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Introduction

These lectures are a sequel to the book [CTS21]. Our aim was to develop some of
the stories that were only touched upon or not even mentioned in this book, with
emphasis of the applications of the Brauer group in arithmetic geometry.

Over a field of characteristic zero the geometric Brauer group of a smooth proper
variety with b2 = ρ is finite1. Varieties with b2 > ρ, for example abelian varieties
and K3 surfaces, exhibit a new phenomenon: they have infinite geometric Brauer
group whose Tate module carries a Galois representation. Various finiteness prop-
erties of the Brauer group can be related to deep conjectures about these Galois
representations.

The philosophy of these lectures is based on the assumption that K3 surfaces is
a convenient vantage point to explore the arithmetic of the Brauer group and the
Brauer–Manin obstruction beyond the realm of geometrically rational or rationally
connected varieties. What makes K3 surfaces more tractable is a classical construc-
tion of Kuga–Satake that associates to a complex K3 surface an abelian variety of
large dimension. Geometry of K3 surfaces was intensively studied since the proof of
the global Torelli theorem by Pyatetskii-Shapiro and Shafarevich in 1971: a complex
K3 surface is determined by the periods of the unique holomorphic 2-form, leading to
an interpretation of the moduli spaces of polarised K3 surfaces in terms of Shimura
varieties. Relations to abelian varieties and Shimura varieties make K3 surfaces a
natural ‘testing ground’ for fundamental conjectures in arithmetic geometry. In-
deed, Deligne proved Weil conjectures for K3 surfaces in 1972 vis the Kuga–Satake
construction before he proved the Weil conjectures in the general case.

We begin with a tour of Tate and Mumford–Tate conjectures, which are known
for K3 surfaces, with proofs crucially based on the Kuga–Satake construction, see
Section 1. We explain what these conjectures mean for the finiteness properties
of the Brauer group. In Section 1.4 we discuss various uniformity conjectures for
abelian varieties and K3 surfaces, and links among them. These conjectures assert
the boundedness of certain integer invariants of K3 surfaces and abelian varieties
defined over a number field of bounded degree (and bounded dimension in the case
of abelian varieties). In Section 2 we discuss the problem of explicit calculation
of the Brauer group, which requires understanding differentials in Leray spectral
sequences. Section 3 is devoted to explicit determination of the Brauer–Manin set.
For this one needs to know the behaviour of the ‘evaluation map’ attached to a
Brauer class and a place of the ground number field. One natural question here is
when such a map can be non-constant. We explain known results in this direction.
Finally, in Section 4 we discuss the existence of rational points in the Brauer–Manin
set in the best understood particular case, namely, that of Kummer varieties, using
a method of Swinnerton-Dyer.

1This fails in characteristic p > 0, e.g., for supersingular K3 surfaces, see Section 1.3.
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Notation

For an abelian group G we denote by G[n] the subgroup {x ∈ G|nx = 0}. We write
Godd for the union of all subgroups G[n] where n is odd. If ℓ is a prime, then the
ℓ-primary torsion subgroup G{ℓ} is the union of G[ℓn] for n ≥ 1.

The ℓ-adic Tate module is defined as

Tℓ(G) = Hom(Qℓ/Zℓ, G) = lim←−
n

G[ℓn],

where the transition maps G[ℓn+1] → G[ℓn] are multiplications by ℓ. It is easy
to check that Tℓ(G) is a torsion-free Zℓ-module. There are natural injective maps
Tℓ(G)/ℓn ↪→ G[ℓn]. If the group G[ℓ] is finite, then the Zℓ-module Tℓ(G) is finitely
generated. By Nakayama’s lemma we have Tℓ(A) ≃ Zr

ℓ where r ≤ dimFℓ
(G[ℓ]).

If, moreover, G is an ℓ-primary torsion abelian group, then Tℓ(G) ⊗ Qℓ/Zℓ is the
divisible subgroup Gdiv of A. Define

Vℓ(G) = Tℓ(G)⊗Zℓ
Qℓ.

This is a Qℓ-vector space.
For a field k we denote by k̄ an algebraic closure of k, and by ks the separable

closure of k in k̄. Let Γk = Gal(ks/k). We write Xs = Xks = X ×k ks.
A field is called finitely generated if it is finitely generated over its prime subfield.
For a scheme X we denote by Br(X) = H2

ét(X,Gm) the (cohomological) Brauer
group of X. When X is a variety over a field k, the group Br(Xs) is called the
geometric Brauer group of X. We use the standard notation

Br0(X) = Im[Br(k)→ Br(X)], Br1(X) = Ker[Br(X)→ Br(Xs)Γ].

Br1(X) is called the algebraic Brauer group. Following D’Addezio, we introduce the
following notation: for a field extension K/k we denote by Br(XK)

k the image of
the natural map Br(Xk) → Br(XK). In particular, Br(Xs)k, that is, the image of
Br(X)→ Br(Xs)Γ, is called the transcendental Brauer group of X.

3



1 Conjectures of Tate and Mumford–Tate

References: Moonen’s survey paper [Moo17].

1.1 Tate conjecture for divisors

The Tate conjecture is stated for varieties over finitely generated fields of arbitrary
characteristic.

Tate conjecture for divisors. The equivalent properties in the following theorem
hold when the ground field k is finitely generated.

Theorem 1.1 Let X be a smooth, projective, geometrically integral variety over a
field k. Let Γ = Gal(ks/k). Let ℓ ̸= char(k) be a prime. The following conditions
are equivalent.

(i) The injective map c1 : (NS (X
s)⊗ Zℓ)

Γ → H2
ét(X

s,Zℓ(1))
Γ is an isomorphism.

(ii) The injective map c1 : (NS (X
s)⊗Qℓ)

Γ → H2
ét(X

s,Qℓ(1))
Γ is an isomorphism.

(iii) (Tℓ(Br(X
s)))Γ = 0.

(iv) (Vℓ(Br(X
s)))Γ = 0.

(v) Br(Xs){ℓ}Γ is finite.

Proof. The Kummer exact sequence gives rise to an exact sequence of finitely gen-
erated Zℓ-modules

0 −→ NS (Xs)⊗ Zℓ −→ H2
ét(X

s,Zℓ(1)) −→ Tℓ(Br(X
s)) −→ 0,

with a continuous action of Γ. When tensored with Qℓ, it gives the exact sequence

0 −→ NS (Xs)⊗Qℓ −→ H2
ét(X

s,Qℓ(1)) −→ Vℓ(Br(X
s)) −→ 0. (1)

By [CTS21, Thm. 5.3.1 (ii)] this sequence is split as a sequence of Γ-modules. Thus
(ii) is equivalent to (iv). The group Tℓ(Br(X

s)) is torsion-free. Thus (iii) is equivalent
to (iv). It is clear that (iii) implies (i). That (i) implies (ii) follows from the simple
observation that for any finitely generated Zℓ-module M with an action of Γ, the
map MΓ ⊗Zℓ

Qℓ → (M ⊗Zℓ
Qℓ)

Γ is surjective.
For any abelian group A with an action of a group Γ, one has a natural iso-

morphism Tℓ(A)
Γ ∼= Tℓ(A

Γ). The group Br(Xs){ℓ} is of cofinite type [CTS21,
Prop. 5.2.9], hence so is Br(Xs){ℓ}Γ, that is, Br(Xs){ℓ}Γ ≃ (Qℓ/Zℓ)

m ⊕ B, where
B is a finite abelian group. Then Tℓ(Br(X

s){ℓ}Γ) ≃ Zm
ℓ . It follows that (iii) is

equivalent to (v), because both statements are equivalent to m = 0. □
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Remark 1.2 Let k be a finitely generated field of characteristic p. For a smooth,
projective, and geometrically integral variety X over k, finiteness of Br(Xs){ℓ}Γ for
one prime ℓ ̸= p implies finiteness of the prime-to-p subgroup of Br(Xs)Γ. This is
due to Cadoret–Hui–Tamagawa[CHT, Cor. 1.4], see also Yanshuai Qin’s paper [Qin,
Thm. 1.2].

Theorem 1.3 (i) Tate conjecture for divisors holds for abelian varieties.
(ii) Tate conjecture for divisors holds for K3 surfaces.

Proof. (i) Over a finite field, this was proved by Tate; over a field finitely generated
over the prime field, it was proved by Zarhin in characteristic p > 2 [Zar75, Zar76],
by Faltings in characteristic zero [Fal83, Fal86], and by Mori in characteristic 2, see
[Mor85].

(ii) In general, the case of K3 surfaces is reduced to the case of abelian varieties
via the Kuga–Satake construction which associates to a K3 surface X an abelian
variety A of large dimension. Deligne observed that A can be defined over a finite
extension of the ground field. Over a field of characteristic zero, the Tate conjec-
ture for K3 surfaces is due to Tankeev and, independently, Y. André, see [CTS21,
Thm. 16.7.1]. More recently, Tate conjecture was proved for K3 surfaces in finite
characteristic in growing generality by Nygaard, Ogus, F. Charles, Maulik, and fi-
nally in full generality by Madapusi Pera for p > 2 and by Madapusi Pera and
Wansu Kim for p = 2. □

Corollary 1.4 Let X be an abelian variety or a K3 surface over a field k that is
finitely generated over its prime subfield. Then Br(Xs){ℓ}Γ is finite for all primes ℓ
not equal to char(k).

Proof. This follows from Theorems 1.1 and 1.3. □

1.2 Mumford–Tate conjecture

Unlike Tate conjecture, the conjecture of Mumford–Tate is stated for varieties over
finitely generated fields of characteristic zero.

The original Mumford–Tate conjecture was stated for an abelian variety A in
terms of the natural Hodge structure on the first homology group H1 = H1(AC,Z).
The free Zℓ-module H1 ⊗Z Zℓ is identified with the ℓ-adic Tate module Tℓ(Ak̄) and
so carries a natural Galois representation. The idea is that the image of the Galois
group is roughly as large as is allowed by the symmetries of the cohomology of A,
as reflected in the Hodge structure.

Let X be a smooth, projective and geometrically integral variety over a field
k that is finitely generated over Q. Let i ≥ 1 and j be integers. We choose an
embedding k ↪→ C and define H as the quotient of Hi(XC,Z(j)) by the torsion
subgroup. We write HQ = H ⊗Z Q, HR = H ⊗Z R, HC = H ⊗Z C, and for a
prime ℓ write Hℓ = H ⊗Z Zℓ. Let GL(H) be the group Z-scheme such that for any
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commutative ring R we have GL(H)(R) = GL(H⊗ZR). The generic fibre GL(H)Q
is the algebraic group GL(HQ) over Q.

Let us first discuss the Galois side. The comparison theorems between Betti and
étale cohomology give an isomorphism betweenHℓ and the quotient of Hi

ét(Xk̄,Zℓ(j))
by the torsion subgroup. Let ρℓ : Γk → GL(H)(Zℓ) be the resulting continuous
representation. Here the twist Zℓ(j) is understood as the Tate twist; it changes
the Galois representation by tensoring it with the j-th power of the cyclotomic
character. Since Γk is compact and ρℓ is continuous, ρℓ(Γk) is a compact, hence
closed, subgroup of the ℓ-adic Lie group GL(HQℓ

). It is therefore a Lie subgroup.
Let gℓ be its Lie algebra. (This is a Qℓ-vector space.)

Let Gk,ℓ be the algebraic group over Zℓ defined as the Zariski closure of ρℓ(Γk) in
GL(H)Zℓ

. The generic fibre GK,ℓ,Qℓ
= Gk,ℓ×Zℓ

Qℓ is the Zariski closure of the image
of the Qℓ-representation Γk → GL(H)Qℓ

. The algebraic Qℓ-group GK,ℓ,Qℓ
is called

the ℓ-adic monodromy group. By theorems of Bogomolov [Bog80], Serre [Ser81] and
Henniart [Hen82], the group ρℓ(Γk) is an open subgroup of GK,ℓ,Qℓ

(Qℓ) with respect
to the ℓ-adic topology. Hence ρℓ(Γk) is open in Gk,ℓ(Zℓ) = GK,ℓ,Qℓ

(Qℓ)∩GL(Hℓ), but
since the latter group is compact, it has finite index in it. (For an abelian variety,
this index is know to be bounded, see Remark 1.3 of Zywina’s paper.)

The ℓ-adic monodromy group GK,ℓ,Qℓ
is not necessarily connected (for example,

for i = 2 and j = 1, because the action of Γk on the Néron–Severi group NS (Xk̄) is
via a finite quotient). By a result of Serre there exists a finite field extension kconn

of k such that for every field K ⊂ k̄ containing kconn and every prime ℓ the group
GK,ℓ,Qℓ

is connected, see [LP97]. We have Gkconn,ℓ,Qℓ
= G◦

k,ℓ,Qℓ
, where G◦

k,ℓ,Qℓ
is the

connected component of identity in Gk,ℓ,Qℓ
.

Now we discuss the Hodge side. The free Z-module H of finite rank carries a
natural Hodge structure. Let us recall what this means.

The R-torus S = RC/R(Gm,C) is called the Deligne torus. A Q-Hodge structure
on HQ of pure weight n can be described as a representation h : S → GL(H)R
whose restriction to Gm,R ⊂ S is x 7→ x−n. Then HC is a direct sum of the subspaces
(HC)

p,q, p+q = n, which are the eigenspaces of S(C) = C××C× acting by (z1, z2) 7→
z−p
1 z−q

2 . We have (HC)p,q = (HC)
q,p. In the context of Hodge structures, Z(j) is

understood as the Hodge structure on (2πi)jZ of pure weight −j; twisting by j
means tensoring with Z(j). For example, H2(XC,Z(1)) carries a natural Hodge
structure of weight 0.

The Mumford–Tate group GQ ⊂ GL(HQ) of the Hodge structure on HQ is the
smallest algebraic group over Q such that GR contains the image of the homomor-
phism h : S→ GL(H)R. It follows that GQ is connected. The Mumford–Tate group
GQ is known to be reductive if the Hodge structure is polarisable, which we assume
from now on.

The key property of the Mumford–Tate group is that an element of the full tensor
algebra of HQ and H∨

Q is fixed by GQ if and only if it has Hodge type (0, 0). Since
in characteristic zero a reductive group is determined by its tensor invariants, GQ
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can be characterised by this property.
Let G be the group Z-scheme which is the Zariski closure of the Mumford–Tate

group GQ in GL(H).

Mumford–Tate conjecture at a prime ℓ. We have GQℓ
= Gkconn,ℓ,Qℓ

= G◦
k,ℓ,Qℓ

.

An equivalent form of the conjecture is: GZℓ
= Gkconn,ℓ. Another equivalent form

is in terms of Lie algebras, namely, the equality of Lie subalgebras gℓ = h⊗Q Qℓ of
gl(HQℓ

), where h is the Lie algebra of the Mumford–Tate group GQ.
By Tankeev and [LP95, Thm. 4.3], Mumford–Tate conjecture at ℓ implies Mumford–

Tate conjecture at any other prime.
The Mumford–Tate conjecture GZℓ

= Gkconn,ℓ implies that ρℓ(Γkconn) is an open
subgroup of G(Zℓ) of finite index. This prompts the following stronger version of
the conjecture.

Serre’s integral Mumford–Tate conjecture. There is a constant C such that
for all primes ℓ the image ρℓ(Γkconn) is a subgroup of G(Zℓ) of index at most C.

This was conjectured by Serre to hold for all varieties, see [Ser77, Conjec-
ture C.3.7] and [Ser94, 10.3].

Definition 1.5 A (polarisable) Q-Hodge structure H is said to be of CM type
if its Mumford–Tate group is a torus. Equivalently, the endomorphism algebra
EndQ−HS(H) contains a commutative semisimple Q-algebra F such that H is free of
rank 1 as an F -module.

A complex abelian variety A (respectively, a K3 surface X) has CM type if the
Hodge structure on H1(A,Q) (respectively, on H2(X,Q)) is of CM type.

Mumford–Tate conjecture is known for abelian varieties of CM type. More gener-
ally, for arbitrary abelian varieties, it is ‘true for centres’ (Vasiu [Vas08, Thm. 1.3.1],
Ullmo–Yafaev). Commelin showed that if Mumford–Tate conjecture holds for two
abelian varieties, then it holds for their product. Results of Serre imply that this
conjecture holds for elliptic curves; Tankeev proved that it holds for simple abelian
varieties of prime dimension. For general abelian varieties (already in dimension 4)
Mumford–Tate conjecture conjecture is open.

For K3 surfaces, in contrast, the situation is much better understood.

Theorem 1.6 (Tankeev, Y. André, Cadoret–Moonen) The integral Mumford–
Tate conjecture holds for K3 surfaces over fields finitely generated over Q.

Proof. The Mumford–Tate conjecture for K3 surfaces was proved by Tankeev, and
independently by Y. André. Cadoret and Moonen [CM20] showed, using that the
moduli spaces of K3 surfaces are closely related to Shimura varieties, that the usual
Mumford–Tate conjecture for K3 surfaces implies its integral version. □

Actually, more is true. Let ρ : Γk → GL(H)(Ẑ) be the continuous representa-
tion of Γk whose ℓ-adic component is ρℓ. Cadoret and Moonen proved in [CM20]
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that ρ(Γkconn) is an open subgroup of G(Ẑ) and therefore (since G(Ẑ) is compact)
has finite index. This adelic version of the Mumford–Tate conjecture can only be
expected to hold if the Hodge structure on H is Hodge-maximal [CM20, 2.6], which
is the case when X is a K3 surface [CM20, Prop. 6.2].

Example 1.7 Mumford–Tate conjecture holds for diagonal hypersurfaces. Indeed,
in the language of André’s motives, varieties dominated by products of curves give
rise to ‘abelian motives’. In particular, this is the case for diagonal hypersurfaces.
As explained in [Moo17], Vasiu’s result that Mumford–Tate conjecture for abelian
varieties is ‘true for centres’ implies that the same holds for abelian motives. The
middle cohomology group of the Fermat hypersurface with coefficients C is the
direct sum of 1-dimensional eigenspaces of (µd)

n acting by automorphisms, so the
Mumford–Tate group is a torus. This proves the claim.

Question 1.8 The integral Mumford–Tate conjecture holds for diagonal surfaces.
Does the adelic version of Mumford–Tate conjecture hold for diagonal hypersurfaces?

The integral Mumford–Tate conjecture has the following strong consequence for
the finiteness of the Galois invariant subgroup of the Brauer group. In particular,
the integral Mumford–Tate conjecture for X implies the finiteness of Br(Xk̄)

Γ.

Proposition 1.9 (M. Orr, A.S.) Let X be a smooth, projective and geometrically
integral variety defined over a field k which is finitely generated over Q. Assume that
the integral Mumford–Tate conjecture is true for X. Then for every positive integer
m there exists a constant C = Cm,X such that for every subgroup Γ′ ⊂ Γk of index
at most m we have |Br(Xk̄)

Γ′| < C.

Proof. See [OS18, §5]. The Kummer sequence for a prime ℓ gives that Br(Xk̄){ℓ}
is an extension of the torsion subgroup of H3

ét(Xk̄,Zℓ), which is finite and is zero
for almost all ℓ, by the divisible subgroup Br(Xk̄){ℓ}div ≃ (Qℓ/Zℓ)

b2−ρ, see [CTS21,
Thm. 5.2.9]. Thus we need to bound the size of Br(Xk̄)

Γ′

div{ℓ} for each ℓ and to prove
that Br(Xk̄)

Γ′

div[ℓ] = 0 for all ℓ > ℓ0. We have an isomorphism of Galois modules

Br(Xk̄)div{ℓ} ∼= Tℓ(Br(Xk̄))⊗Zℓ
Qℓ/Zℓ,

so Br(Xk̄)div[ℓ] ∼= Tℓ(Br(Xk̄))/ℓ. The integral Mumford–Tate conjecture allows us
to replace the Galois group with the Mumford–Tate group. Let us indicate why
(Tℓ(Br(Xk̄))/ℓ)

S = 0 for almost all ℓ if S ⊂ G(Zℓ) is a subgroup of bounded index.
Denote by N the image of NS (XC) in H. From the Kummer sequence and the

comparisons theorem between singular and ℓ-adic étale cohomology we obtain an
isomorphism Tℓ(Br(Xk̄))/ℓ ∼= (H/N)/ℓ. We arrange that G ×Z Fℓ is a connected
algebraic group over Fℓ for all ℓ > ℓ0. We want to show that no subgroup of G(Fℓ)
of bounded index fixes a non-zero vector in (H/N)/ℓ if ℓ0 is large enough.

By the key property of the Mumford–Tate group, we have

(HQ)
GQ = HQ ∩H

(0,0)
C = NQ,
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where the second equality is by the Lefschetz (1, 1)-theorem. Since GQ is reductive,
HQ is a semisimple GQ-module, thus (HQ/NQ)

GQ = 0 and hence (HC/NC)
GC = 0.

It follows that the dimensions of the stabilisers of non-zero points of HC/NC are
less than d = dim(GQ). Using semicontinuity, one shows the same for the points of
(H/N)/ℓ, if ℓ0 is large enough. These stabilisers are algebraic groups over Fℓ. The
number of their connected components is bounded by an absolute constant. For an
arbitrary connected algebraic group G over Fℓ we have

(ℓ− 1)dim(G) ≤ |G(Fℓ)| ≤ (ℓ+ 1)dim(G).

This shows that the index of a stabiliser of a non-zero point of (H/N)/ℓ cannot be
bounded as ℓ grows. Thus no subgroup of G(Fℓ) of bounded index fixes a non-zero
vector in (H/N)/ℓ if ℓ > ℓ0, where ℓ0 is large enough.

To prove the finiteness of Br(Xk̄)
Γ′

div{ℓ} for a fixed ℓ, we use the property that
G(Zℓ) has only finitely many open subgroups of bounded index. Hence the same
is true for ρℓ(Γk). For each such subgroup S we need to show that Br(Xk̄){ℓ}S is
finite. This is equivalent to Vℓ(Br(Xk̄))

S = 0. We have

Vℓ(Br(Xk̄))
S = (HQℓ

/NQℓ
)S = (HQℓ

/NQℓ
)GQℓ = 0,

where the second equality is due to the fact that S is Zariski dense in GQℓ
, and the

last one is due to semisimplicity of the GQℓ
-module HQℓ

and the key property that
(HQ)

GQ = NQ. □

Corollary 1.10 Let X be a smooth, projective and geometrically integral variety
defined over a field k which is finitely generated over Q. If the integral Mumford–
Tate conjecture is true for X, then for each positive integer n there exists a constant
C = Cn,X such that for every (k̄/L)-form Y of X defined over a field extension L/k
of degree [L : k] ≤ n we have |Br(Y )ΓL| < C.

See [Amb21] for an analogue of this statement in finite characteristic.

1.3 Finiteness properties of the Brauer group

Let X be a smooth, projective and geometrically integral variety over a field k. Then
Br(X) is a torsion group [CTS21, Thm. 3.5.5], thus a direct sum of its ℓ-primary
torsion subgroups Br(X){ℓ}, for all primes ℓ.

Separably closed fields

For ℓ ̸= char(k), the structure of Br(Xs){ℓ} is computed by the Kummer exact
sequence: the divisible subgroup of Br(Xs){ℓ} is isomorphic to (Qℓ/Zℓ)

b2−ρ and
the quotient by the divisible subgroup is isomorphic to the torsion subgroup of
H3

ét(X
s,Zℓ), see [CTS21, Thm. 5.2.9]. We also note that the natural map

Br(Xs){ℓ} → Br(Xk̄){ℓ}
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is an isomorphism [CTS21, Prop. 5.2.3].
The structure of Br(Xs){p}, where p = char(k), is more involved. First of all,

one needs to distinguish between separably closed fields that are not algebraically
closed and algebraically closed fields. One problem here is that k̄ is not necessarily
finitely generated over ks, so f : Spec(k̄)→ Spec(ks) is not an fppf covering.

Proposition 1.11 The natural map Br(Xs){p} → Br(Xk̄){p} is injective if the Pi-
card scheme PicXs/ks is smooth over ks. This holds if one of the following conditions
is satisfied:

� X is an abelian variety;

� X is a K3 surface;

� H1(X,O) = 0;

� H2(X,O) = 0.

If Br(Xs){p} → Br(Xk̄){p} is injective, then Br(Xs)k
∼−→ Br(Xk̄)

k.

Proof. See [CTS21, Thm. 5.2.5]. We write k = ks. Let f : X → Spec(k) be the
structure morphism. Consider the spectral sequence

Hp
fppf(k,R

qf∗Gm,X)⇒ Hp+q
fppf(X,Gm,X) ∼= Hp+q

ét (X,Gm,X).

Here the isomorphism is due to the fact that fppf cohomology with coefficients in a
smooth group scheme coincides with étale cohomology. For any k-scheme T the map
OT → f∗OT×kX is an isomorphism, hence we have an isomorphism of fppf sheaves
Gm,k−̃→f∗Gm,X . We have H2

fppf(k,Gm,k) ∼= H2
ét(k,Gm,k) = Br(k) = 0 because k is

separably closed. Moreover, R1f∗Gm is representable by the Picard group scheme
PicX/k. Thus the spectral sequence gives an exact sequence

0→ H1
fppf(k,PicX/k)→ Br(X)→ H0(k,R2f∗Gm,X).

If PicX/k is smooth, then H1
fppf(k,PicX/k) = 0. With some work one shows that

H0(k,R2f∗Gm,X) embeds into H0(k̄, R2f∗Gm,X), see [D’Ad, §3]. But the injective
map Br(X)→ H0(k̄, R2f∗Gm,X) factors through Br(Xk̄), hence the result.

It is well known that the Picard scheme of an abelian variety is smooth. □

Example 1.12 The map Br(Xs){p} → Br(Xk̄){p} is not always injective. Indeed,
in characteristic p = 2 there exist Enriques surfaces such that the connected com-
ponent of the origin in PicXs/ks is the group k-scheme α2. The exact sequence of
fppf sheaves

0→ αp → Ga
F−→ Ga → 0,

where F (x) = xp, gives H1
fppf(ks, αp) ∼= ks/k

p
s , which can be infinite.
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Example 1.13 Artin showed that if X is a supersingular K3 surface over an al-
gebraically closed field k̄ of characteristic p > 0 (by definition, this means that
ρ = b2 = 22), then Br(Xk̄) ∼= k̄, so this group is not divisible (we cannot divide by
p), of exponent p, and can be uncountable2. In contrast, if X is a non-supersingular
K3 surface over an algebraically closed field k̄ of characteristic p > 0, then Br(Xk̄) is
countable and divisible. Note that in the last case, assuming k is finitely generated,
the group Br(Xk̄)

Γ does not always have finite exponent, see below.

Transcendental Brauer group

We have the following general result over an arbitrary ground field.

Theorem 1.14 Let X be a smooth, projective, geometrically integral variety over
a field k of characteristic exponent p. Then Br(Xs)Γ/Br(Xs)k, that is, the cokernel
of the natural map Br(X) → Br(Xs)Γ, is the direct sum of a finite group of order
coprime to p and a p-torsion group of finite exponent. In particular, if char(k) = 0,
then Br(Xs)k is finite if and only if Br(Xs)Γ is finite.

This was proved in [CTS13b] when char(k) = 0. As pointed out by Xinyi Yuan
[Yua20], the same method works over any k.

For abelian varieties and K3 surfaces over finitenely generated field, building on
Corollary 1.4, one strengthens that corollary as follows.

Theorem 1.15 Let k be a finitely generated field. If X is an abelian variety or a
K3 surface, then the subgroup of Br(Xs)Γ consisting of the elements of order coprime
to char(k) is finite.

Proof. This is a result of Skorobogatov and Zarhin [SZ08, SZ15], except for the case
of K3 surfaces over a field of characteristic 2 where it is due to K. Ito [Ito18]. For
the case of abelian varieties see also [CTS21, Thm. 16.2.3]. The proof uses results of
Faltings and Zarhin who showed that for abelian varieties A,B over a field finitely
generated over a prime subfield the natural injective map

Hom(A,B)/ℓ ↪→ HomΓ(A[ℓ], B[ℓ])

is an isomorphism for almost all ℓ. Let us explain how this implies that for almost
all primes ℓ we have Br(As)Γ[ℓ] = 0. In view of Corollary 1.4 this is all that remains
to do.

2Remarkably, in this case, the fppf sheaf R2p∗µp is a smooth group k-scheme of finite type
with connected component Ga. This is due to Artin, Artin–Mazur, and Milne, using the Tate
conjecture. Bragg and Olsson prove that Rip∗G, where X is projective and of finite type, and G
is a finite flat group X-scheme of finite type, is always representable by a group k-scheme of finite
type, which is an iterated extension of finite commutative group schemes and k-forms of vector
bundles.

11



The theory of abelian varieties over separably closed fields gives isomorphisms
of Γ-modules

Hi
ét(A

s,Z/ℓ) ∼= ∧iH1
ét(A

s,Z/ℓ), i ≥ 1,

and
H1

ét(A
s, µℓ) ∼= PicAs/ks [ℓ]

∼= A∨[ℓ] ∼= Hom(A[ℓ], µℓ).

Here the first isomorphism comes from the Kummer sequence, the second one follows
from the definition of the dual abelian variety A∨ as the connected component of
PicA/k, and the third one is due to the non-degeneracy of the Weil pairing

eA : A[ℓ]× A∨[ℓ]→ µℓ.

For i = 2 we use the Weil pairing to define an embedding

H2
ét(A

s, µℓ) ∼= Hom(∧2A[ℓ], µℓ) ↪→ Hom(A[ℓ]⊗2, µℓ) ∼= Hom(A[ℓ], A∨[ℓ]).

Now assume that ℓ ̸= 2. Let us call a homomorphism ϕ : A[ℓ] → A∨[ℓ] self-dual if
eA(x, ϕy) = eA∨(ϕx, y) for all x, y ∈ A[ℓ]. Denote by Hom(A[ℓ], A∨[ℓ])sym the group
of self-dual homomorphisms A[ℓ]→ A∨[ℓ]. The subtle but crucial fact that the Weil
pairings for A and A∨ differ by sign:

eA(x, y) = −eA∨(y, x),

implies that for ℓ ̸= 2 the image of H2
ét(A

s, µℓ) in Hom(A[ℓ], A∨[ℓ]) is Hom(A[ℓ], A∨[ℓ])sym.
On the other hand, there is a canonical isomorphism NS (As) = Hom(As, (A∨)s)sym,

where the subscript sym stands for self-dual maps of abelian varieties As → (A∨)s.
Using these isomorphisms, the cycle class map NS (As)/ℓ ↪→ H2

ét(A
s, µℓ) becomes

the natural map

Hom(As, (A∨)s)sym/ℓ ↪→ Hom(A[ℓ], A∨[ℓ])sym.

By Zarhin and Faltings, for almost all ℓ a Γ-invariant element ϕ ∈ HomΓ(A[ℓ], A
∨[ℓ])sym

comes from a morphism ϕ̃ : A→ A∨. Since ℓ ̸= 2 we can consider (ϕ̃+ ϕ̃∨)/2 mod ℓ,
which is an element of Hom(As, (A∨)s)sym/ℓ that maps to ϕ. The exact sequence of
Γ-modules (coming from the Kummer sequence)

0→ Hom(As, (A∨)s)sym/ℓ→ Hom(A[ℓ], A∨[ℓ])sym → Br(As)[ℓ]→ 0

is split for almost all ℓ (we already used this in the proof of Theorem 1.1). It follows
that Br(As)[ℓ]Γ = 0 for almost all ℓ.

For the case of K3 surfaces see [CTS21, Thm. 16.7.2, Remark 16.7.3]. The proof
uses the Kuga–Satake construction to reduce to the case of abelian varieties. In the
finite characteristic case, the proof uses Tate conjecture for K3 surfaces established
by Madapusi Pera, and by W. Kim and Madapusi Pera when char(k) = 2. □

Corollary 1.16 Let X be a K3 surface over a finitely generated field. The subgroup
of elements of order not divisible by char(k) in Br(X)/Br0(X) is finite.
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Proof. Use that H1(k,Pic(Xs)) is finite. □

A recent result of M. D’Adezzio [D’Ad, Thm. 1.1] concerns p-primary torsion of
the Brauer group of abelian varieties over finitely generated fields of characteristic p.

Theorem 1.17 (D’Adezzio) Let A be an abelian variety over a finitely generated
field k of characteristic p > 0. Then the transcendental Brauer group Br(As)k ∼=
Br(Ak̄)

k is a direct sum of a finite group and a finite exponent p-group.

The following general statement appears to be a correct generalisation of Theo-
rem 1.15. (Note that this is about ks, not k̄.)

Corollary 1.18 Let A be an abelian variety over a finitely generated field k. Then
Br(As)Γ has finite exponent.

Proof. Combine Theorems 1.14 and 1.17. □

Question 1.19 Does Br(Xs)Γ have finite exponent if X is a K3 surface? It is
easy to show that this holds for Kummer surfaces over a field k of characteristic
p ̸= 2. Indeed, let X = Kum(A), where A is an abelian surface. By Theorem 1.15
it remains to deal with p-primary torsion. The rational map of degree 2 from A
to X induces a map Br(X) → Br(A) and a compatible map Br(Xs) → Br(As).
The standard restriction-corestriction argument shows that both maps are injective
on the subgroups of elements of odd order, see, e.g., [CTS21, Prop. 3.8.4]. Hence
Br(Xs)k{p} ⊂ Br(As)k{p}, so Br(Xs)k{p} has finite exponent by Theorem 1.17.
Thus Br(Xs)Γ{p} has finite exponent by Theorem 1.14.

Example 1.20 Note that the transcendental Brauer group of A may well be infi-
nite, cf. [D’Ad, Cor. 5.4]. Let E1, E2 be supersingular elliptic curves over an infinite
finitely generated field k of characteristic p, and let A = E1×kE2. Infinitely many el-
ements of Br(A) that survive in Br(Ak̄) are easy to construct. Indeed, multiplication
by p map [p] : Ei → Ei is an fppf-torsor with structure group Ei[p], for i = 1, 2. The
cup-product of these torsors for the two factors is a class in H2

fppf(A,E1[p]⊗E2[p]).
The Weil pairing induces an isomorphism of fppf sheaves over Spec(k):

Hom(E1[p]⊗ E2[p], µp) ∼= Hom(E1[p], E2[p]).

This gives a map

Homk̄−group schemes(E1[p], E2[p])→ H2
fppf(Ak̄, µp),

which one shows to be injective, and a similar map over k. The Kummer exact
sequence in fppf topology gives a map

H2
fppf(Ak̄, µp)→ Br(Ak̄),

13



since the Brauer group can be computed in the fppf topology because Gm is smooth.
The group scheme Ei[p], i = 1, 2, is an extension of αp by αp, hence there is an
embedding Endk(αp) ⊂ Homk(E1[p], E2[p]). We have Endk(αp) ∼= k. This gives a
map k → Br(A) and a compatible map k̄ → Br(Ak̄). Since NS (Ak̄)/p is finite, we
have infinitely many elements of Br(A) surviving in Br(Ak̄).

However, [D’Ad, Thm. 1.1] says that the transcendental Brauer group of A is
finite when the p-rank of A is g or g − 1, where g = dim(A). For g = 2 this means
exactly that A is not supersingular.

Example 1.21 When p ̸= 2 the above classes descend to X = Kum(A). This gives
an example of a K3 surface with an infinite transcendental Brauer group, answering
[SZ08, Questions 1, 2] in the negative. Indeed, let Ã be the surface obtained by
blowing up the subscheme A[2] ⊂ A. By the birational invariance of the Brauer

group we have Br(A) ∼= Br(Ã), see [CTS21, Cor. 6.2.11]. There is a finite surjective

morphism f : Ã → X such that k(Ã) is a Galois extension of k(X) with Galois
group G ∼= Z/2. By [CTS21, Thm. 3.8.5] we have Br(X){p} ∼= Br(A){p}G. It is
easy to check that the above classes are G-invariant. Indeed, the generator of G
multiplies the class of each torsor [p] : Ei → Ei by −1, hence the cup-product class
in H2

fppf(A,E1[p]⊗ E2[p]) is fixed by G, and thus so is the resulting Brauer class.

Example 1.22 D’Addezio gives an example to show that in the case of finite char-
acteristic, Br(Ak̄)

Γ does not always have finite exponent, see [D’Ad, Cor. 6.7]. Take
A = E ×k E, where E is an ordinary elliptic curve over k with End(E) ∼= Z. Then
Tp(Br(Ak̄)) contains the quotient of End(Ek̄[p

∞]) by End(Ek̄) ⊗ Zp. Taking Ga-
lois invariants we obtain that Tp(Br(Ak̄))

Γ contains the quotient of End(Ek̄[p
∞])Γ

by End(E) ⊗ Zp
∼= Zp, so it is enough to show that the rank of the Zp-module

End(Ek̄[p
∞])Γ is at least 2. Since End(E) ∼= Z, the elliptic curve E is not supersin-

gular, so the p-divisible group E[p∞] has at least two slopes. By the Dieudonné–
Manin classification, this implies that E[p∞] is isogenous to the direct sum of two
non-zero p-divisible groups, hence the rank of End(Ek̄[p

∞])Γ is at least 2.
As in Remark 1.21, if p ̸= 2, then these classes also descend to X = Kum(A),

showing that Br(Xk̄)
Γ does not always have finite exponent when X is a K3 surface.

1.4 Uniformity

The aim of this section is to discuss links among several conjectures about K3
surfaces and abelian varieties defined over number fields. These conjectures state
that certain invariants take only finitely many values provided the degree of the field
of definition and the dimension (in the case of abelian varieties) are bounded.

Coleman’s conjecture about End(Ak̄). Let d and g be positive integers. Consider
all abelian varieties A of dimension g defined over number fields of degree d. Then
there are only finitely many isomorphism classes among the rings End(Ak̄).
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This or a closely related conjecture is attributed to Robert Coleman in [Sha96a,
Remark 4]. There is a version of this conjecture in which End(Ak̄) is replaced by the
ring End(A) of endomorphisms of A defined over k. It is not too hard to show that
Coleman’s conjecture about End(Ak̄) is equivalent to Coleman’s conjecture about
End(A), see [OSZ21, Thm. 3.4].

Rémond proved that Coleman’s conjecture implies the uniform boundedness of
torsion A(k)tors and of the minimal degree of an isogeny between isogenous abelian
varieties, see [Rem18, Thm. 1.1].

Shafarevich’s conjecture about NS (Xk̄). Let d be a positive integer. There are
only finitely many lattices L, up to isomorphism, for which there exists a K3 surface
X defined over a number field of degree d such that NS (Xk̄) ∼= L.

It is in this form that Shafarevich has stated his conjecture in [Sha96a]. Since
there are only finitely many lattices of bounded rank and discriminant, Shafarevich’s
conjecture is equivalent to the boundedness of the discriminant of NS (Xk̄). One
can also state a variant of Shafarevich’s conjecture in which NS (Xk̄) is replaced by
its Galois-invariant subgroup NS (Xk̄)

Γ, or, alternatively, by Pic(X). By [OSZ21,
Thm. 3.5] all these versions of Shafarevich’s conjecture are equivalent.

Similarly to Shafarevich’s conjecture, Coleman’s conjecture can be restated in
terms of lattices. Recall that End(A) is an order in the semisimple Q-algebra
End(A)Q = End(A)⊗Q. Let us define discr(A) as the discriminant of the integral
symmetric bilinear form tr(xy) on End(A), where tr : End(A)Q → Q is the reduced
trace. An equivalent form of Coleman’s conjecture says that discr(A) is uniformly
bounded for abelian varieties A of bounded dimension defined over number fields of
bounded degree.

Várilly-Alvarado’s conjecture. [VA17, Conj. 4.6] Let d be a positive integer and
let L be a primitive sublattice of the K3 lattice E8(−1)⊕2⊕U⊕3. If X is a K3 surface
defined over a number field of degree d such that NS (Xk̄) ∼= L, then the cardinality
of Br(X)/Br0(X) is bounded.

A stronger form of this conjecture omits the reference to the Néron–Severi lat-
tice. It concerns the uniform boundedness of the Galois invariant subgroup of the
geometric Brauer group.

It is well known that the cardinality of the finite group H1(k,Pic(Xk̄)), where X
is a K3 surface over an arbitrary field k of characteristic zero, is bounded, see e.g.
[VAV17, Lemma 6.4]. This is based on the well known lemma of Minkowski that
says that the order of finite subgroups of GL(Z, n) is bounded by a function of n.

Conjecture Br(K3). Let d be a positive integer. There is a constant C = C(d)
such that, if X is a K3 surface defined over a number field of degree d, then
|Br(Xk̄)

Γ| < C.

A similar conjecture can be stated for abelian varieties of given dimension.

Conjecture Br(AV). Let d and g be positive integers. There is a constant C =
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C(d, g) such that, if A is an abelian variety of dimension g defined over a number
field of degree d, then |Br(A)Γ| < C.

As proved in [OSZ21], these conjectures are logically related as follows:

Coleman’s conjecture =⇒ Shafarevich’s conjecture
⇓

Br(AV) =⇒ Várilly-Alvarado’s conjecture

 =⇒ Br(K3)

Theorem 1.23 The conjectures featuring in this diagram hold for abelian varieties
and K3 surfaces with complex multiplication.

Proof. See [OS18]. The proof uses a lower bound for the size of Galois orbits of
CM points from work of Tsimerman building on the proof of the averaged Colmez
conjecture by Andreatta, Goren, Howard and Madapusi Pera, and by X. Yuan and
S. Zhang. □

Coleman’s conjecture for elliptic curves follows from the Brauer–Siegel theorem,
but in the general case not much is known about these conjectures.

All these conjectures may be stated in the form “in a certain class of moduli
spaces, only finitely many spaces in the class have rational points over number
fields of degree d, excluding points which lie in subvarieties of positive codimension
parameterising objects with extra structures.”

Some of the above conjectures are known for the fibres of one-parameter fam-
ilies. In particular, a result of Cadoret and Tamagawa implies Coleman’s conjec-
ture within a one-parameter family of abelian varieties. Cadoret and Charles have
proved uniform boundedness of the ℓ-primary subgroup of the Brauer group for
one-parameter families of abelian varieties and K3 surfaces. Várilly-Alvarado and
Viray obtained bounds for the Brauer group for one-parameter families of Kummer
surfaces attached to products of isogenous elliptic curves [VAV17, Thm. 1.8].

2 Computing the Brauer group

2.1 Leray spectral sequence with coefficients Gm

Let X be a variety over a field k. The Leray spectral sequence for the structure
morphism p : X → Spec(k) and the étale sheaf Gm is the spectral sequence

Epq
2 = Hp(k,Hq

ét(X
s,Gm))⇒ Hp+q

ét (X,Gm). (2)

Let us denote the differential Ep,q
i → Ep+i,q−i+1

i by dp,qi .
When ks[X]× = k×

s , this Leray spectral sequence gives exact sequences

0 −→ Pic(X) −→ Pic(Xs)Γ
d0,12−→ Br(k) −→ Br1(X)

−→H1(k,Pic(Xs))
d1,12−→ Ker[H3(k, k×

s )→ H3
ét(X,Gm)]
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and

0 −→ Br1(X) −→ Br(X) −→ Ker[Br(Xs)
d0,22−→H2(k,Pic(Xs))]

d0,23−→ Ker[H3(k, k×
s )→ H3

ét(X,Gm)].

Thus to compute Br1(X) we need to know Im(d0,12 ) and Ker(d1,12 ), and then to
compute Br(X) we need to know Ker(d0,22 ) and finally Ker(d0,23 ). Let us explain
what is known about these four problems.

� If X(k) ̸= ∅, then Hi(k,Gm)→ Hi(X,Gm) has a retraction, hence is injective,
for all i ≥ 0. Then d0,12 = 0, d1,12 = 0, d0,23 = 0.

� More generally, if there is a morphism Y → X, where Y is a variety over k
such that ks[Y ]× = k×

s , then dp,12 = 0 for Y implies the same for X. (Example:
for a conic bundle X → P1

k containing a smooth k-fibre Y we have d1,12 = 0.)

� Likewise, in the same situation, if d0,23 = 0 for Y , then the same holds for X.

� If H3(k, k×
s ) = 0, then d1,12 = 0 and d0,23 = 0. This holds when k is a number

field or a p-adic field.

Proposition 2.1 Let X be a smooth and geometrically integral variety over a field k
such that ks[X]× = k×

s . For each p ≥ 0 the differential dp,12 from the spectral sequence
(2) coincides, up to sign, with the connecting map defined by the 2-extension of Γ-
modules

0 −→ k×
s −→ ks(X)× −→ Div(Xs) −→ Pic(Xs) −→ 0. (3)

The differential dp,12 comes from the map attached to the exact triangle

p∗(Gm,X) −→ τ[0,1](Rp∗(Gm,X)) −→ (R1p∗)(Gm,X)[−1]

in the bounded below derived category D+(k) of Γ-modules. Here Rp∗ : D+(X) →
D+(k) is the derived functor from the bounded below derived category D+(X) of
étale sheaves onX toD+(k), and τ[0,1] is the truncation functor. Proposition 2.1 then
follows from the fact that τ[0,1](Rp∗(Gm,X)) is represented by the 2-term complex
ks(X)× → Div(Xs), see [BvH09, Lemma 2.3].

There are many examples where the differential d0,12 is non-zero, the easiest one
is a conic without rational points (the generator of Pic(Xk̄) ∼= Z goes to the class of
the conic X in Br(k)). See also Section 2.2 below.

There is a partial description of the differential d0,22 .

Proposition 2.2 Let X be a smooth, projective, geometrically integral variety over
a field k of characteristic zero. Let N(Xs) = NS (Xs)/tors. The composition

(Br(Xs)div)
Γ ↪→ Br(Xs)Γ

d0,22−→ H2(k,Pic(Xs)) −→ H2(k,N(Xs)) (4)
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coincides (up to sign) with the connecting map ∂ : (Br(Xs)div)
Γ → H2(k,N(Xs))

defined by the exact sequence

0 −→ N(Xs) −→ N(Xs)⊗Q −→
⊕
ℓ

H2
ét(X

s,Zℓ(1))⊗Q/Z −→ Br(Xs)div −→ 0.

Proof. This is [CTS13b, Cor. 3.5]. □

For K3 surfaces we have Pic(Xs) = N(Xs) and Br(Xs) = Br(Xs)div, so this
result completely describes d0,22 . Unfortunately, it is not quite enough for abelian
varieties (where Pic(Xs)div is non-zero, see however Corollary 2.3 below) and gives
no information at all for Enriques surfaces (where Br(Xs)div is zero).

I am not aware of any results describing d0,23 . This is fortunately not a problem
for abelian varieties (which have a k-point) or over number (or p-adic) fields.

In the case of abelian varieties we have the following consequence of the functo-
riality of the spectral sequence (2) in X.

Corollary 2.3 Let A be an abelian variety over a field k of characteristic zero. If
x ∈ Br(Ak̄)

Γ is such that ∂(x) = 0, then 2x ∈ Br(Ak̄)
k. In particular, an element of

Br(Ak̄)
Γ
odd lifts to Br(A) if and only if ∂(x) = 0.

Proof. This formally follows from the fact that the antipodal involution [−1] : A→ A
induces multiplication by −1 on the dual abelian variety A∨, but acts trivially on
H2(Ak̄,Zℓ(1)) for all ℓ, hence it also acts trivially on NS (Ak̄) and Br(Ak̄). Indeed,
since ∂(x) = 0, we have d0,22 (x) = i∗(y) for some y ∈ H2(k,A∨), where

i : A∨(k̄) ∼= Pic0(Ak̄) ↪→ Pic(Ak̄)

is the natural injective map. We have [−1]∗(x) = x and [−1]∗(y) = −y, therefore
d0,22 (2x) = 2d0,22 (x) = i∗(y) + i∗(−y) = 0. □

2.2 Example: generic diagonal surfaces

Let k be a field of characteristic zero, and let K = k(a1, a2, a3) be a field extension.
For a positive integer d consider the surface X ⊂ P3

K given by

xd
0 + a1x

d
1 + a2x

d
2 + a3x

d
3 = 0. (5)

Theorem 2.4 If a0, a1, a2 are algebraically independent over k (that is, K is a
purely transcendental extension of k of transcendence degree 3), then the natural
map Br(K)→ Br(X) is an isomorphism.

Proof. This is [GS, Thm. 1.5]. For a different proof see [CTS]. □

In particular, d0,12 = 0. Next, we have the following
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Proposition 2.5 If K contains the cyclotomic field Q(µd), and the subgroup of
K×/K×d generated by a1, a2, a3 is isomorphic to (Z/d)3, then H1(K,Pic(XK)) is
the cyclic group of order d if d is odd, and d/2 if d is even.

Proof. This is [GS, Thm. 1.2 (1)]. □

In this case the differential d1,12 is injective ‘generically’, that is, when a1, a2, a3
are independent variables over a number field k, but is zero after specialisation, that
is, after making a1, a2, a3 elements of k. Since Br1(X) = Br0(X), ‘universal Brauer
classes do not exist’ in this situation.

To show that d1,12 is injective, one computes that d1,12 sends the generator of
H1(K,Pic(XK̄)) to the image of twice the triple cup-product

2[a1] ∪ [a2] ∪ [a3] ∈ H3(K,µ⊗3
d )

under the map
H3(K,µ⊗3

d ) ∼= H3(K,µd)→ H3(K,K×)

given by the choice of a primitive d-th root of unity. Here [a] ∈ H1(K,µd) is the class
of the µd-torsor x

d = a, where a ∈ K×. One shows that this image has order d or
d/2 (depending on the parity of d) by taking successive residues as in the following
diagram, where we assume without loss of generality that k is algebraically closed:

H3(K,K
×
) // H2(k(a1, a2),Q/Z)

∼= // H2(k(a1, a2), k(a1, a2)
×
) // H1(k(a1),Q/Z)

H3(K,µd) //

OO

H2(k(a1, a2),Z/d)

OO

∼= // H2(k(a1, a2), µd)

OO

// H1(k(a1),Z/d)
?�

OO

Note that the square in the middle is commutative, whereas the two outer squares
are anticommutative. See [GS, §3] for details.

Remark 2.6 Using a theorem of Bright–Browning–Loughran and a follow-up paper
of Bright, we obtain, under the above assumptions, that for 100% of k-points3

P = (c0 : c1 : c2 : c3) ∈ P3
k(k) such that the surface XP ⊂ P3

k given by

c0x
d
0 + c1x

d
1 + c2x

d
2 + c3x

d
3 = 0

is everywhere locally soluble, XP is a counterexample to weak approximation and,
moreover, Br1(X) does not obstruct the Hasse principle on XP .

In the assumptions of Theorem 2.4 we have Br(XK)
K = 0. This vanishing is a

particular case of a general situation for certain isotrivial varieties. Indeed, we have
the following result for cyclic twists.

3with respect to the usual height on P3
k
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Theorem 2.7 Let k be a field of characteristic zero. Let K = k(t) and L = k( d
√
t).

Let c : ΓK → µd be the 1-cocycle given by the action of ΓK on d
√
t. Let Y be a

smooth, projective, geometrically integral variety over k with an action of the group
k-scheme µd. Suppose that Yk̄ satisfies the following conditions: for all primes ℓ the
group Hi

ét(Yk̄,Zℓ) is torsion-free for i = 2, 3, and
(a) H1(µd,H

2
ét(Yk̄,Zℓ)) = 0;

(b) the cycle class map c1 : (NS (Yk̄)⊗Qℓ)
µd → H2

ét(Yk̄,Qℓ)
µd is an isomorphism.

Let X be the (L/K)-twist of YK by the 1-cocycle c : ΓK → µd. Then Br(XK)
K = 0.

As a corollary, we get that Br(XK)
K = 0 in the situation of Theorem 2.4. Indeed,

let Y ⊂ P3
F be the surface with equation

xd
0 + s1x

d
1 + xd

2 + s2x
d
3 = 0, (6)

where s1, s2 ∈ F×. The integral ℓ-adic étale cohomology groups of smooth surfaces
in P3

F
are torsion-free. The group scheme µd acts on Y so that x2 and x3 are

multiplied by the same d-th root of 1, and x0 and x1 are not altered. By [GS, Proof
of Thm. 2.2] this action satisfies the conditions of Theorem 2.7. (This is non-trivial
and is based on topological arguments of F. Pham and A. Degtyarev.) The surface
X over K = F (t) obtained by twisting Y as described in Theorem 2.7, is given by

xd
0 + s1x

d
1 + t(xd

2 + s2x
d
3) = 0.

Suppose that F = k(s1, s2) is a purely transcendental extension of a field k of
transcendence degree 2. Writing a1 = s1, a2 = t, a3 = s2t, we see that X is the
surface over K = k(a1, a2, a3) given by (5). Theorem 2.4 gives Br(XK)

K = 0.

Proof of Theorem 2.7. We have K ⊂ Kk̄ ⊂ K, hence the map Br(X) → Br(XK)
factors through Br(XKk̄)→ Br(XK). Thus we can assume without loss of generality
that k is algebraically closed.

Take any prime ℓ. There is a natural commutative diagram with exact rows

0 // (NS (XK)/ℓ
n)ΓK // H2

ét(XK , µℓn)
ΓK // Br(XK)[ℓ

n]ΓK

H2
ét(X,µℓn) //

OO

Br(X)[ℓn]

OO

// 0

We need to prove that the right-hand vertical map is zero for all n. For this it is
enough to prove that the middle map in the top row is an isomorphism.

Since XL
∼= YL and k = k̄, the action of ΓK on Hi

ét(XK ,Z/ℓn) is identified with
the action of µd on Hi

ét(Yk̄,Z/ℓn), for all primes ℓ and all integers n ≥ 1, i ≥ 0. A
similar statement holds for NS (XK). Thus it is enough to prove that the cycle class
map

(NS (Yk̄)/ℓ
n)µd → H2

ét(Yk̄, µℓn)
µd
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is an isomorphism. This map fits into the following commutative diagram

(NS (Yk̄)⊗ Zℓ)
µd �
� //

��

H2
ét(Yk̄,Zℓ(1))

µd

��
(NS (Yk̄)/ℓ

n)µd �
� // H2

ét(Yk̄, µℓn)
µd

Since Hi
ét(Yk̄,Zℓ(1)) is torsion-free for i = 2 and i = 3, by condition (a) the right-

hand vertical map is surjective. By condition (b) the top horizontal arrow is an
isomorphism. The commutativity of the diagram implies that the bottom horizontal
arrow is an isomorphism. □

2.3 Semiabelian varieties

Another approach to calculating Br(X) is to use the Kummer sequence over k (with
n coprime to char(k))

0 −→ Pic(X)/n −→ H2
ét(X,µn) −→ Br(X)[n] −→ 0

and determine H2
ét(X,µn) from the Leray spectral sequence

Epq
2 = Hp(k,Hq

ét(X
s, µn))⇒ Hp+q

ét (X,µn). (7)

Here we take the view that Pic(X), being a subgroup of Pic(Xk̄)
Γ of finite index,

is easier to determine in practice than the more mysterious Br(X). When X has a
k-point, e.g., when X = A is an abelian variety, we have Pic(X) = Pic(Xk̄)

Γ. When

X = T is a torus, then Pic(Tk̄) = 0 and Pic(T ) ∼= H1(k, T̂ ).
Let us denote the differentials in this spectral sequence by δp,qi : Ep,q

i → Ep+i,q−i+1
i .

The following statement links d0,22 , δ0,22 , and ∂, under a mild assumption on the
Néron–Severi group.

Proposition 2.8 Let X be a proper, smooth and geometrically integral variety over
a field k of characteristic zero such that NS (Xk̄) is torsion-free. Assume that Γ acts
trivially on NS (Xk̄). Let A be the Albanese variety of X. For any n ≥ 1 and any
x ∈ Br(Xk̄)

Γ[n] the following statements hold.

(a) ∂(x) = 0 if and only if x lifts to an element of H2
ét(Xk̄, µn)

Γ.

(b) d0,22 (x) = 0 if and only if x lifts to an element of H2
ét(Xk̄, µn)

Γ contained in
the kernel of the composition

H2
ét(Xk̄, µn)

Γ δ0,22−→ H2(k,A∨[n])→ H2(k,A∨). (8)

Proof. From the construction of ∂ we have the following commutative diagram:

Br(Xk̄)
Γ[n]

d0,22 //

��

∂

))

H2(k,Pic(Xk̄))

��
H1(k,NS (Xk̄)/n)

� � // H2(k,NS (Xk̄))
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The left-hand vertical map comes from the Kummer exact sequence. The bottom
arrow is the Bockstein map attached to multiplication by 2m on the torsion-free
abelian group NS (Xk̄); it is injective since H

1(k,NS (Xk̄)) = 0. Part (a) immediately
follows from the diagram.

Let us prove (b). Suppose that x lifts to an element of H2
ét(Xk̄, µn)

Γ contained in
the kernel of (8). By the functoriality of the Leray spectral sequence with respect to
the map µn → Gm we then have d0,22 (x) = 0. Conversely, suppose that d0,22 (x) = 0.
By part (a), x lifts to some y ∈ H2

ét(Xk̄, µn)
Γ. Let z ∈ H2(k,A∨) be the image of

y under the map (8). The functoriality of the Leray spectral sequence with respect
to the map µ2m → Gm gives that z goes to d0,22 (x) = 0 in H2(k,Pic(Xk̄)). Now our
condition H1(k,NS (Xk̄)) = 0 implies that z = 0. □

We now investigate the computation of Hi
ét(A,Z/n), where A is a semiabelian

variety and n is not divisible by char(k), via the spectral sequence (7). The fact that
[−1] acts as (−1)i on Hi

ét(A
s,Z/n) = ∧iH1

ét(A
s,Z/n) implies that all differentials δp,q2

are zero when n is odd. Thus the interesting problem is to describe what is going
on when n = 2m. The answer is simpler for the coefficients Z2.

For a free finitely generated Z2-module M we write Q2(M) for the Z2-module of
quadratic functions on M∨ = HomZ2(M,Z2), that is, functions f : M∨ → Z2 such
that f(x+y)−f(x)−f(y) is a bilinear function of x and y. (An instructive example
of a quadratic function on Z2 is (x

2−x)/2.) There is a natural injectionM → Q2(M)
sending an element ofM to the linear function onM∨ that it defines. The cokernel of
this map is HomZ2(S

2(M∨),Z2). One immediately checks (for example, by choosing
a basis of M and the dual basis of M∨) that under the natural pairing

M⊗2 × (M∨)⊗2 → Z2

the Z2-submodules (M ⊗M)S2 = ⟨m⊗m|m ∈M⟩ ⊂M⊗2 and ⟨a⊗ b− b⊗ a|a, b⟩ ⊂
(M∨)⊗2 are exact annihilators of each other. Thus there is a canonical isomorphism
HomZ2(S

2(M∨),Z2) ∼= (M ⊗M)S2 . We obtain a canonical exact sequence

0→M → Q2(M)→M⊗2 → ∧2M → 0. (9)

The Z2-module Q2(M) contains the submodule of quadratic forms M∨ → Z2. The
map Q2(M)→M⊗2 sends a quadratic form to the associated bilinear form. This is
an isomorphism onto the Z2-submodule ⟨a⊗ b+ b⊗ a|a, b ∈M⟩ of ⟨m⊗m|m ∈M⟩.
If we pass to the quotients, we obtain from (9) an equivalent extension

0→M
[2]−→M → (M⊗2)S2,sgn → ∧2M → 0, (10)

where the middle arrow is given by m 7→ m⊗m. The chain maps are Q2(M)→M ,
which sends a quadratic function f to the linear function 4f(m) − f(2m), and the
natural map M⊗2 → (M⊗2)S2,sgn to the maximal quotient on which S2 acts by the
sign character.
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Theorem 2.9 (A. Petrov) Let k be a field of characteristic different from 2. Let
A be a semiabelian variety over k. Consider the spectral sequence

Epq
2 = Hp(k,Hq

ét(A
s,Z2))⇒ Hp+q

ét (A,Z2).

Write M = H1
ét(A

s,Z2) so that Hi
ét(A

s,Z2) = ∧iM for i ≥ 0. The differential

δp,22 : Hp
cont(Γ,∧2M)→ Hp+2

cont(Γ,M)

equals (up to sign) the connecting map of the 2-extension of Γ-modules (9).

Proof. The 2-part of π1(A
s, 0) is the Tate module T2(A). Hence we have a canonical

morphism in the derived category of bounded below complexes of continuous Γ-
modules

RΓcont(M
∨,Z2)→ Rp∗(Z2),

where p : A → Spec(k) is the structure morphism. It induces identity maps on the
cohomology groups, which are canonically isomorphic to ∧iM , so this is a quasi-
isomorphism.

Thus we can calculate Rp∗(Z2) using the standard bar complex

0 −→ Z2
d0=0−→ Func(M∨,Z2)

d1−→ Func(M∨ ×M∨,Z2) −→ . . . , (11)

where Func is the Z2-module of continuous functions. The differential d1 sends a
function f : M∨ → Z2 to the function of two arguments f(x+ y)− f(x)− f(y). The
inclusion Q2(M) ⊂ Func(M∨,Z2) gives rise to a commutative diagram

Q2(M) //

��

M⊗2

��
Func(M∨,Z2)

d1 // Func(M∨ ×M∨,Z2)

The right-hand vertical map is the inclusion of bilinear functions onM∨×M∨ into all
continuous functions. The commutativity is immediate from the definitions of maps.
The induced maps on the cohomology groups are isomorphisms M−̃→H1(M∨,Z2)
and ∧2M−̃→H2(M∨,Z2) (since the last group is the image of the cup-product pairing
on H1(M∨,Z2), which in this case is alternating). This gives a quasi-isomorphism
between the two-term complex Q2(M)→M⊗2 and the truncation τ[1,2]Rp∗(Z2). □

The description of the same differential with coefficients Z/ℓm is a little more
complicated. Let A be the abelian category of Z2-modules with continuous action
of Γ, and let D(A) be the bounded derived category of A. When N is a free finitely
generated Z2-module with continuous action of Γ, we shall denote by Bock the
morphism N/2m → N [1] defined by the exact sequence

0→ N
[2m]−→ N → N/2m → 0.
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For i ≥ 1, abusing notation, we shall also denote by Bock for the composition
N/2m → N [1]→ (N/2i)[1]. This map is defined by the exact sequence

0→ N/2i → N/2m+i → N/2m → 0,

which is the push-out of the previous exact sequence by the map N → N/2i.
Recall that M = H1

ét(A
s,Z2) so that Hi

ét(A
s,Z/2m) ∼= ∧i(M/2m) for i ≥ 0. We

have a crucial exact sequence of Γ-modules

0→M/2→ S2(M/2)→ ∧2(M/2)→ 0. (12)

Note that S2(M/2) ∼= ((M/2)⊗2)S2,sgn. We write α : ∧2 (M/2) → (M/2)[1] for the
morphism in D(A) defined by (12). Consider the following morphisms in D(A):

∧2(M/2m) −→ ∧2(M/2)
α−→ (M/2)[1]

Bock−→ (M/2m)[2], (13)

∧2(M/2m)
Bock−→ ∧2(M/2)[1]

α[1]−→ (M/2)[2] −→ (M/2m)[2]. (14)

The unmarked arrows in (13) and (14) are the natural surjection and the natural
injection, respectively.

Corollary 2.10 (A. Petrov) Let k be a field of characteristic different from 2. Let
A be a semiabelian variety over k. Consider the spectral sequence

Epq
2 = Hp(k,Hq

ét(A
s,Z/2m))⇒ Hp+q

ét (A,Z/2m).

The differential δp,22 : Hp
cont(Γ,∧2(M/2m))→ Hp+2

cont(Γ,M/2m) is (up to sign) the dif-
ference of the maps obtained by applying Hp

cont(Γ,−) to (13) and (14).

Proof. This can be proved by an explicit calculation with complexes, see [PSk]. □

Tori

For any torus T over a field k we have Pic(Tk̄) = 0. Then the Kummer sequence
gives rise to an isomorphism

κ : H2
ét(Tk̄, µn)−̃→H2

ét(Tk̄,Gm)[n].

Using the isomorphism of Γ-modules k̄[T ]× ∼= k̄× × T̂ , we also deduce from the
Kummer sequence a natural isomorphism

ρ : T̂ /n−̃→H1
ét(Tk̄, µn).

The following proposition, combined with Corollary 2.10, answers the question raised
on top of [CTS21, p. 220].
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Proposition 2.11 Let T be a torus over a field k of characteristic zero. Let d̄0,23 be
the composition

H2
ét(Tk̄,Gm)

Γ d0,23−→ H3(k, k̄[T ]×)→ H3(k, T̂ ),

where the second map is induced by the projection k̄[T ]× ∼= k̄× × T̂ → T̂ . The
restriction of d̄0,23 to the n-torsion subgroup is (up to sign) the composition

H2
ét(Tk̄,Gm)[n]

Γ κ−1

−→ H2
ét(Tk̄, µn)

Γ δ0,22−→ H2(k,H1
ét(Tk̄, µn))

ρ−1

−→ H2(k, T̂ /n)
Bock−→ H3(k, T̂ ).

Looking at the action of [−1] : T → T we see that 2d̄0,23 = 0. Thus the differential
d0,23 is zero on Br(Tk̄)

Γ
odd, so that the natural map Br(T )odd → Br(Tk̄)

Γ
odd is surjective.

3 Computing the Brauer–Manin set

For a variety X over a field k, an element A ∈ Br(X) and a k-algebra R we define
the evaluation map evA : X(R)→ Br(R) by evA(P ) = A(P ).

Let k be a number field, let Ωk be the set of all places of k, and let Ak be the ring
of adèles of k. For a subset S ⊂ Ωk we denote by AS

k the adèles without components
for the places in S.

The set of adelic points X(Ak) is a locally compact Hausdorff topological space.
If X is proper, then X(Ak) =

∏
v X(kv) is a product of compact spaces, so X(Ak)

is compact by Tychonoff’s theorem.
By local class field theory we have the local invariant invv : Br(kv)→ Q/Z, which

is an isomorphism for non-archimedian v, injective onto 1
2
Z/Z if kv ≃ R, and zero

if kv ≃ C. The local invariant allows us to think of evA as a map X(kv) → Q/Z.
The standard spreading-out argument [CTS21, Prop. 13.3.1] based on the fact that
Br(OK) = 0, where OK is the ring of integers of a p-adic field K, shows that the
map

evA : X(Ak)→
∏
v∈Ωk

Q/Z

factors through the direct sum
⊕

v∈Ωk
Q/Z. Thus we have a well defined, continuous

pairing, called the Brauer–Manin pairing,

X(Ak)× Br(X)→ Q/Z (15)

sending (Mv)v∈Ω and A ∈ Br(X) to the sum
∑

v∈Ωk
evA(Mv) ∈ Q/Z (which is

actually a finite sum). The Brauer–Manin set X(Ak)
Br is the left kernel of (15).

We can also consider larger sets X(Ak)
B, where B ⊂ Br(X).

It is natural to ask: which places of k and which elements of Br(X) are actually
needed to define the Brauer–Manin set?
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Definition 3.1 A place v of k is irrelevant if evA : X(kv)→ Q/Z is constant for
all A ∈ Br(X). In the opposite case, v will be called relevant. If v can be extended
to a relevant place of a finite extension of k, then v will be called potentially
relevant.

For example, complex places are irrelevant. A real place v such that X(kv) is
connected, is irrelevant.

Lemma 3.2 Assume X(Ak)
Br ̸= ∅. For a set S of places of k the following condi-

tions are equivalent.

(i) All primes not in S are irrelevant.
(ii) The set X(AS

k ) is a direct factor of X(Ak)
Br.

In this case X(Ak)
Br = Z ×X(AS

k ), where Z is a closed subset of X(A
Ωk\S
k ).

Proof. Assume (i). Then the evaluation map away from S defines a homomorphism
Br(X)→

⊕
v/∈S Q/Z. Let B be its kernel.

Take any (Pv) ∈ X(Ak)
Br. For any A ∈ Br(X) we have

∑
v∈Ωk

invv(A(Pv)) = 0,
so there exists an element A0 ∈ Br(k) with invv(A0) = invv(A(Pv)) for all v. Then
A− A0 ∈ B, so Br(X) is generated by B and the image of Br(k)→ Br(X). Hence

the Brauer–Manin pairing (15) factors through a pairing X(A
Ωk\S
k ) × B → Q/Z.

Thus X(Ak)
Br is the product of the left kernel of this pairing and X(AS

k ).
Assume (ii). Take any (Pv) ∈ X(Ak)

Br. If (i) is false, then there are an element
A ∈ Br(X) and a place w /∈ S such that there exists a (P ′

w) ∈ X(kw) with evA(P
′
w) ̸=

evA(Pw). Replacing Pw in the adelic point (Pv) by P ′
w we get an element not in

X(Ak)
Br, which contradicts (ii). □

Definition 3.3 Let B ⊂ Br(X) be a subgroup. We call B irrelevant if it does not
obstruct weak approximation, that is, if we have X(Ak)

B = X(Ak). If X(Ak)
B =

X(Ak)
Br, then we say that B captures the Brauer–Manin obstruction.

For example, Br0(X) is an irrelevant subgroup. There is a maximal irrelevant
subgroup of Br(X).

We would like to address the following questions:

Question 3.4 Which places v ∈ Ωk are irrelevant?

In other words, which primes show up in the Brauer–Manin obstruction?

Question 3.5 Which subgroups of Br(X) are irrelevant and which capture the
Brauer–Manin obstruction?
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If X(Ak)
Br = ∅, then the topological space X(Ak) has an open covering by the

open subsetsX(Ak)\X(Ak)
b, for b ∈ Br(X). IfX is proper, thenX(Ak) is compact,

so there is a finite subcovering. If X is smooth, then Br(X) is a torsion group, so
there is a finite subgroup B ⊂ Br(X) such that X(Ak)

B = ∅, so B captures the
Brauer–Manin obstruction. In a recent paper by J. Berg, C. Pagano, B. Poonen,
M. Stoll, N. Triantafillou, B. Viray, and I. Vogt, it is shown that the number of
generators of B cannot be bounded already for conic bundles over P1

k, for any global
field k of characteristic different from 2.

3.1 Relevant and irrelevant places

If X is proper, then for any A ∈ Br(X) the map evA is identically zero on X(kv)
outside of finitely many places. When Br(X)/Br0(X) is finite, this immediately
gives the rough general shape of the Brauer–Manin set:

Lemma 3.6 Let X be a proper variety over a number field k. If Br(X)/Br0(X) is
finite, then there exists a finite set S of places of k such that all places not in S are
irrelevant, and we have

X(Ak)
Br = Z ×

∏
v/∈S

X(kv) (16)

for an open and closed set Z ⊂
∏

v∈S X(kv).

Proof. This is [CTS21, Lemma 13.3.13]. □

A natural question is: how small can S be?

Question 3.7 (Swinnerton-Dyer) Let X be a smooth, projective and geometri-
cally integral variety over a number field k such that Pic(Xk̄) is a finitely generated
torsion-free abelian group. Are the primes of good reduction irrelevant?

It is likely that Swinnerton-Dyer was actually asking about k = Q. The following
result gives sufficient conditions under which the answer is positive.

Theorem 3.8 Let X be a smooth, projective and geometrically integral variety over
a number field k such that Pic(Xk̄) is a finitely generated torsion-free abelian group.
Let S be a finite set of primes of k containing the primes of bad reduction. Assume
that the transcendental Brauer group Br(Xk̄)

k = Br(X)/Br1(X) is a finite abelian
group of order invertible outside S. Then the primes outside of S are irrelevant.

Proof. This is [CTS21, Thm. 13.3.15]. Let us sketch a proof. Let v be a place
of good reduction. Let kv,nr ⊂ kv be the maximal unramified extension, and let
Xnr = X ×k kv,nr.

A crucial observation is that any element of Ker[Br(X)→ Br(Xnr)] is a sum of a
constant class from Br(kv) and an element of Br(X ), the Brauer group of a smooth
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proper model X of X, see [CTS21, Lemma 10.4.1]. By properness, a kv-point of
X extends to an Ov-point of X . But Br(Ov) = 0, so such classes have constant
evaluation map.

This kernel contains all the algebraic classes in Br(X). Indeed, take any prime
ℓ ̸= p, where p is the residue characteristic ofK. By the smooth base change theorem
the inertia subgroup I = Gal(kv/kv,nr) ⊂ Gal(kv/kv) acts trivially on H2

ét(Xkv
, µℓn)

for any n ≥ 1, hence also on H2
ét(Xkv

,Zℓ(1)), and thus also on Pic(Xkv
) which in

our assumptions has no torsion and so embeds into the last group by the Kummer
sequence. The spectral sequence

Hp(kv,nr,H
q
ét(Xkv

,Gm))⇒ Hp+q
ét (X,Gm)

gives an exact sequence

Br(kv,nr)→ Ker[Br(Xnr)→ Br(Xkv
)]→ H1(I,Pic(XK)) = 0.

We have Br(kv,nr) = 0 since the residue field F is perfect. It follows that Br1(X) is
killed by base change to kv,nr.

Let A ∈ Br(X)[ℓn], where ℓ ̸= p and n ≥ 1. Such classes are also killed by
base change to kv,nr. From the Gysin exact sequence in étale topology we see that
Br(X )[ℓn] is the kernel of the residue map r : Br(X)[ℓn] → H1(XF,Z/ℓn), where XF
is the special fibre of X → Spec(Ov). Since Pic(Xkv

) is torsion-free, using proper
and smooth base change, we obtain that H1(XF,Z/ℓn) = 0. The standard spectral
sequence then implies that

Z/ℓn ∼= H1(F,Z/ℓn)→ H1(XF,Z/ℓn)

is an isomorphism. By functoriality of residues, the residue of α(P ) ∈ Br(kv)[ℓ
n],

which gives the local invariant invv(α(P )) ∈ 1
ℓn
Z/Z, is the specialisation of the

residue r(A) ∈ H1(XF,Z/ℓn). Thus α(P ) does not depend on P .
We have dealt with all cases, because our condition implies Br(Xk̄)

k{p} = 0. □

The assumption on the order of the transcendental Brauer group is satisfied if
we assume, moreover, that H2(X,OX) = 0 and that H3

ét(Xk̄,Zℓ) is torsion-free for
all ℓ coprime to the primes in S. This condition cannot be dropped, as the following
result shows. The issue is the behaviour of p-primary elements of the Brauer group
at a place of good reduction v of residue characteristic p. A new phenomenon in
comparison to the prime-to-p torsion is the role of the absolute ramification index
of kv.

A variety Y over a perfect field of characteristic p is ordinary if Hj(Y,Bi
Y ) = 0

for all i and j, where Bi
Y = Im[Ωi−1

Y

d−→ Ωi
Y ] is the sheaf of exact i-forms. A K3

surface Y over a finite field F of characteristic p is ordinary if and only if the trace of
Frobenius acting on H2

ét(YF,Qℓ), ℓ ̸= p, is not divisible by p, see [BZ09, Lemma 1.1].
Equivalently, the absolute Frobenius acting on H2(YF ,O) is non-zero. For example,
the Fermat quartic is ordinary if p ≡ 1 mod 4 and supersingular if p ≡ 3 mod 4.
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Theorem 3.9 (Bright–Newton) Let X be a smooth, projective and geometrically
integral variety over a number field k such that H2(X,OX) ̸= 0. Then every prime v
of k of good, ordinary reduction, with residue characteristic p, is potentially relevant:
there exist a finite extension k′/k, a place w of k′ over v, and an element A ∈
Br(Xk′){p} such that the evaluation map evA : X(k′

w)→ Br(k′
w) is non-constant.

Proof. This is [BN23, Thm. C]. Here is a very brief sketch of the proof.
Let i : Spec(Fv)→ Spec(Ov) and j : Spec(kv)→ Spec(Ov) be the natural closed

and open immersions, respectively. Let X → Spec(Ov) be a smooth proper mor-
phism with generic fibre Xv and special fibre XFv . By an abuse of notation, we
denote by i and j the embeddings of XFv and of Xv, respectively, into X .

Let kv be an algebraic closure of kv. The ring of integers of kv is the normalisation
of Ov ⊂ kv in kv. Let Fv be its residue field. We denote by ī and j̄ the embeddings
of XFv

and Xkv
, respectively, into the pullback of X to the ring of integers of kv.

Consider the spectral sequence of p-adic vanishing cycles

Hp
ét(XFv

, ī∗Rq j̄∗(Z/pr)(1))⇒ Hp+q
ét (Xkv

, (Z/pr)(1)),

and similar sequences with coefficients in Zp(1) and Qp(1). Let gr0H2
ét(Xkv

,Qp(1))
be the image of

H2
ét(Xkv

,Qp(1))→ H0
ét(XFv

, ī∗R2j̄∗Qp(1))

Using the assumption that XFv is ordinary, the Hodge–Tate decomposition [BK86,
Thm. (0.7)(iii)] gives an isomorphism of Gal(kv/kv)-modules

gr0H2
ét(Xkv

,Qp(1))⊗Qp Cp
∼= H0(Xv,Ω

2)⊗kv Cp(−2),

where Gal(kv/kv) naturally acts on Cp, the completion of kv. Thus the assumption
H2(X,OX) ̸= 0 implies that gr0H2

ét(Xkv
,Qp(1)) ̸= 0. It follows that the image of

H2
ét(Xkv

, (Z/pr)(1))→ H0
ét(XFv

, ī∗R2j̄∗(Z/pr)(1))

is non-zero for some r ≥ 1. Take an element of H2
ét(Xkv

, (Z/pr)(1)) with non-zero
image. It comes from H2

ét(Xk̄, (Z/pr)(1)), because the natural map between these
groups is an isomorphism by proper base change. After a finite extension of k we
may assume that it comes from H2

ét(X, (Z/pr)(1)), thus giving a desired Brauer class.
Let K = kv(X) and let Kh be the henselisation of K for the discrete valuation

inherited from kv. We have a spectral sequence of vanishing cycles

Hp
ét(XFv , i

∗Rqj∗(Z/pr)(1))⇒ Hp+q
ét (Xv, (Z/pr)(1)).

A similar sequence in Galois cohomology is

Hp(Fv(XFv),H
q(Kh

nr, (Z/pr)(1)))⇒ Hp+q(Kh, (Z/pr)(1)).
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These sequences are compatible under restriction to the generic point, so we get a
commutative diagram

H2
ét(Xv, (Z/pr)(1)) //

��

H0
ét(XFv , i

∗R2j∗(Z/pr)(1))

��
H2(Kh, (Z/pr)(1)) // H2(Kh

nr, (Z/pr)(1))

One proves that the right-hand vertical map is injective [BN23, Lemma 3.4]. (This
is non-trivial. The case r = 1 is due to Bloch–Kato [BK86, Prop. 6.1 (i)] which was
originally proved using Gabber’s injectivity results for étale cohomology generalising
work of Bloch–Ogus on the Gersten conjecture.) So our Brauer class gives an element
of H2(Kh, (Z/pr)(1)) with non-zero image in H2(Kh

nr, (Z/pr)(1)). Using the crucial
relation between the refined Swan conductor and evaluation map [BN23, Thm. B],
Bright and Newton show in [BN23, Thm. A] that Brauer elements that have constant
evaluation maps over all extensions of kv, give rise to elements that go to zero in
H2(Kh

nr, (Z/pr)(1)). □

Thus, without assumption (iii) of Theorem 3.8, Question 3.7 has a negative
answer. By being slightly more precise, the same argument can be used to show
that in this result one can take A ∈ Br(XK)[p], see [P, Thm. 4.5].

For a prime v of k we denote by pv the residue characteristic of kv and by ev
the absolute ramification index of kv. Recall that if X has good reduction at v, we
denote by XFv the special fibre of a smooth projective scheme over Spec(Ov) with
generic fibre X ×k kv. (It may depend on the choice of a model.)

Bright and Newton give an explicit lower bound on the set of irrelevant primes.
For A ∈ Br(X){ℓ}, ℓ ̸= pv, the statement follows from the fact that XFv

has no
connected unramied cyclic covering of degree ℓ.

Theorem 3.10 (Bright–Newton) Let X be a smooth, projective and geometri-
cally integral variety over a number field k such that Pic(Xk̄) is torsion-free. If v is
a prime of good reduction for X such that ev < pv − 1 and H0(XFv ,Ω

1) = 0, then v
is irrelevant.

Proof. This is [BN23, Thm. D]. One shows that in these assumptions all of Br(X)
goes to zero in Br(Kh

nr). For this one needs to show that the refined Swan conductor
is zero on the higher terms of Kato’s filtration filnBr(X), n ≥ 1. This is deduced from
explicit formulae describing the action of multiplication by p on Kato’s filtration filn
and on the refined Swan conductor in terms of the Cartier operator on differential
forms, see [BN23, Section 2], [P, Section 3]. □

In particular, for a K3 surface overQ, odd primes of good reduction are irrelevant,
see [BN23, Remark 7.5]. M. Pagano showed that for K3 surfaces the prime 2 can be
relevant.
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Exercise 3.11 (M. Pagano) The K3 surface X ⊂ P3
Q given by

x3y + y3z + z3w + w3x+ xyzw = 0

has good reduction at the prime 2. The class of the quaternion algebra

A :=

(
z3 + xw2 + xyz

x3
,−z

x

)
∈ Br(Q(X))

is contained in Br(X). Moreover, evA : X(Q2)→ Br(Q2) is a non-constant function,
so A gives an obstruction to weak approximation on X. See [P22, Thm. 1] for details
and the relation to the ideas and constructions of [BN23].

In the ordinary case there is a somewhat stronger version.

Theorem 3.12 (M. Pagano) Let X be a smooth, projective and geometrically in-
tegral variety over a number field k. Let v be a prime of k at which X has good
ordinary reduction. Assume that H0(XFv ,Ω

1) = 0 and H1(XFv
,Z/pv) = 0. If pv–1

does not divide ev, then v is irrelevant.

A K3 surface satisfies these conditions by a theorem of Rudakov and Shafarevich.
This can be compared to [Ier22, Prop. 8] which is a similar statement but allowing

Brauer elements to be defined over kv. The same statement is true if the special fibre
is a surface in P3

k, e.g., a diagonal surface or a surface given by f(x0, x1) = g(x2, x3),
see [Ier22, Prop. 13].

Here is a result applicable to non-ordinary reduction of K3 surfaces.

Theorem 3.13 (M. Pagano, Thm. 1.4) Let X be a K3 surface with good non-
ordinary reduction at v. If ev ≤ p–1, then v is irrelevant.

In contrast to the previous results, in the next statement, which applies to the
elements of order coprime to the residue characteristic, bad reduction is allowed.

Theorem 3.14 [Ier23, Thm. A] Let K be a p-adic field. Let X be a diagonal quartic
surface in P3

K. Then for any A ∈ Br(X) of odd order not divisible by p the evaluation
function is constant.

The case K = Qp was treated earlier in [IS15, §5.2]. Compare with an example
from this paper when the order of A is p = 5.

3.2 Relevant and irrelevant Brauer elements

This section is to be written. It should cover results of Creutz–Viray, Creutz on
the Brauer groups of abelian varieties, Skorobogatov–Zarhin on the Brauer group
of Kummer varities attached to 2-coverings, examples for the odd torsion subgroup
on the Brauer group.
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3.3 Good reduction of K3 surfaces

It is conjectured that CM K3 surfaces have potential good reduction everywhere.

Proposition 3.15 Diagonal quartic surfaces over number fields have potential good
reduction everywhere (with an algebraic space model at the prime 2).

Proof. It is enough to treat the Fermat quartic surface F over Q at the prime 2,
because F obviously has good reduction modulo all odd primes.

Let C be the elliptic curve u2 = (v2−1)(v2−1/2) and let C ′ be the elliptic curve
y2 = x3 − 4x, both over Q. There is a unique (obvious) isogeny C → C ′ = C/K
of degree |K| = 2. (K consists of the origin and a point or order two, which are
the two points of C at infinity.) Let A be the quotient of C ′ × C ′ by the diagonal
subgroup K ⊂ K×K. By a result of Mizukami (see the appendix to [ISZ11]), there
is an isomorphism FQ(µ8)

∼= Kum(A)Q(µ8). Since C and C ′ are CM elliptic curves,
they have potential good reduction at 2. Thus A has potential good reduction at 2
(for example, by Néron–Ogg–Shafarevich).

By Matsumoto [Mat] all Kummer surfaces attached to abelian surfaces with
good supersingular reduction at 2 have potential good reduction (with an algebraic
space model). In particular, diagonal quartic surfaces have potential good reduction
everywhere. □

Explicit smooth proper models of the Fermat quartic surface in residue char-
acteristic 2 (after an appropriate base change) are not known; it is not known if
schemes suffice for this purpose. Also, we do not know how the reduced K3 surface
looks like.

For completeness let us mention that in the case of good, non-supersingular
reduction, Lazda and Skorobogatov [LS23] give a criterion of good reduction of
Kummer surfaces modulo 2. They show that in this case good reduction with a
scheme model is available.

4 Hasse principle for Kummer varieties

Research on rational points on surfaces fibred into curves of genus 1 (including many
types of K3 surfaces) was initiated by Swinnerton-Dyer. His method sometimes
allows to obtain results about the Hasse principle for rational points conditionally
on the finiteness of the Tate–Shafarevich group of elliptic curves. This method was
developed by Swinnerton-Dyer jointly with Colliot-Thélène and Skorobogatov, and
was later simplified and generalised by Harpaz–Skorobogatov and Harpaz in the case
of Kummer surfaces. Based on such evidence, Skorobogatov conjectured that the
Brauer–Manin obstruction is the only obstruction for the local-to-global principle
for rational points on K3 surfaces.

The aim of this section is to sketch a version of Swinnerton-Dyer’s method that
was recently found by Adam Morgan. It is more flexible, and thus is stronger than
[HS16], on which it builds.
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4.1 Cohomological preliminaries

References: Poonen–Rains [PR11], Harpaz–Skorobogatov [HS16]

Let k be a field of characteristic not equal to 2. Let A be an abelian variety of
dimension g ≥ 2 over k. There is a Weil pairing

e2 : A[2]× A∨[2]→ {±1}.

It differs by sign from the same pairing for A∨.
Let L = k(A[2]) with G = Gal(L/k) ⊂ GL(2g)(F2). Suppose that A has a

principal polarisation λ defined over k. It allows us to define a bilinear pairing

eλ2 : A[2]× A[2]→ {±1}

and a class cλ ∈ H1(G,A∨[2]). Let us recall the definitions of these objects.
There is an exact sequence of Γk-modules

0 −→ A∨(k̄) −→ Pic(Ak̄) −→ NS (Ak̄) −→ 0. (17)

The antipodal involution [−1] : A → A induces an action of Z/2 on Pic(Ak̄) which
turns (17) into an exact sequence of Z/2-modules. The induced action on NS (Ak̄) is
trivial. The involution [−1]A induces the involution [−1]A∨ on A∨. Since A∨(k̄) is di-
visible, we obtain H1(Z/2, A∨(k̄)) = 0. Thus the long exact sequence of cohomology
gives an exact sequence

0 −→ A∨[2] −→ Pic(Ak̄)
[−1]∗ −→ NS (Ak̄) −→ 0. (18)

The Galois module NS (Ak̄) is canonically isomorphic to Hom(Ak̄, A
∨
k̄
)sym, the group

of self-dual homomorphisms of abelian varieties Ak̄ → A∨
k̄
. Recall that under this

isomorphism the class λ of a line bundle L is sent to the morphism φλ : A → A∨

defined as follows: an element x ∈ A(k̄) goes to the class of the line bundle

T ∗
xL ⊗ L−1 ∈ Pic0(Ak̄) ∼= A∨(k̄),

where Tx is the translation by x. It follows that NS (Ak̄)
Γk is canonically isomorphic

to the group Hom(A,A∨)sym of self-dual k-homomorphisms of abelian varieties A→
A∨. A polarisation on A is an element λ ∈ NS (Ak̄)

Γk that comes from an ample
line bundle L on Ak̄. The polarisation is called principal if φλ : A → A∨ is an
isomorphism.

Let us define eλ2(x, y) = e2(x, φΛ(y)). This pairing is alternating.
Following Poonen and Rains, we shall write cλ for the image of λ under the

differential NS (Ak̄)
Γk → H1(k,A∨[2]) attached to (18). In particular, cλ vanishes if

and only if λ lifts to an element of (Pic(Ak̄)
[−1]∗)Γk ∼= Pic(A)[−1]∗ , i.e. a symmetric

line bundle. Thus cλ is the torsor of such liftings. For example, if A is the Jacobian
of a smooth projective curve C and λ is the canonical principal polarisation of A,
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then cλ is the image of the class of the torsor of theta characteristics (the closed
subset of Picg−1

C/k given by 2x = KC), see [PR11, Thm. 3.9]. In particular, cλ = 0 if

C is a hyperelliptic curve of odd genus or with a rational Weierstrass point [PR11,
Prop. 3.11].

An important fact is that (18) is compatible with the short exact sequence (12)
discussed in Section 2.3, so that there is a commutative diagram

0 // A∨[2] //

id
��

Pic(Ak̄)
[−1]∗ //

��

NS (Ak̄) //

��

0

0 // A∨[2] // S2(A∨[2]) // ∧2(A∨[2]) // 0

where the right-hand vertical map sends λ to eλ2 . Here the right-hand vertical map
is the composition

NS (Ak̄)→ Hom(T2(A), T2(A
∨))sym ∼= ∧2T2(A

∨)(−1)→ H2
ét(Ak̄,Z2(1))→ H2

ét(Ak̄,Z/2),

where T2(A) is the 2-adic Tate module. The bottom exact sequence has trivial action
of Gal(k̄/L), hence cλ is in the image of the inflation map

H1(G,A∨[2]) ↪→ H1(k,A∨[2]).

We can also think of cλ as an element of H1(G,A[2]), after identifying A[2] and A∨[2]
by the isomorphism φλ : A−̃→A∨.

The class cλ ∈ H1(k,A∨[2]) plays the following important role. By Poonen and
Stoll [PS99, Cor. 2] we have cλ ∈ Sel2(A

∨). Let c′λ be the image of cλ in X(A∨)[2].
By [PS99, Thm. 5] we have

⟨x, φλ∗(x) + c′λ⟩ = 0

for any x ∈X(A), where

⟨x, y⟩ : X(A)×X(A∨)→ Q/Z

is the Cassels–Tate pairing. Thus c′λ = 0 if and only if the bilinear pairing

⟨x, y⟩λ := ⟨x1, φλ∗x2⟩

on X(A) is alternating.

4.2 Main result

Let A be an abelian variety over a field k of characteristic different from 2. Let Z
be a k-torsor for the group k-scheme A[2]. Recall that the 2-covering f : Y → A
associated to Z is a k-torsor for A defined as the quotient of A×k Z by the diagonal
action of A[2]. In other words, Y is the twisted form of A by Z with respect to the
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action of A[2] by translations. The morphism f is induced by the first projection,
and we have Z = f−1(0). Let L be the étale k-algebra k[Z], so that Z ∼= Spec(L).

Let Ỹ be the blowing-up of Z in Y . The antipodal involution ιA : A→ A induces
the map (ιA, Id) : A ×k Z → A ×k Z which commutes with the action of A[2] and
hence induces an involution ιY : Y → Y . As ιY fixes Z = f−1(0) ⊆ Y it extends to
an involution ιỸ : Ỹ → Ỹ whose fixed point set is precisely the exceptional divisor.
It is easy to see that the quotient X = Kum(Y ) = Ỹ /ιỸ is smooth. We call X the
Kummer variety attached to A and Z.

Let F be an extension of k of degree at most 2. Recall that AF denotes the
quadratic twist of A by F , that is, the abelian variety over k obtained by twisting
A by the quadratic character of F with respect to the action of µ2 via the antipodal
involution ιA. Similarly, Y F denotes the quadratic twist of Y with respect to the
involution ιY . Since ιA commutes with translations by the elements of A[2], the
quadratic twist Y F of Y is a k-torsor for AF . We have a natural embedding iF :
Z → Y F . Then Ỹ F , defined as the blowing-up of iF (Z) in Y F , is the quadratic
twist of Ỹ by the quadratic character of F with respect to the action of µ2 on Ỹ
via ιỸ . We can also consider Ỹ F as a quadratic twist of the 2-covering Ỹ → X, and
consequently consider every Ỹ F as a (ramified) 2-covering of X.

Theorem 4.1 (A. Morgan) Let A be an abelian variety of dimension g ≥ 2 with
principal polarisation λ defined over a number field k such that the following condi-
tions hold:

(a) cλ generates H1(G,A[2]),
(b) A[2] is a simple F2[G]-module with EndG(A[2]) = F2,
(c) A[2]g = 0 for some g ∈ G.

Let X = Kum(Y ), where Y is a 2-covering of A associated to an element a ∈
H1(k,A[2]), a ̸= cλ. Assume that there is an odd prime p of k such that a is
unramified at p, A has semistable reduction at p, the conductor of A has odd exponent
at p, and the group of geometric components of the Néron model at p has odd order.

If the 2-primary torsion subgroup of the Tate–Shafarevish group of each quadratic
twist of A is finite, then X satisfies the Hasse principle.

Here is an instructive particular case.

Corollary 4.2 Let f(x) ∈ Q[x] be an irreducible polynomial of degree 6 with Galois
group S6. Let C be the genus 2 curve with equation y2 = f(x), and let J be the
Jacobian of C. Consider the set of classes a ∈ H1(Q, J [2]) such that there is an odd
prime p at which a is unramified, the leading coefficient of f(x) is coprime to p, and
discr(f) is simply divisible by p. Assume the finiteness of the 2-primary part of the
Tate–Shafarevich group of every quadratic twist of J . Then the Kummer surfaces
associated to 2-coverings of J defined by such classes satisfy the Hasse principle.

Sketch of proof of Theorem 4.1. The proof is based on the fact that we can twist A
and Y by quadratic characters χ ∈ Hom(Γk, µ2) without changing X, as explained
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above. Indeed, twisting produces Aχ and Y χ such that X = Kum(Y χ). We have
canonical isomorphisms of Γk-modules A[2] ∼= Aχ[2] for all χ (and similarly for A∨).
Note that Aχ inherits the principal polarisation of A. The Weil pairing associated
to Aχ is the same as the one associated to A.

Let us first explain the strategy of [HS16]. In that paper it is assumed that
H1(G,A[2]) = 0, so cλ = 0.

Step (1)AssumingX is everywhere locally soluble, one can use the fibration method
to prove the existence of a χ0 such that

a ∈ Sel2(A
χ0) ⊂ H1(k,A[2]).

Step (2) One alters χ0 to produce a χ1 such that Sel2(A
χ1) is generated by a.

Step (3) Under the assumption of the finiteness of X(Aχ){2}, the pairing ⟨x, y⟩λ
on X(Aχ1){2} is non-degenerate and alternating (by Poonen–Stoll, since cλ = 0).
This implies that X(Aχ1)[2] cannot have dimension 1, so it has dimension 0. Thus
a goes to zero in H1(k,Aχ1), which implies that Y χ1 ≃ Aχ1 so that X = Kum(Y χ1)
has k-points (in fact, infinitely many).

A. Morgan had to come up with a different strategy because when cλ ̸= 0 we
cannot conclude that X(Aχ1)[2] = 0 in the same way as before because ⟨x, y⟩λ may
no longer be alternating. The new strategy is to preserve the group Sel2(A

χ) while
ensuring that the pairing ⟨x, y⟩λ takes the desired shape.

Let us call a bilinear pairing P (x, y) on Sel2(A) with values in F2 admissible if

� P (cλ, cλ) = 0 if and only if dim(Sel2(A)) + rk(A(K)) is even,

� P (x, x) = P (x, cλ) for all x ∈ Sel2(A).

The pairing ⟨x, y⟩λ is admissible by [PS99, Theorems 5 and 8]. The following is the
key technical result.

Theorem 4.3 (A. Morgan) Let A be an abelian variety of dimension g ≥ 2 with
principal polarisation λ defined over a number field k satisfying conditions (a), (b),
(c). Let P be an admissible pairing on Sel2(A). Then there is a quadratic character
χ : Γk → µ2 such that Sel2(A

χ) = Sel2(A) ⊂ H1(k,A[2]), the ranks of A and Aχ have
the same parity, and P is the Cassels–Tate pairing on Sel2(A

χ).

The new strategy is roughly as follows.

Step (1) The same as before but in addition ensure that 2∞-Selmer rank is odd.

Step (2) One alters χ0 to produce many χ1 such that Sel2(A
χ1) is the same as

Sel2(A
χ0) while ensuring that 2∞-Selmer rank is odd.

Step (3) Show that varying the character as in Step 2, one can arrange that the
Cassels–Tate pairing takes any required form subject to the usual constraints (The-
orem 4.3). Then it is easy to find a paring with only a in the kernel. This implies
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that a is the unique element lifting to the 4-Selmer group of Aχ. Since the 2∞-Selmer
rank is odd, the image of a in the Tate–Shafarevich group X(Aχ) is infinitely di-
visible. Under the finiteness assumption, a must have trivial image in X(Aχ){2},
so we are done.
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69 (2018) 459–486.

39



[SZ08] A.N. Skorobogatov and Yu.G. Zarhin. A finiteness theorem for the Brauer group
of abelian varieties and K3 surfaces. J. Alg. Geom. 17 (2008) 481–502.

[SZ15] A.N. Skorobogatov and Yu.G. Zarhin. A finiteness theorem for the Brauer group
of K3 surfaces in odd characteristic. Int. Math. Res. Not. IMRN (2015) 11404–
11418.

[Ser77] J.-P. Serre. Représentations ℓ-adiques. Algebraic number theory. (Kyoto Inter-
nat. Sympos., RIMS, Univ. Kyoto, 1976), pp. 177–193. Japan Soc. Promotion
Sci., Tokyo, 1977.
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