represents the machine used and Y the subsequent observation. The
distributions are Pr{δ = 1} = Pr{δ = 2} = 1

2
and, given δ, Y ∼ N(θ, σ2

δ )
where θ is unknown and σ1, σ2 are known, with σ1 < σ2. We want to test
H0 : θ ≤ θ0 against H1 : θ > θ0. Consider the following tests:

Procedure 1. Reject H0 if Y > c, where c is chosen so that the test has
prescribed size α,

Pr(Y > c) = Pr(Y > c | δ = 1)Pr(δ = 1) + Pr(Y > c | δ = 2)Pr(δ = 2) = α,

which requires

1

2

{
1− Φ

(
c− θ0

σ1

)}
+

1

2

{
1− Φ

(
c− θ0

σ2

)}
= α.

Procedure 2. Reject H0 if Y > zασδ + θ0, where zα is the upper α-quantile
of N(0, 1).

Thus Procedure 1 sets a single critical level c, regardless of which machine
is used, while Procedure 2 determines its critical level solely on the standard
deviation for the machine that was actually used, without taking the other
machine into account at all. Procedure 2 is called a conditional test because
it conditions on the observed value of δ. Note that the distribution of δ itself
does not depend in any way on the unknown parameter θ, so we are not
losing any information by doing this.

Intuitively, one might expect Procedure 2 to be more reasonable, because
it makes sense to use all the information available and one part of that
information is which machine was used. However, if we compare the two in
terms of power, our main criterion for comparing tests up until now, it is
not so clear-cut. Figure 6.1 shows the power curves of the two tests in the
case σ1 = 1, σ2 = 3, α = 0.05, for which zα = 1.6449 and it is determined
numerically that c = 3.8457 + θ0. When the difference in means, θ1 − θ0,
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Figure 6.1: Power functions of tests for normal mixture problem.

is small, Procedure 2 is much more powerful, but for larger values when
θ1 > θ0 + 4.9, Procedure 1 is better.

At first sight this might seem counterintuitive, but closer thought shows
what is going on. Let us compute αj = Prθ0{Y > c|δ = j} — we find
α1 = 0.00006, α2 = 0.09994 (so that the overall size is (α1 + α2)/2 = 0.05).
For large θ1−θ0, this extra power when δ = 2 is decisive in allowing procedure
1 to perform better than procedure 2. But is this really sensible? Consider
the following scenario.

Smith and Jones are two statisticians. Smith works for the environmental
health department of Cambridge City Council and Jones is retained as a
consultant by a large haulage firm which operates in the Cambridge area.
Smith carries out a test of the exhaust fumes emitted by one of the lorries
belonging to the haulage firm. On this particular day he has to use machine
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6.4 Two-sided tests and conditional inference

2 and the observation is Y = θ0 + 4.0, where θ0 is the permitted standard.
It has been agreed in advance that all statistical tests will be carried out at
the 5% level and therefore, following Procedure 1 above, he reports that the
company is in violation of the standard.

The company is naturally not satisfied with this conclusion and therefore
sends the results to Jones for comment. The information available to Jones
is that a test was conducted on a machine for which the standard deviation
of all measurements is 3 units, that the observed measurement exceeded the
standard by 4 units, and that therefore the null hypothesis (that the lorry is
meeting the standard) is rejected at the 5% level. Jones calculates that the
critical level should be θ0 + 3z0.05 = θ0 + 3× 1.645 = θ0 + 4.935 and therefore
queries why the null hypothesis was rejected.

The query is referred back to Smith who now describes the details of the
test, including the existence of the other machine and Smith’s preference for
Procedure 1 over Procedure 2 on the grounds that Procedure 1 is of higher
power when |θ1 − θ0| is large. This however is all news to Jones, who was
not previously aware that the other machine even existed.

The question facing Jones now is: should she revise her opinion on the basis
of the new information provided by Smith? She does not see why she should.
There is no new information about either the sample that was collected or the
way that it was analysed. All that is new is that there was another machine
which might have been used for the test, but which in the event was unavail-
able. Jones cannot see why this is relevant. Indeed, given the knowledge that
there are two machines and that the probability of a false positive test (when
the company is complying with the standard) is much higher using machine
2 than machine 1, she might be inclined to query the circumstances under
which machine 2 was chosen to test her company’s sample. She therefore
advises the company to challenge the test in court.

In terms of our discussion in Section 5.5, the minimal sufficient statistic for θ
is (Y, δ), with δ having a distribution which does not depend on θ. The Con-
ditionality Principle then argues that inference should be made conditional
on the observed value of δ.

The conclusion we can draw from this discussion is that while maximis-
ing power is a well-established principle for choosing among statistical tests,
there are occasions when it can lead to conclusions that appear to contradict
common sense, and where the Conditionality Principle is compelling.
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6.4 Two-sided tests and conditional inference

6.4.6 Discussion

The need for a conditionality principle highlights a weakness in the emphasis
on the power of tests which is characteristic of the Neyman-Pearson theory,
and more generally, in the emphasis on the risk function which is central
to non-Bayesian decision theory. If one uses power as the sole criterion
for deciding between two tests, then in our example concerning laboratory
testing there are at least some circumstances where one would prefer to use
Procedure 1, but this may not be sensible for other reasons. The historical
disagreement between Fisher and Neyman centred on Fisher’s opinion that
the Neyman-Pearson theory did not take adequate account of the need for
conditional tests in this kind of situation. Another point of view might be to
adopt a Bayesian approach. Bayesian procedures always try to minimise the
expected loss based on the observed data and do not take account of other
experiments that might have been conducted but were not. Thus in the
situation with two machines discussed above, a Bayesian procedure would
always act conditionally on which machine was actually used so the kind of
conflict that we saw between the two statisticians would not arise. However,
Fisher did not accept Bayesian methods, because of the seeming arbitrariness
of choosing the prior distribution, and so this would not have resolved the
difficulty for him!

6.4.7 Similar tests

Suppose we have θ = (ψ, λ), with ψ the parameter of interest and λ a nuisance
parameter. Suppose the minimal sufficient statistic T can be partitioned as
T = (S,C), where the conditional distribution of S given C = c depends on
ψ, but not on λ, for each c. [We don’t necessarily require the distribution of
C to depend only on λ, as in our discussion of ancillarity]. We may construct
a test on the interest parameter based on the conditional distribution of S
given C. The reason is that such a test will then be similar.

Definition Suppose θ = (ψ, λ) and the parameter space is of the form Ωθ =
Ωψ×Ωλ. Suppose we wish to test the null hypothesis H0 : ψ = ψ0 against the
alternative H1 : ψ 6= ψ0, with λ treated as a nuisance parameter. Suppose
φ(y), y ∈ Y is a test of size α for which

Eψ0,λ{φ(Y )} = α for all λ ∈ Ωλ.

Then φ is called a similar test of size α.
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6.4 Two-sided tests and conditional inference

More generally, if the parameter space is θ ∈ Ωθ and the null hypothesis is
of the form θ ∈ Θ0, where Θ0 is a subset of Ωθ, then a similar test is one for
which Eθ{φ(Y )} = α on the boundary of Θ0.

By analogy with UMPU tests, if a test is uniformly most powerful among
the class of all similar tests, we call it UMP similar.

The concept of similar tests has something in common with that of unbiased
tests. In particular, if the power function is continuous in θ (a property which
actually holds automatically for exponential families), then any unbiased test
of size α must have power exactly α on the boundary between Θ0 and Θ1, i.e.
such a test must be similar. In such cases, if we can find a UMP similar test,
and if this test turns out also to be unbiased, then it is necessarily UMPU.

Moreover, in many cases we can demonstrate, under our assumptions, that
a test which is UMP among all tests based on the conditional distribution of
S given C, is UMP amongst all similar tests. In particular, this statement
will be valid when C is a complete sufficient statistic for λ.

The upshot of this discussion is that there are many cases when a test which
is UMP (one-sided) or UMPU (two-sided), based on the conditional distri-
bution of S given C, is in fact UMP similar or UMPU among the class of all
tests.

Note that we have now seen two quite distinct arguments for conditioning.
In the first, when the conditioning statistic is ancillary, we have seen that
the failure to condition may lead to paradoxical situations in which two
analysts may form completely different viewpoints of the same data, though
we also saw that the application of this principle may run counter to the strict
Neyman-Pearson viewpoint of maximising power. The second point of view
is based on power, and shows that under certain circumstances a conditional
test may satisfy the conditions needed to be UMP similar or UMPU.

6.4.8 Multiparameter exponential families

Consider a full exponential family model in its natural parametrisation,

f(y; θ) = c(θ)h(y) exp

(
m∑
i=1

ti(y)θi

)
,

where y represents the value of a data vector Y and ti(Y ), i = 1, ...,m are
the natural statistics. We also write Ti in place of ti(Y ).

Suppose our main interest is in one particular parameter, which we may with-
out loss of generality take to be θ1. Consider the test H0 : θ1 ≤ θ1∗ against
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6.4 Two-sided tests and conditional inference

H1 : θ1 > θ1∗, where θ1∗ is prescribed. Take S = T1 and C = (T2, ..., Tm).
Then the conditional distribution of S given C is also of exponential fam-
ily form and does not depend on θ2, ..., θm. Therefore, C is sufficient for
λ = (θ2, ..., θm) and since it is also complete (from the general property
that the natural statistics are complete sufficient statistics for exponential
families) the arguments concerning similar tests suggest that we ought to
construct tests for θ1 based on the conditional distribution of S given C.

In fact such tests do turn out to be UMPU, though we shall not attempt to fill
in the details of this: the somewhat intricate argument is given by Ferguson
(1967). Finally, it sometimes (though not always) turns out that C is an
ancillary statistic for θ1, so has a distribution not depending on θ1. When
this happens, there is a far stronger argument based on the conditionality
principle that says we ought to condition on C.

In cases where the distribution of T1 is continuous, the optimal one-sided test
will then be of the following form. Suppose we observe T1 = t1, ..., Tm = tm.
Then we reject H0 if and only if t1 > t∗1, where t∗1 is calculated from

Prθ1∗{T1 > t∗1|T2 = t2, ..., Tm = tm} = α.

It can be shown that this test is UMPU of size α.

The following result is often useful. Suppose, as above, C = (T2, . . . , Tm),
and suppose that V ≡ V (T1, C) is a statistic independent of C, with V (t1, c)
increasing in t1 for each c. Then the UMPU test above is equivalent to that
based on the marginal distribution of V . The conditional test is the same as
that obtained by testing H0 against H1 using V as test statistic. An example
is provided by the normal distributionN(µ, σ2): given an independent sample
X1, . . . , Xn, to test a hypothesis about σ2, the conditional test is based on the
conditional distribution of T1 ≡

∑n
i=1 X

2
i , given the observed value of C ≡ X̄.

Let V = T1 − nC2 ≡
∑n

i=1(Xi − X̄)2. We know that V is independent
of C (from general properties of the normal distribution), so the optimal
conditional test is equivalent to that based on the marginal distribution of
V : we have that V/σ2 is chi-squared, χ2

n−1.

In similar fashion, if we want to construct a two-sided test of H0 : θ1∗ ≤ θ1 ≤
θ1∗∗ against the alternative, H1 : θ1 < θ1∗ or θ1 > θ1∗∗, where θ1∗ < θ1∗∗ are
given, we can proceed by defining the conditional power function of a test φ
based on T1 as

wθ1(φ; t2, ..., tm) = Eθ1{φ(T1)|T2 = t2, ..., Tm = tm}.

Note that it is a consequence of our previous discussion that this quantity
depends only on θ1 and not on θ2, .., θm.
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6.5 Optimal point estimation

We can then consider a two-sided conditional test of the form

φ′(t1) =

{
1 if t1 < t∗1 or t1 > t∗∗1 ,
0 if t∗1 ≤ t1 ≤ t∗∗1 ,

where t∗1 and t∗∗1 are chosen such that

wθ1(φ
′; t2, ..., tm) = α when θ1 = θ1∗ or θ1 = θ1∗∗.

If the hypotheses are of the form H0 : θ1 = θ1∗ against H1 : θ1 6= θ1∗, then
the test is of the same form but with (6.4.8) replaced by

wθ1∗(φ
′; t2, ..., tm) = α,

d

dθ1

{
wθ1(φ

′; t2, ..., tm)

}∣∣∣∣
θ1=θ1∗

= 0.

It can be shown that these tests are also UMPU of size α.

6.5 Optimal point estimation

We finish by discussing optimal point estimation of a parameter θ.

Jensen’s inequality is a well-known result that is proved in elementary
analysis texts. It states that if g : R → R is a convex function [so that
g(λx1 + (1− λ)x2) ≤ λg(x1) + (1− λ)g(x2) for all x1, x2 and 0 < λ < 1] and
X is a real-valued random variable, then E{g(X)} ≥ g{E(X)}.
Theorem 6.4 Suppose we want to estimate a real-valued parameter θ
with an estimator d(Y ) say. Suppose the loss function L(θ, d) is a convex
function of d for each θ. Let d1(Y ) be an (arbitrary) unbiased estimator for
θ and suppose T is a sufficient statistic. Then the estimator

χ(T ) = E{d1(Y )|T}

is also unbiased and is at least as good as d1 : R(θ, d1) ≥ R(θ, χ), where R is
the risk.

Note that the definition of χ(T ) does not depend on θ, because T is sufficient.

For a proof, see, for example, Young and Smith (2005, p.96).

Remark 1. The inequality will be strict unless L is a linear function of d,
or the conditional distribution of d1(Y ) given T is degenerate. In all other
cases, χ(T ) strictly dominates d1(Y ).

Remark 2. If T is also complete, then χ(T ) is the unique unbiased esti-
mator minimising the risk.
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6.5 Optimal point estimation

Remark 3. If L(θ, d) = (θ−d)2 then this is the Rao-Blackwell Theorem. In
this case the risk of an unbiased estimator is just its variance, so the theorem
asserts that there is a unique minimum variance unbiased estimator which is
a function of the complete sufficient statistic. However it is still possible that
there are biased estimators which achieve a smaller mean squared error: the
example of a minimax estimator of the parameter of a binomial distribution
given in Chapter 3 is one such, and Stein’s paradox example is another.
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Problems

Problems are numbered as in Young & Smith (2005), but listed here in an
order which is closer to that in which we will cover the material in the course.

2.1 Let X be uniformly distributed on [0, θ] where θ ∈ (0,∞) is an un-
known parameter. Let the action space be [0,∞) and the loss function
L(θ, d) = (θ − d)2 where d is the action chosen. Consider the decision rules
dµ(x) = µx, µ ≥ 0. For what value of µ is dµ unbiased? Show that µ = 3/2
is a necessary condition for dµ to be admissible.

2.3 Each winter evening between Sunday and Thursday, the superinten-
dent of the Chapel Hill School District has to decide whether to call off the
next day’s school because of snow conditions. If he fails to call off school and
there is snow, there are various possible consequences, including children and
teachers failing to show up for school, the possibility of traffic accidents etc.
If he calls off school, then regardless of whether there actually is snow that
day, there will have to be a make-up day later in the year. After weighing up
all the possible outcomes he decides that the costs of failing to close school
when there is snow are twice the costs incurred by closing school, so he as-
signs two units of loss to the first outcome and one to the second. If he does
not call off school and there is no snow, then of course there is no loss.

Two local radio stations give independent and identically distributed weather
forecasts. If there is to be snow, each station will forecast this with probabil-
ity 3/4, but predict no snow with probability 1/4. If there is to be no snow,
each station predicts snow with probability 1/2.

The superintendent will listen to the two forecasts this evening, and then
make his decision on the basis of the data x, the number of stations forecast-
ing snow.

Write down an exhaustive set of non-randomised decision rules based on x.

Find the superintendent’s admissible decision rules, and his minimax rule.
Before listening to the forecasts, he believes there will be snow with proba-
bility 1/2; find the Bayes rule with respect to this prior.

[Include randomised rules in your analysis when determining admissible, min-
imax and Bayes rules].

2.5 Bacteria are distributed at random in a fluid, with mean density θ per
unit volume, for some θ ∈ H ⊆ [0,∞). This means that

Prθ(no bacteria in volume v) = e−θv.
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We remove a sample of volume v from the fluid and test it for the presence
or absence of bacteria. On the basis of this information we have to decide
whether there are any bacteria in the fluid at all. An incorrect decision will
result in a loss of 1, a correct decision in no loss.

(i) Suppose H = [0,∞). Describe all the non-randomised decision rules for
this problem and calculate their risk functions. Which of these rules are
admissible?

(ii) Suppose H = {0, 1}. Identify the risk set

S = {(R(0, d), R(1, d)) : d a randomised rule} ⊆ R2,

where R(θ, d) is the expected loss in applying d under Prθ. Determine the
minimax rule.

(iii) Suppose again that H = [0,∞).

Determine the Bayes decision rules and Bayes risk for prior

π({0}) = 1/3,

π(A) = 2/3

∫
A

e−θdθ, A ⊆ (0,∞).

[So the prior probability that θ = 0 is 1/3, while the prior probability that
θ ∈ A ⊆ (0,∞) is 2/3

∫
A
e−θdθ.]

(iv) If it costs v/24 to test a sample of volume v, what is the optimal volume
to test? What if the cost is 1/6 per unit volume?

2.6 Prove Theorems 2.3, 2.4 and 2.5, concerning admissibility of Bayes
rules.

2.8 In a Bayes decision problem, a prior distribution π is said to be least
favourable if rπ ≥ rπ′ , for all prior distributions π′, where rπ denotes the
Bayes risk of the Bayes rule dπ with respect to π.

Suppose that π is a prior distribution, such that∫
R(θ, dπ)π(θ)dθ = sup

θ
R(θ, dπ).

Show that (i) dπ is minimax, (ii) π is least favourable.

3.3 Find the form of the Bayes rule in an estimation problem with loss
function

L(θ, d) =

{
a(θ − d) if d ≤ θ
b(d− θ) if d > θ,
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where a and b are given positive constants.

3.4 Suppose that X is distributed as a binomial random variable with
index n and parameter θ. Calculate the Bayes rule (based on the single
observation X) for estimating θ when the prior distribution is the uniform
distribution on [0, 1] and the loss function is

L(θ, d) = (θ − d)2/{θ(1− θ)}.

Is the rule you obtain minimax?

3.5 At a critical stage in the development of a new aeroplane, a decision
must be taken to continue or to abandon the project. The financial viability
of the project can be measured by a parameter θ, 0 < θ < 1, the project
being profitable if θ > 1

2
. Data x provide information about θ.

If θ < 1
2
, the cost to the taxpayer of continuing the project is (1

2
−θ) [in units

of $billion], whereas if θ > 1
2

it is zero (since the project will be privatised
if profitable). If θ > 1

2
the cost of abandoning the project is (θ − 1

2
) (due

to contractual arrangements for purchasing the aeroplane from the French),
whereas if θ < 1

2
it is zero. Derive the Bayes decision rule in terms of the

posterior mean of θ given x.

The Minister of Aviation has prior density 6θ(1−θ) for θ. The Prime Minister
has prior density 4θ3. The prototype aeroplane is subjected to trials, each
independently having probability θ of success, and the data x consist of the
total number of trials required for the first successful result to be obtained.
For what values of x will there be serious ministerial disagreement?

3.8 Suppose X1, . . . , Xn are independent, identically distributed random
variables which, given µ, have the normal distribution N(µ, σ2

0), with σ2
0

known. Suppose also that the prior distribution of µ is normal with known
mean ξ0 and known variance ν0.

Let Xn+1 be a single future observation from the same distribution which is,
given µ, independent of X1, . . . , Xn. Show that, given (X1, . . . , Xn), Xn+1 is
normally distributed with mean{

1

σ2
0/n

+
1

ν0

}−1{
X

σ2
0/n

+
ξ0

ν0

}
and variance

σ2
0 +

{
1

σ2
0/n

+
1

ν0

}−1

.
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3.9 Let X1, . . . , Xn be independent, identically distributed N(µ, σ2), with
both µ and σ2 unknown. Let X̄ = n−1

∑n
i=1Xi, and s2 = (n−1)−1

∑n
i=1(Xi−

X̄)2.

Assume the (improper) prior π(µ, σ) with

π(µ, σ) ∝ σ−1, (µ, σ) ∈ R× (0,∞).

Show that the marginal posterior distribution of n1/2(µ− X̄)/s is the t dis-
tribution with n − 1 degrees of freedom, and find the marginal posterior
distribution of σ.

3.10 Consider a Bayes decision problem with scalar parameter θ. An
estimate is required for φ ≡ φ(θ), with loss function

L(θ, d) = (d− φ)2.

Find the form of the Bayes estimator of φ.

LetX1, . . . , Xn be independent, identically distributed random variables from
the density θe−θx, x > 0, where θ is an unknown parameter. Let Z denote
some hypothetical future value derived from the same distribution, and sup-
pose we wish to estimate φ(θ) = Pr(Z > z), for given z.

Suppose we assume a gamma prior, π(θ) ∝ θα−1e−βθ for θ. Find the posterior
distribution for θ, and show that the Bayes estimator of φ is

φ̂B =

(
β + Sn

β + Sn + z

)α+n

,

where Sn = X1 + . . . Xn.

3.11 Let the distribution of X, given θ, be normal with mean θ and vari-
ance 1. Consider estimation of θ with squared error loss L(θ, a) = (θ − a)2

and action space A ≡ Ωθ ≡ R.

Show that the usual estimate of θ, d(X) = X, is not a Bayes rule.

[Show that if d(X) were Bayes with respect to a prior distribution π, we
should have r(π, d) = 0.]

Show that X is extended Bayes and minimax.

5.1 Prove that random samples from the following distributions form
(m,m) exponential families with either m = 1 or m = 2: Poisson, bino-
mial, geometric, gamma (index known), gamma (index unknown). Identify
the natural statistics and the natural parameters in each case. What are the
distributions of the natural statistics?
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The negative binomial distribution with both parameters unknown provides
an example of a model that is not of exponential family form. Why?

[If Y has a gamma distribution of known index k, its density function is of
the form

fY (y;λ) =
λkyk−1e−λy

Γ(k)
.

The gamma distribution with index unknown has both k and λ unknown.]

5.2 Let Y1, . . . , Yn be independent, identically distributed N(µ, µ2).

Show that this model is an example of a curved exponential family.

5.3 Find the general form of a conjugate prior density for θ in a Bayesian
analysis of the one-parameter exponential family density

f(x; θ) = c(θ)h(x) exp{θt(x)}, x ∈ R.

5.4 Verify that the family of gamma distributions of known index consti-
tutes a transformation model under the action of the group of scale transfor-
mations.

[This provides an example of a family of distributions which constitutes both
an exponential family, and a transformation family. Are there any others?]

5.5 The maximum likelihood estimator θ̂(x) of a parameter θ max-
imises the likelihood function L(θ) = f(x; θ) with respect to θ. Verify that
maximum likelihood estimators are equivariant with respect to the group of
one-to-one transformations.

5.6 Verify directly that in the location-scale model the configuration has
a distribution which does not depend on the parameters.

6.1 Let X1, . . . , Xn be independent, identically distributed N(µ, µ2) ran-
dom variables.

Find a minimal sufficient statistic for µ and show that it is not complete.

6.2 Find a minimal sufficient statistic for θ based on an independent sample
of size n from each of the following distributions:

(i) the gamma distribution with density

f(x;α, β) =
βαxα−1e−βx

Γ(α)
, x > 0,

with θ = (α, β);
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(ii) the uniform distribution on (θ − 1, θ + 1);

(iii) the Cauchy distribution with density

f(x;α, b) =
b

π{(x− a)2 + b2}
, x ∈ R,

with θ = (a, b).

6.3 Independent factory-produced items are packed in boxes each contain-
ing k items. The probability that an item is in working order is θ, 0 < θ < 1.
A sample of n boxes are chosen for testing, and Xi, the number of working
items in the ith box, is noted. Thus X1, . . . , Xn are a sample from a binomial
distribution, Bin(k, θ), with index k and parameter θ. It is required to esti-
mate the probability, θk, that all items in a box are in working order. Find
the minimum-variance unbiased estimator, justifying your answer.

6.4 A married man who frequently talks on his mobile is well known to have
conversations whose lengths are independent, identically distributed random
variables, distributed as exponential with mean 1/λ. His wife has long been
irritated by his behaviour and knows, from infinitely many observations, the
exact value of λ. In an argument with her husband, the woman produces
t1, . . . , tn, the times of n telephone conversations, to prove how excessive
her husband is. He suspects that she has randomly chosen the observations,
conditional on their all being longer than the expected length of conversation.
Assuming he is right in his suspicion, the husband wants to use the data he
has been given to infer the value of λ. What is the minimal sufficient statistic
he should use? Is it complete? Find the maximum likelihood estimator for
λ.

4.1 A random variable X has one of two possible densities:

f(x; θ) = θe−θx, x ∈ (0,∞), θ ∈ {1, 2}.

Consider the family of decision rules

dµ(x) =

{
1 if x ≥ µ
2 if x < µ,

where µ ∈ [0,∞]. Calculate the risk function R(θ, dµ) for loss function
L(θ, d) = |θ−d|, and sketch the parametrised curve C = {(R(1, dµ), R(2, dµ)) :
µ ∈ [0,∞]} in R2.

Use the Neyman–Pearson Theorem to show that C corresponds precisely to
the set of admissible decision rules.
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For what prior mass function for θ does the minimax rule coincide with the
Bayes rule?

4.3 Let X1, . . . , Xn be independent random variables with a common den-
sity function

f(x; θ) = θe−θx, x ≥ 0,

where θ ∈ (0,∞) is an unknown parameter. Consider testing the null hy-
pothesis H0 : θ ≤ 1 against the alternative H1 : θ > 1. Show how to obtain
a uniformly most powerful test of size α.

4.5 Let X1, . . . , Xn be an independent sample of size n from the uniform
distribution on (0, θ).

Show that there exists a uniformly most powerful size α test of H0 : θ = θ0

against H1 : θ > θ0, and find its form.

Let T = max(X1, . . . , Xn).

Show that the test

φ(x) =

{
1, if t > θ0 or t ≤ b
0, if b < t ≤ θ0,

where b = θ0α
1/n, is a uniformly most powerful test of size α for testing H0

against H ′1 : θ 6= θ0.

[Note that in a ‘more regular’ situation, a UMP test of H0 against H ′1 doesn’t
exist.]

7.1 Let X1, . . . , Xn be an independent sample from a normal distribution
with mean 0 and variance σ2. Explain in as much detail as you can how to
construct a UMPU test of H0 : σ = σ0 against H1 : σ 6= σ0.

7.2 Let X1, . . . , Xn be an independent sample from N(µ, µ2). Let T1 = X̄
and T2 =

√
(1/n)

∑
X2
i . Show that Z = T1/T2 is ancillary. Explain why the

Conditionality Principle would lead to inference about µ being drawn from
the conditional distribution of T2 given Z. Find the form of this conditional
distribution.

7.4 Suppose X is normally distributed as N(θ, 1) or N(θ, 4), depending
on whether the outcome, Y , of tossing a fair coin is heads (y = 1) or tails
(y = 0). It is desired to test H0 : θ = −1 against H1 : θ = 1. Show that the
most powerful (unconditional) size α = 0.05 test is the test with rejection
region given by x ≥ 0.598 if y = 1 and x ≥ 2.392 if y = 0.

Suppose instead that we condition on the outcome of the coin toss in con-
struction of the tests. Verify that, given y = 1, the resulting most powerful
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size α = 0.05 test would reject if x ≥ 0.645 while, given y = 0 the rejection
region would be x ≥ 2.290.

7.7 Let X ∼ Bin(m, p) and Y ∼ Bin(n, q), with X and Y independent.
Show that, as p and q range over [0, 1], the joint distributions of X and Y
form an exponential family. Show further that if p = q then

Pr(X = x | X + Y = x+ y) =

(
m

x

)(
n

y

)/(
m+ n

x+ y

)
.

Hence find the form of a UMPU test of the null hypothesis H0 : p ≤ q against
H1 : p > q.

In an experiment to test the efficacy of a new drug for treatment of stomach
ulcers, 5 patients are given the new drug and 6 patients are given a control
drug. Of the patients given the new drug, 4 report an improvement in their
condition, while only 1 of the patients given the control drug reports im-
provement. Do these data suggest, at level α = 0.1, that patients receiving
the new drug are more likely to report improvement than patients receiving
the control drug?

[This is the hypergeometric distribution and the test presented here is con-
ventionally referred to as Fisher’s exact test for a 2× 2 table.]
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