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Abstract

We correct a mistake in our paper “Odd order Brauer–Manin obstruc-
tion on diagonal quartic surfaces” published in Advances in Mathematics 270
(2015) 181–205.

1 Errata

The assertion made in the sentence in lines 27–29 on page 202 of [2] is incorrect.
This invalidates Proposition 5.13, Lemma 5.16, Corollary 5.17, Proposition 5.19,
and thus also statement (ii) of Theorem 1.2 in the case ` = 3, the second statement
of Corollary 1.3 and statement (1) of Corollary 1.5. The second sentence of the
abstract should be replaced by the sentence “We calculate the obstruction to weak
approximation provided by the elements of odd order in the Brauer group”. The
following should be removed from the introduction: “and always obstructs weak ap-
proximation” (page 183, lines 12–13) and the text on page 184, lines 20–25, starting
with “In the same way...” and finishing with “9|yzw.)”

2 Corrections

Let E be the elliptic curve y2 = x3 − x over Q with complex multiplication by
Z[
√
−1]. For m ∈ Q∗ we write Em for the quartic twist y2 = x3−mx of E. Let Em

3

be the 3-torsion subgroup of Em considered as a ΓQ-module. Complex multiplication
defines an injective homomorphism of rings Z[

√
−1]/3 ∼= F9 → End(Em

3 ). The
action of ΓQ(

√
−1) on Em

3 factors through the surjective homomorphism ΓQ(
√
−1) → F∗9

which is the composition of ψm : ΓQ(
√
−1) → Z[

√
−1] with the reduction modulo 3,

where

ψm(Frobπ) =
(m
π

)
4
π

for any primary prime π ∈ Z[
√
−1] which is coprime to m, see [4, Exercise 2.34]. It

follows that the image G of ΓQ → GL(Em
3 ) is the normaliser of the non-split maximal
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torus F∗9oZ/2, so G is a 2-Sylow subgroup of GL2(F3), cf. page 189 of [2]. We note
that H1(G,Em

3 ) = 0, because G is a finite 2-group and Em
3 is a vector space over F3.

We also note that EndG(Em
3 ) = F3, hence Em

3 is an irreducible representation of G
over F3.

Letm1,m2 ∈ Q∗. We denote by Hom(Em2
3 , Em1

3 )− the subgroup of Hom(Em2
3 , Em1

3 )
consisting of the homomorphisms which anti-commute with [

√
−1], so that End(Em

3 ) =
Z[
√
−1]/3 ⊕ End(Em

3 )−. By Lemma 4.2 of [2] and the remark after it, the ΓQ-
module End(E3)

− is the quartic twist of ΓQ-module Z[
√
−1]/3 by the class of

−33 in Q∗/Q∗4. Then the argument of [2, Prop. 3.3] shows that the ΓQ-module
Hom(Em2

3 , Em1
3 )− is the quartic twist of Z[

√
−1]/3 by the class of −33(m1m2)

−1 in
Q∗/Q∗4. If m1,m2 ∈ Q∗ are such that −3m1m2 ∈ 〈−4〉Q∗4, then we obtain an
isomorphism of ΓQ-modules ϕ : Em2

3 → Em1
3 . Since EndG(Em

3 ) = F3, it is unique up
to sign.

Lemma 2.1 For any m ∈ Q∗3 the image of ΓQ3 → GL(Em
3 ) is G.

Proof. Multiplying m by a fourth power in Q∗3, which produces an isomorphic
elliptic curve, we can assume that m ∈ Q∗. Let L = Q(Em

3 ) be the field of definition
of Em

3 over Q, so that G = Gal(L/Q). The Galois group ΓQ acts on Z[
√
−1]/3 ⊂

End(Em
3 ) by complex conjugation, so

√
−1 ∈ L. Next, ΓQ(

√
−1) acts on End(Em

3 )−

via the quartic character attached to −33m2, hence F = Q(
√
−1, 4
√
−33m2) ⊂ L.

We obtain a surjective homomorphism

Gal(L/Q(
√
−1)) ∼= Z/8 −→ Gal(F/Q(

√
−1)) ∼= Z/4

and a compatible surjective homomorphism

π : G = Gal(L/Q) ∼= Z/8 o Z/2 −→ Gal(F/Q) ∼= Z/4 o Z/2.

Fix an inclusion ΓQ3 ⊂ ΓQ. Let K = Q3(E
m
3 ) be the field of definition of Em

3 over
Q3, and let H = Gal(K/Q3). We need to prove that the inclusion H ⊂ G is an
equality. Note that F3 = F ⊗ Q3 = Q3(

√
−1, 4
√

3) is a Galois extension of Q3 with
the Galois group Gal(F3/Q3) = Gal(F/Q). The same arguments as above show that
F3 ⊂ K. Thus H is a subgroup of G such that π(H) = Z/4oZ/2. The intersection
H ∩ Z/8 ⊂ G has least 4 elements, and thus contains Ker (f). Hence H = G. �

Lemma 2.1 implies that Em
3 (Q3) = 0 for any m ∈ Q∗3. The topological group

Em(Q3) contains Z3 as a subgroup of finite index not divisible by 3, so Em(Q3)/3 ∼=
F3. Recall that the Kummer map embeds Em(Q3)/3 into H1(Q3, E

m
3 ) as a maximal

isotropic subspace for the non-degenerate symmetric bilinear form induced by the
Weil pairing:

∪ : H1(Q3, E
m
3 )× H1(Q3, E

m
3 ) −→ Br(Q3)[3]−̃→1

3
Z/Z (1)
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where the last arrow is the local invariant inv3. In particular, H1(Q3, E
m
3 ) is a 2-

dimensional vector space over F3. For P ∈ Em(Q3) we write χP ∈ H1(Q3, E
m
3 ) for

the image of P under the Kummer map.

If m1,m2 ∈ Q∗3 are such that ±3m1m2 ∈ Q∗43 , then there is an isomorphism of
ΓQ3-modules ϕ : Em2

3 → Em1
3 , which is unique up to sign. Indeed, we can assume

m1,m2 ∈ Q∗ and −3m1m2 ∈ 〈−4〉Q∗4. The isomorphism of ΓQ-modules ϕ : Em2
3 →

Em1
3 is also an isomorphism of ΓQ3-modules. By Lemma 2.1, EndG(Em

3 ) = F3 implies
EndQ3(E

m
3 ) = F3, so any such isomorphism is unique up to sign. We define a bilinear

pairing

[ , ] : Em1(Q3) × Em2(Q3) −→
1

3
Z/Z, [P,Q] = χP ∪ ϕ∗(χQ),

where P ∈ Em1(Q3), Q ∈ Em2(Q3), and ϕ∗ : H1(Q3, E
m2
3 ) → H1(Q3, E

m1
3 ) is the

isomorphism induced by ϕ.

The following statement replaces the erroneous Proposition 5.13 of [2].

Proposition 2.2 The pairing [ , ] is trivial if the 3-adic valuation of m1 or m2 is
zero modulo 4, otherwise [P,Q] 6= 0 as long as P /∈ 3Em1(Q3) and Q /∈ 3Em2(Q3).

Proof. Let P ∈ Em1(Q3) be a point not divisible by 3 in Em1(Q3), and similarly for
Q ∈ Em2(Q3). Then χP 6= 0 and χQ 6= 0. The subspace of H1(Q3, E

m1
3 ) spanned by

χP is maximal isotropic for the non-degenerate symmetric pairing (1). It follows that
[P,Q] = 0 if and only if χP = ±ϕ∗(χQ). Let ZP be the Q3-torsor for Em1

3 defined as
the inverse image of P ∈ Em1(Q3) under the multiplication by 3 map, so that ZP
represents the class χP ∈ H1(Q3, E

m1
3 ). We define ZQ similarly for Q, so that χQ

is the class of ZQ in H1(Q3, E
m2
3 ). Since H1(G,Em

3 ) = 0 and EndG(Em
3 ) = F3, we

can use [1, Cor. 3.3] which implies that χP = ±ϕ∗(χQ) if and only if ZP and ZQ
are isomorphic as Q3-schemes. By loc. cit. these schemes are connected, so this is
equivalent to an isomorphism Q3[ZP ] ∼= Q3[ZQ] of field extensions of Q3. For each
m = ±3n, n = 0, 1, 2, 3, write km = Q3[ZP ]; indeed, up to isomorphism, this field
depends only on m and not on P .

It is well known that the quotient of Em by the degree 2 isogeny with the kernel
{0, (0, 0)} is isomorphic to E−4m. This isogeny sends a generator of Em(Q3)/3 to a
generator of E−4m(Q3)/3 and induces an isomorphism of corresponding torsors for
the group scheme Em

3
∼= E−4m3 . This produces an isomorphism km ∼= k−m of field

extensions of Q3.

It remains to examine the four fields k1, k3, k9 and k27 and to decide whether k1
and k27 are isomorphic extensions of Q3, and similarly for k3 and k9. We can write
km = Q3[t]/(fm(t)), where the polynomial fm(t) of degree 9 is given on page 201 of
[2]. For m = 1 we choose the point P ∈ Em(Q3) with xP = 1/9 and in each of the
other cases we choose xP = 1. Consider the following Eisenstein polynomials

f(t) = t9 + 6t+ 6, g(t) = t9 + 6t7 + 3, h(t) = t9 + 3t5 + 3.
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A computation performed with [3] shows that

k1 ∼= k27 ∼= Q3[t]/(f(t)), k3 ∼= Q3[t]/(g(t)), k9 ∼= Q3[t]/(h(t)),

and these three fields are pairwise non-isomorphic extensions of Q3. �

We now give a correction for Theorem 1.2 (ii) in the case ` = 3.

By [2, Thm. 1.1] any diagonal quartic surface D ⊂ P3
Q with an element of order

3 in Br(D)/Br0(D) is given by

ax4 + by4 = cz4 + dw4, (2)

where a, b, c, d ∈ Q∗ are such that −3abcd ∈ 〈−4〉Q∗4. By renaming the variables
and multiplying coefficients a, b, c, d by fourth powers of rational numbers and by a
common rational number, we can arrange that the 3-adic valuation of a, b, c, d is of
one of the following types:

(I) (0, 0, 0, 3) or (II) (0, 0, 1, 2).

For an abelian group B we denote by Bodd the subgroup of B consisting of the
elements of finite odd order.

Theorem 2.3 Let D be a diagonal quartic surface over Q with D(Q3) 6= ∅ and an
element A ∈ Br(D)3 which is not in Br0(D).

When D is of type (I), the map evA,3 is constant. When D is of type (II), the
map evA,3 is surjective.

Assume D(AQ) 6= ∅. Then D(AQ)Br(D)odd = D(AQ) when D is of type (I), and
∅ 6= D(AQ)Br(D)odd 6= D(AQ) when D is of type (II).

Proof. We can assume that D is given by (2), where the 3-adic valuations of a, b, c, d
are of type (I) or (II). After a renaming of variables and multiplication of coefficients
by ±1, we can assume that in case (I) we have

(I) a, b ∈ 1 + 3Z3, c ∈ Z∗3, d ∈ 27Z∗3,
see [2, Lemma 5.18]. Using the condition D(Q3) 6= ∅, in case (II) we arrange that

(II) a ∈ 1 + 3Z3, b ∈ −1 + 3Z3, c ∈ 3Z∗3, d ∈ 9Z∗3.
Since A(L) is a locally constant function of L ∈ D(Q3) in the 3-adic topology
of D(Q3), for the purpose of calculating evA,3(D(Q3)) we can assume that L has
coordinates (x, y, z, w) ∈ (Z3)

4 not all divisible by 3 such that f = ax4 + by4 6= 0
and xyzw 6= 0. A straightforward calculation shows that in case (I) we have f ∈ Z∗3.

Let m1 = 4ab(f/x2y2)2 and m2 = 4cd(f/z2w2)2. The curve Em1 contains the
Q3-point P = (−4ab, 4abx−2y−2(ax4 − by4)), and Em2 contains the Q3-point Q =
(−4cdz2w2, 4cdz−2w−2(cz4 − dw4)), see page 192 of [2].

By Theorem 1.1 and formula (6) on page 188 of [2], there is a non-zero homomor-
phism of ΓQ-modules ϕ : E4cd

3 → E4ab
3 , which is unique up to sign. Furthermore, ϕ is
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an isomorphism, see page 192 of [2]. By [2, Thm. 1.1] we have Br(D)/Br0(D) ∼= Z/3,
hence modifying A by an element of Br0(D) we can assume without loss of gener-
ality that, up to sign, A is constructed from ϕ as described on page 193 of [2]. The
ΓQ3-modules Em2

3 and Em1
3 are isomorphic; we fix an isomorphism which is induced

by ϕ. Then, by formula (9) of [2], we have

inv3(A(L)) = [P,Q] ∈ 1

3
Z/Z.

If D is of type (I), then f ∈ Z∗3 and hence the class of m1 in Q∗3/Q∗43 is 1. It follows
from Proposition 2.2 that the map evA,3 is identically zero.

If D is of type (II), then in the course of the proof of Proposition 5.19 of [2] (page
204) we have exhibited a point L ∈ D(Q3) such that f ∈ 3Z∗3 and neither P nor Q is
divisible by 3. In this case neither m1 nor m2 is in Z∗3/Z∗43 , hence inv3(A(L)) 6= 0 by
Proposition 2.2. We have also exhibited a point L′ ∈ D(Q3) such that A(L′) = 0.
Since evA,3(D(Q3)) is a subset of 1

3
Z/Z stable under the change of sign [2, Cor. 5.2],

we conclude that evA,3 is surjective in this case.

Now assume D(AQ) 6= ∅. The map evA,p is identically zero for any p 6= ` by [2,
Prop. 5.5]. The same is true for the infinite place. This gives the last statement of
the theorem. �

The authors are very grateful to Chris Wuthrich and Martin Bright for their help
with calculations.
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