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Von einem Ellipsoid habe ich eine Vorstellung, vor einer Kummerschen Fläche nicht;
aber durch passende Zeichnungen, durch Modelle oder durch theoretisch geleitete Bewe-
gungen der Phantasie kann ich auch von ihr eine Vorstellung gewinnen.

Edmund Husserl, ‘‘Logische Untersuchungen’’ V, §44

Introduction

In this paper we are interested in computing the Brauer group of K3 surfaces. To an
element of the Brauer–Grothendieck group BrðXÞ of a smooth projective variety X over a
number field k class field theory associates the corresponding Brauer–Manin obstruction,
which is a closed condition satisfied by k-points inside the topological space of adelic points
of X , see [20], Chapter 5.2. If such a condition is non-trivial, X is a counterexample to
weak approximation, and if no adelic point satisfies this condition, X is a counterexample
to the Hasse principle. The computation of BrðX Þ is thus a first step in the computation of
the Brauer–Manin obstruction on X .

Let k be an arbitrary field with a separable closure k, G ¼ Galðk=kÞ. Recall that
for a variety X over k the subgroup Br0ðXÞHBrðXÞ denotes the image of BrðkÞ in
BrðX Þ, and Br1ðX ÞHBrðX Þ denotes the kernel of the natural map BrðXÞ ! BrðXÞ, where
X ¼ X �k k. In [22] we showed that if X is a K3 surface over a field k finitely gen-
erated over Q, then BrðX Þ=Br0ðX Þ is finite. No general approach to the computation of
BrðX Þ=Br0ðX Þ seems to be known; in fact until recently there was not a single K3 surface
over a number field for which BrðXÞ=Br0ðXÞ was known. One of the aims of this paper is
to give examples of K3 surfaces X over Q such that BrðXÞ ¼ BrðQÞ.

We study a particular kind of K3 surfaces, namely Kummer surfaces X ¼ KumðAÞ
constructed from abelian surfaces A. Let BrðX Þn denote the n-torsion subgroup of BrðX Þ.
Section 1 is devoted to the geometry of Kummer surfaces. We show that there is a natural
isomorphism of G-modules BrðXÞ !@ BrðAÞ (Proposition 1.3). When A is a product of two
elliptic curves, the algebraic Brauer group Br1ðX Þ often coincides with BrðkÞ, see Prop-
osition 1.4.
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Section 2 starts with a general remark on the étale cohomology of abelian varieties
that may be of independent interest (Proposition 2.2). It implies that if n is an odd integer,
then for any abelian variety A the group BrðAÞn=Br1ðAÞn is canonically isomorphic to the

quotient of H2
�eetðA; mnÞ

G by
�
NSðAÞ=n

�G
, where NSðAÞ is the Néron–Severi group (Corol-

lary 2.3). For any nf 1 we prove that BrðXÞn=Br1ðX Þn is a subgroup of BrðAÞn=Br1ðAÞn,
and this inclusion is an equality for odd n, see Theorem 2.4. We deduce that the sub-
groups of elements of odd order of the transcendental Brauer groups BrðXÞ=Br1ðXÞ and
BrðAÞ=Br1ðAÞ are naturally isomorphic.

More precise results are obtained in Section 3 in the case when A ¼ E � E 0 is a prod-
uct of two elliptic curves. In this case for any nf 1 we have

BrðAÞn=Br1ðAÞn ¼ HomGðEn;E
0
nÞ=

�
HomðE;E 0Þ=n

�G
(Proposition 3.3). This gives a convenient formula for BrðXÞn=Br1ðX Þn when n is odd. See
Proposition 3.7 for the case n ¼ 2.

In Section 4 we find many pairs of elliptic curves E, E 0 over Q such that
for A ¼ E � E 0 the group BrðAÞ=Br1ðAÞ is zero or a finite abelian 2-group. For
example, if E is an elliptic curve over Q such that for all primes l the representation
G! AutðElÞFGLð2; FlÞ is surjective, then for A ¼ E � E we have BrðAÞ ¼ Br1ðAÞ,
whereas BrðAÞGFZ=2m for some mf 1 (Proposition 4.3). This shows, in particular, that
the Hochschild–Serre spectral sequence Hp

�
k;H

q
�eetðA;GmÞ

�
) H

pþq
�eet ðA;GmÞ does not de-

generate. For this A the corresponding Kummer surface X ¼ KumðAÞ has trivial Brauer

group BrðX Þ ¼ BrðQÞ (whereas BrðXÞG FZ=2m for some mf 1). Note that by a theorem
of W. Duke [2] most elliptic curves over Q have this property, see the remark after Prop-
osition 4.3.

In Section 5 we discuss the resulting infinitely many Kummer surfaces X over Q such
that BrðXÞ ¼ BrðQÞ, see (25)–(29) and Examples 3 and 4. In fact most Kummer surfaces
KumðE � E 0Þ over Q have trivial Brauer group, see Example A2 in Section 4. We also
exhibit Kummer surfaces X with an element of prime order le 13 in BrðXÞ which is not
in Br1ðXÞ. Finally, we discuss the Brauer group of Kummer surfaces that do not necessarily
have rational points.

In the follow up paper [6] with Evis Ieronymou we give an upper bound on the size of
BrðX Þ=Br0ðX Þ, where X is a smooth diagonal quartic surface in P3

Q, and give examples
when BrðX Þ ¼ BrðQÞ. The importance of K3 surfaces over Q such that BrðXÞ ¼ BrðQÞ
is that there is no Brauer–Manin obstruction, and so the Hasse principle and weak ap-
proximation for Q-points can be tested by numerical experiments. It would be even more
interesting to get theoretical evidence for or against the Hasse principle and weak approxi-
mation on such surfaces.

1. Picard and Brauer groups of Kummer surfaces over an algebraically closed field

Let k be a field of characteristic zero with an algebraic closure k, and the abso-
lute Galois group G ¼ Galðk=kÞ. Let X be a smooth and geometrically integral variety
over k, and let X ¼ X �k k. Let BrðXÞ ¼ H2

�eetðX ;GmÞ be the Brauer group of X , and let
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BrðX Þ ¼ H2
�eetðX ;GmÞ be the Brauer group of X . For any prime number l the Kummer

sequence

1! mln ! Gm ! Gm ! 1

gives rise to the exact sequence of abelian groups

0! PicðX ÞnZ=ln ! H2
�eetðX ; mlnÞ ! BrðXÞln ! 0;

and an exact sequence of G-modules

0! PicðX ÞnZ=ln ! H2
�eetðX ; mlnÞ ! BrðXÞln ! 0:ð1Þ

If X is projective, then PicðX ÞnZ=ln ¼ NSðXÞnZ=ln, where NSðX Þ is the Néron–
Severi group of X . So in this case we have an exact sequence of G-modules

0! NSðX ÞnZ=ln ! H2
�eetðX ; mlnÞ ! BrðXÞln ! 0:ð2Þ

Passing to the projective limit in (2) we obtain an embedding of G-modules

NSðXÞnZl ,! H2
�eet

�
X ;Zlð1Þ

�
:

The Néron–Severi group of an abelian variety or a K3 surface is torsion free, so in these
cases NSðX Þ is a submodule of H2

�eet

�
X ;Zlð1Þ

�
.

Remark. Let r be the rank of NSðX Þ, and let b2 be the second Betti number
of X . It is known ([3], Corollary 3.4, p. 82; [11], Chapter 5, Remark 3.29, pp. 216–217)
that the l-primary component BrðXÞðlÞHBrðX Þ is an extension of H3

�eet

�
X ;Zlð1Þ

�
tors

by
ðQl=ZlÞb2�r. By Poincaré duality, if X is a surface such that NSðX Þ has no l-torsion,
then BrðX ÞðlÞF ðQl=ZlÞb2�r. It follows that if X is an abelian variety or a K3 surface

we have BrðXÞF ðQ=ZÞb2�r.

We write k½X � for the k-algebra of regular functions on X , and k½X �� for the group of
invertible regular functions. We state the following well known fact for future reference.

Lemma 1.1. Let X be a smooth and geometrically integral variety over k, and let

U HX be an open subset whose complement in X has codimension at least 2. Then the

natural restriction maps

k½X � ! k½U �; PicðX Þ ! PicðUÞ; BrðXÞ ! BrðUÞ

are isomorphisms.

Proof. The first two statements are clear, and the last one follows from Grothen-
dieck’s purity theorem, see [3], Corollary 6.2, p. 136. r

For an abelian variety A we denote by An the kernel of the multiplication by n map
½n� : A! A. Let i be the antipodal involution on A, iðxÞ ¼ �x. The set of fixed points of i
is A2.
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Assume now that A is an abelian surface. Let A0 ¼ AnA2 be the complement to A2,
and let X0 ¼ A0=i. The surface X0 is smooth and the morphism A0 ! X0 is a torsor under
Z=2. Let X be the surface obtained by blowing-up the singular points of A=i. Then X can
be viewed as a smooth compactification of X0; the complement to X0 in X is a closed sub-
variety of dimension 1 which splits over k into a disjoint union of 16 smooth rational curves
with self-intersection �2. We shall call X the Kummer surface attached to A, and write
X ¼ KumðAÞ.

Let A 0 be the surface obtained by blowing-up the subscheme A2 in A, and let
s : A 0 ! A be the resulting birational morphism. Let p : A 0 ! X be the natural finite mor-
phism of degree 2 ramified at XnX0 (cf. [14]). The set A2ðkÞ is the disjoint union of G-orbits
L1; . . . ;Lr. One may view each Li as a closed point of A with residue field Ki. Then
Mi ¼ s�1ðLiÞ in A 0 is the projective line P1

Ki
(cf. [9], Chapter III, Theorem 2.4 and Remark

2.5). It follows that Li ¼ pðMiÞ is also isomorphic to P1
Ki

.

Since s : A 0 ! A is a monoidal transformation with smooth centre, the induced maps
s� : BrðAÞ ! BrðA 0Þ and s� : BrðAÞ ! BrðA 0Þ are isomorphisms by [3], Corollary 7.2,
p. 138. Let Y HA 0 be an open subset containing A0. The composition of injective maps

BrðAÞ !@ BrðA 0Þ ! BrðYÞ ! BrðA0Þ

is an isomorphism by Lemma 1.1, and the same is true after the base change from k to k. It
follows that the following restriction maps are isomorphisms:

BrðA 0Þ !@ BrðYÞ; BrðA 0Þ !@ BrðYÞ:ð3Þ

This easily implies that the natural homomorphisms Br1ðAÞ ! Br1ðA 0Þ ! Br1ðY Þ are iso-
morphisms. We also obtain isomorphisms

BrðAÞn=Br1ðAÞn !@ BrðA 0Þn=Br1ðA 0Þn !@ BrðYÞn=Br1ðY Þn:ð4Þ

Throughout the paper, we will freely use these isomorphisms, identifying the corresponding
groups.

Proposition 1.2. Let X1 HX be the complement to the union of some of the irreduc-

ible components of XnX0 (that is, some of the lines Li). Then there is an exact sequence

0! BrðXÞ ! BrðX1Þ !
L

i

K �i =K �2i ;ð5Þ

where the sum is over i such that Li HXnX1. In particular, the restriction map

BrðX Þ ! BrðX1Þ induces an isomorphism of the subgroups of elements of odd order. The

restriction map BrðXÞ !@ BrðX 1Þ is an isomorphism of G-modules.

Proof. Let Y ¼ p�1ðX1Þ. From Grothendieck’s exact sequence ([3], Corollary 6.2,
p. 137) we obtain the following commutative diagram with exact rows:

0 ���! BrðXÞ ���! BrðX1Þ ���! L
i

H1ðLi;Q=ZÞ???y
???y

???y
0 ���! BrðA 0Þ ���!@ BrðYÞ ���! L

i

H1ðMi;Q=ZÞ

ð6Þ
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where both sums are over i such that Li HXnX1. Recall that the restriction map
BrðA 0Þ ! BrðY Þ is an isomorphism by (3), hence the right bottom arrow is zero. Let
resLi

: BrðX1Þ ! H1ðLi;Q=ZÞ and resMi
: BrðY Þ ! H1ðMi;Q=ZÞ be the residue maps

from (6). The double covering p : A 0 ! X is ramified at Li, thus resMi
ðp�aÞ ¼ 2 resLi

ðaÞ.
But this is zero, so that resLi

ðaÞ belongs to the injective image of H1
�eetðP1

Ki
;Z=2Þ in

H1
�eetðP1

Ki
;Q=ZÞ. Since H1

�eetðP1
k
;Z=2Þ ¼ 0 we deduce from the Hochschild–Serre spectral

sequence

Hp
�
Ki;H

q
�eetðP

1
k
;Z=2Þ

�
) Hpþq

�eet ðP
1
Ki
;Z=2Þ

that H1ðP1
Ki
;Z=2Þ ¼ K �i =K �2i . This establishes the exact sequence (5).

The same theorem of Grothendieck [3], Corollary 6.2, gives an exact sequence

0! BrðXÞ ! BrðX 1Þ !
L

i

H1ðLi �k k;Q=ZÞ ¼ 0:

Since Li �k k is a disjoint union of finitely many copies of P1
k
, and H1

�eetðP1
k
;Q=ZÞ ¼ 0, this

implies the last statement of the proposition. r

Proposition 1.3. The natural map p� : BrðX 0Þ ! BrðA0Þ is an isomorphism, so that

the composed map ðs�Þ�1p� : BrðXÞ ! BrðAÞ is an isomorphism of G-modules.

Proof. Since p : A0 ! X0 is a torsor under Z=2 we have the Hochschild–Serre spec-
tral sequence [11], Theorem III.2.20,

Hp
�
Z=2;Hq

�eetðA0;GmÞ
�
) Hpþq

�eet ðX 0;GmÞ:

Let us compute a first few terms of this sequence. By Lemma 1.1 we have

k½A0�� ¼ k�; PicðA0Þ ¼ PicðAÞ; BrðA0Þ ¼ BrðAÞ:

Since k has characteristic 0, and Z=2 acts trivially on k�, the Tate cohomology group
ĤH0ðZ=2; k�Þ is trivial. We have H1ðZ=2; k�Þ ¼ Z=2. By the periodicity of group cohomol-
ogy of cyclic groups we obtain H2ðZ=2; k�Þ ¼ 0.

We have an exact sequence of G-modules

0! AtðkÞ ! PicðAÞ ! NSðAÞ ! 0;

where At is the dual abelian surface. The torsion-free abelian group NSðAÞ embeds into

H2
�eet

�
A;Zlð1Þ

�
, and since the antipodal involution i acts trivially on H2

�eet

�
A;Zlð1Þ

�
, it acts

trivially on NSðAÞ, too. Thus H1
�
Z=2;NSðAÞ

�
¼ 0, so that H1

�
Z=2;PicðAÞ

�
is the image

of H1
�
Z=2;AtðkÞ

�
. Since i acts on At as multiplication by �1, we have

H1
�
Z=2;AtðkÞ

�
¼ AtðkÞ=ð1� iÞAtðkÞ ¼ 0:

Putting all this into the spectral sequence and using Proposition 1.2 with X1 ¼ X0 we obtain
an embedding BrðXÞ ,! BrðAÞ. In order to prove that this is an isomorphism, it su‰ces
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to check that the corresponding embeddings BrðXÞln ,! BrðAÞln are isomorphisms for all
primes l and all positive integers n. It is well known that b2ðXÞ ¼ 22, b2ðAÞ ¼ 6 and
rðXÞ ¼ rðAÞ þ 16, see, e.g., [15] or [14]. From this and the remark before Lemma 1.1 it
follows that the orders of BrðX Þln and BrðAÞln are the same. This finishes the proof. r

Remark 1. The same spectral sequence gives an exact sequence of G-modules

0! Z=2! PicðX 0Þ ! PicðAÞ i ! 0;ð7Þ

where PicðAÞ i is the i-invariant subgroup of PicðAÞ. From (7) we deduce the exact sequence

0! Z=2! PicðX 0Þtors ! At
2 ! 0:ð8Þ

Let Z16 HPicðX Þ ¼ NSðXÞ be the lattice generated by the classes of the 16 lines. Its satu-
ration P in NSðXÞ is called the Kummer lattice. In other words, P is the subgroup of
NSðXÞ consisting of linear combinations of the classes of the 16 lines with coe‰cients
in Q. Since NSðX Þ=Z16 ¼ PicðX 0Þ, we have P=Z16 ¼ PicðX 0Þtors. It follows from (8) that
½P : Z16� ¼ 25. Since the 16 lines are disjoint, and each of them has self-intersection �2,
the discriminant of Z16 is 216. Thus the discriminant of P is 26, as was first observed in
[15], Lemma 4 on p. 555, see also [14].

Remark 2. Considering (7) modulo torsion and taking into account that
NSðAÞ i ¼ NSðAÞ and H1

�
Z=2;AtðkÞ

�
¼ 0, we obtain an isomorphism

NSðXÞ=P ¼ PicðX 0Þ=PicðX 0Þtors !@ NSðAÞ:

In other words, we have an exact sequence of G-modules

0 �! P �! NSðXÞ �!s�p
�

NSðAÞ �! 0:ð9Þ

Remark 3. Recall that A2 acts on X and X0 compatibly with its action on A by
translations, moreover, the morphisms p and s are A2-equivariant. Thus the isomorphism
ðs�Þ�1p� : BrðXÞ !@ BrðAÞ is also A2-equivariant. Since translations of an abelian variety
act trivially on its cohomology, the exact sequence (2) shows that the induced action of A2

on BrðAÞ is trivial. We conclude that the induced action of A2 on BrðX Þ is also trivial.

Let us now assume that X is the Kummer surface constructed from the abelian sur-
face A ¼ E � E 0, where E and E 0 are elliptic curves. For a divisor D we write ½D� for the
class of D in the Picard group.

Let C HA be a curve, and let p : C ! E, p 0 : C ! E 0 be the natural projections.
Then p 0�p� : Pic0ðEÞ ! Pic0ðE 0Þ defines a homomorphism E ! E 0. This gives a well known
isomorphism of Galois modules

NSðAÞ ¼ Z½e�lZ½e 0�lHomðE;E 0Þ;ð10Þ

where e ¼ E � f0g and e 0 ¼ f0g � E 0, and the G-module HomðE;E 0Þ is realised inside
NSðAÞ as the orthogonal complement to Z½e�lZ½e 0� with respect to the intersection
pairing.
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For a curve C HA we denote by s�1C HA 0 its strict transform in A 0 (i.e. the Zariski
closure of C XA0 in A 0). In particular, if C does not contain a point of order 2 in A, then
s�1C does not meet the corresponding line in A 0, and hence pðs�1CÞ does not meet the
corresponding line in X .

We write the k-points in E2 as fo; 1; 2; 3g with the convention that o is the origin of
the group law, and similarly for E 02. The divisors fig � E 0, E � f jg, where i A E2, j A E 02,
are i-invariant, thus there are rational curves sj and li in X such that p induces double
coverings

s�1ðE � f jgÞ ! sj; s�1ðfig � E 0Þ ! li:

Let lij be the line in X corresponding to the 2-division point ði; jÞ A A2. Note that s�p
�

sends ½sj�, ½li�, ½lij� to ½e�, ½e 0�, 0, respectively. Finally, let

f1 ¼ 2lo þ loo þ lo1 þ lo2 þ lo3; f2 ¼ 2so þ loo þ l1o þ l2o þ l3o:

Consider the following 9-element Galois-invariant subsets of NSðX Þ:

L ¼ f½lij�g; S ¼ f½ f1�; ½ f2�; ½lo�; ½li�; ½sj�g;

where i and j take all values in f1; 2; 3g. Let NL (resp. NS) be the subgroup of NSðX Þ gen-
erated by L (resp. by S).

Proposition 1.4. Let A ¼ E � E 0, where E and E 0 are elliptic curves, and let

X ¼ KumðAÞ.

(i) The set L (resp. S) is a G-invariant basis of NL (resp. of NS). There is an exact

sequence of G-modules

0! NLlNS ! NSðXÞ ! HomðE;E 0Þ ! 0:ð11Þ

(ii) We have Br1ðXÞ ¼ BrðkÞ in each of the following cases:

E and E 0 are not isogenous over k.

E ¼ E 0 is an elliptic curve without complex multiplication over k.

E ¼ E 0 is an elliptic curve which, over k, has complex multiplication by an order O
of an imaginary quadratic field K, that is, EndðEÞ ¼ O, and, moreover, H1ðk;OÞ ¼ 0 ( for

example, K H k).

Proof. (i) Relations (3.8) on p. 3217 of [5] easily imply that all 16 classes ½lij� are in
NL þNS. Then relation (3.9) of loc. cit. shows that ½so� also belongs to NL þNS. Recall
that ½P : Z16� ¼ 25, see Remark 1 above. It is easy to deduce that the Kummer lattice P
is generated by the 16 classes ½lij�, together with the di¤erences ½si� � ½sj� and ½li� � ½lj� for
all possible pairs ði; jÞ. Thus PHNL þNS.
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A straightforward computation of the intersection pairing shows that the lattice
generated by ½ f1�, ½ f2� and the classes of 16 lines is freely generated by these elements,
and so is of rank 18. This lattice is contained in NL þNS, hence NL þNS is also of rank
18 and is freely generated by LWS, so that NL þNS ¼ NLlNS. We have s�p

�ð½sj�Þ ¼ ½e�
and s�p

�ð½li�Þ ¼ ½e 0� for any i and j. It follows from the exact sequence (9) that
ðNL lNSÞ=P is a G-submodule of NSðAÞ generated by ½e� and ½e 0�. We now obtain (11)
from (10).

(ii) If E and E 0 are not isogenous, then HomðE;E 0Þ ¼ 0. If E ¼ E 0 is an elliptic curve
without complex multiplication, then HomðE;E 0Þ ¼ Z is a trivial G-module. In the last
case HomðE;E 0Þ ¼ O, so in all cases we have H1

�
k;HomðE;E 0Þ

�
¼ 0. By Shapiro’s lemma

H1ðk;NLÞ ¼ H1ðk;NSÞ ¼ 0, thus H1
�
k;NSðX Þ

�
¼ 0 follows from the long exact sequence

of Galois cohomology attached to (11).

The surface X has k-points, for example, on loo FP1
k . This implies that the natural

map BrðkÞ ! BrðXÞ has a retraction, and hence is injective. The same holds for the
natural map H3

�eetðk;GmÞ ! H3
�eetðX ;GmÞ. Now from the Hochschild–Serre spectral sequence

Hp
�
k;Hq

�eetðX ;GmÞ
�
) Hpþq

�eet ðX ;GmÞ we obtain a split exact sequence

0! BrðkÞ ! Br1ðXÞ ! H1
�
k;PicðX Þ

�
! 0:

Since PicðXÞ ¼ NSðX Þ, this finishes the proof. r

2. On étale cohomology of abelian varieties and Kummer surfaces

We refer to [20], Chapter 2, for a general introduction to torsors.

Let A be an abelian variety over k, and let nf 1. Let T be the A-torsor with
structure group An defined by the multiplication by n map ½n� : A! A. Let ½T� be the
class of T in H1

�eetðA;AnÞ, and let ½T� be the image of ½T� under the natural map

H1
�eetðA;AnÞ ! H1

�eetðA;AnÞG. The cup-product defines a Galois-equivariant bilinear pairing

H1
�eetðA;AnÞ �HomðAn;Z=nÞ ! H1

�eetðA;Z=nÞ:

Pairing with ½T� gives a homomorphism of G-modules

tA : HomðAn;Z=nÞ ! H1
�eetðA;Z=nÞ:

The following lemma is certainly well known, and is proved here for the convenience of the
reader.

Lemma 2.1. tA is an isomorphism of G-modules.

Proof. The two groups have the same number of elements, hence it is enough to
prove the injectivity. A non-zero homomorphism a : An ! Z=n can be written as the
composition of a surjection b : An ! Z=m where m j n, m3 1, followed by the injec-
tion Z=m ,! Z=n. The induced map H1

�eetðA;Z=mÞ ! H1
�eetðA;Z=nÞ is injective, hence if
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½T�W a ¼ ½a�T� ¼ 0, then the A-torsor b�T under Z=m is trivial. A trivial A-torsor under
a finite group is not connected, whereas the push-forward b�T is canonically isomorphic
to the quotient A=KerðbÞ, which is connected. This contradiction shows that sending a to
½a�T� defines an injective homomorphism of abelian groups HomðAn;Z=nÞ !@ H1

�eetðA;Z=nÞ.
The lemma is proved. r

Proposition 2.2. Let A be an abelian variety over k, and let m, nf 1 and qf 0 be

integers such that ðn; q!Þ ¼ 1. Then the natural group homomorphism

Hq
�eetðA; mnm

n Þ ! Hq
�eetðA; mnm

n Þ
G

has a section, and hence is surjective.

Proof. We break the proof into three steps.

Step 1. Let M be a free Z=n-module of rank d with a basis feigd
i¼1, and let M � be the

dual Z=n-module with the dual basis f figd
i¼1. For each qf 1 we have the identity map

IdVq M A EndZ=nð
Vq

MÞ ¼
Vq

M nZ=n

Vq
M �;

IdVq M ¼
P
ðei15� � �5eiqÞn ð fi15� � �5 fiqÞ;

where i1 < � � � < iq. The multiplication law ðan bÞ � ða 0n b 0Þ ¼ ða5a 0Þn ðb5b 0Þ turns
the ring

L
qf0

Vq
M nZ=n

Vq
M �

into a commutative Z=n-algebra. A straightforward calculation shows that

ðIdMÞq ¼ q! IdVq M :ð12Þ

Step 2. Recall that the cup-product defines a canonical isomorphism

Vq H1
�eetðA;Z=nÞ !@ Hq

�eetðA;Z=nÞ:

We have a natural homomorphism of Z=n-modules

Hq
�eetðA;Z=nÞnZ=n

VqðAnÞ ! Hq
�eet

�
A;

VqðAnÞ
�
;

and since the abelian group
VqðAnÞ is a product of copies of Z=n, this is clearly an isomor-

phism.

Write M ¼ H1
�eetðA;Z=nÞ and use Lemma 2.1 to identify An with M �. We obtain an

isomorphism of Z=n-modules

Hq
�eet

�
A;

VqðAnÞ
�
¼ Hq

�eetðA;Z=nÞnZ=n

VqðAnÞ ¼
Vq

M nZ=n

Vq
M �:ð13Þ
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The cup-product in étale cohomology gives rise to the map

H1
�eetðA;AnÞnq ! Hq

�eetðA;Anq
n Þ ! Hq

�eet

�
A;

VqðAnÞ
�
;

and we denote by
Vq½T� A Hq

�eet

�
A;

VqðAnÞ
�G

the image of the product of q copies of ½T�.
Now (12) says that the isomorphism (13) identifies

Vq½T� with q! IdVq M .

We have an obvious commutative diagram of G-equivariant pairings, where the
vertical arrows are isomorphisms:Vq

M nZ=n

Vq
M � � Homð

Vq
M �;Z=nÞ ���! VqðMÞ???y
����

???y
Hq

�eetðA;Z=nÞnZ=n

Vq
M � � Homð

Vq
M �;Z=nÞ ���! Hq

�eetðA;Z=nÞ???y
???y

����
H

q
�eet

�
A;

VqðAnÞ
�

�Hom
�VqðAnÞ;Z=n

� ���! Hq
�eetðA;Z=nÞ:

The pairing with the G-invariant element
Vq½T� gives a homomorphism of G-modules

Hom
�VqðAnÞ;Z=n

�
!@ Hq

�eetðA;Z=nÞ;

which is q! times the canonical isomorphism Homð
Vq

M �;Z=nÞ !@
Vq

M. By assump-
tion q! is invertible in Z=n, so this is an isomorphism of G-modules. Tensoring with the
G-module mnm

n we obtain an isomorphism of G-modules

Hom
�VqðAnÞ; mnm

n

�
!@ Hq

�eetðA; mnm
n Þ:

Therefore, pairing with
Vq½T� gives rise to an isomorphism of abelian groups

HomG

�VqðAnÞ; mnm
n

�
!@ Hq

�eetðA; mnm
n Þ

G:ð14Þ

Step 3. The cup-product in étale cohomology gives rise to the map

H1
�eetðA;AnÞnq ! Hq

�eetðA;Anq
n Þ ! Hq

�eet

�
A;

VqðAnÞ
�
;

and we denote by
Vq½T� A Hq

�eet

�
A;

VqðAnÞ
�

the image of the product of q copies of ½T�.
There is a natural pairing of abelian groups

Hq
�eet

�
A;

VqðAnÞ
�
�HomG

�VqðAnÞ; mnm
n

�
! Hq

�eetðA; mnm
n Þ:

Pairing with
Vq½T� induces a map HomG

�VqðAnÞ; mnm
n

�
! Hq

�eetðA; mnm
n Þ such that the com-

position

HomG

�VqðAnÞ; mnm
n

�
! Hq

�eetðA; mnm
n Þ ! Hq

�eetðA; mnm
n Þ

G

is the isomorphism (14). This proves the proposition. r
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In some cases the condition ðn; q!Þ ¼ 1 can be dropped, see Corollary 3.2 below.

Corollary 2.3. Let n be an odd integer. Then the images of the groups BrðAÞn and

H2
�eetðA; mnÞ

G
in BrðAÞGn coincide, so that we have an isomorphism

BrðAÞn=Br1ðAÞn FH2
�eetðA; mnÞ

G=
�
NSðAÞ=n

�G
:

Proof. The Kummer sequences for A and A give rise to the following obvious com-
mutative diagram with exact rows, cf. (2):

0 ���! �
NSðAÞ=n

�G ���! H2
�eetðA; mnÞ

G ���! BrðAÞGnx???
???y

x???
H2

�eetðA; mnÞ ���! BrðAÞn ���! 0:

The downward arrow is the section of Proposition 2.2. Both statements follow from this
diagram. r

Theorem 2.4. Let A be an abelian surface, and let X ¼ KumðAÞ. Then p� defines an

embedding

BrðXÞn=Br1ðX Þn ,! BrðAÞn=Br1ðAÞn;

which is an isomorphism if n is odd. The subgroups of elements of odd order of the transcen-

dental Brauer groups BrðXÞ=Br1ðXÞ and BrðAÞ=Br1ðAÞ are isomorphic.

Proof. By Proposition 1.3 we have the commutative diagram

BrðXÞn ���! BrðAÞn???y
???y

BrðXÞn ���!@ BrðAÞn

ð15Þ

which implies the desired embedding. Now assume that n is odd. We can write

BrðAÞn ¼ BrðAÞþn lBrðAÞ�n ;

where BrðAÞþn (resp. BrðAÞ�n ) is the i-invariant (resp. i-antiinvariant) subgroup of BrðAÞn.
The involution i acts trivially on H2

�eetðA; mlmÞ for any l and m, hence by (2) it also acts triv-
ially on BrðAÞ. It follows that for odd n the image of BrðAÞ�n in BrðAÞ is zero. This gives an
isomorphism

BrðAÞn=Br1ðAÞn ¼ BrðAÞþn =Br1ðAÞþn :

[6], Theorem 1.4 states that if Y ! X is a finite flat Galois covering of smooth geomet-
rically irreducible varieties with Galois group G, and n is coprime to jGj, then the nat-
ural map BrðXÞn ! BrðY ÞGn is an isomorphism. We apply this to the double covering
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p : A 0 ! X . Taking into account the isomorphism BrðAÞ ¼ BrðA 0Þ we obtain the following
commutative diagram

BrðX Þn ���!@ BrðAÞþn???y
???y

BrðX Þn ���!@ BrðAÞn:

ð16Þ

Our first statement follows. The second statement follows from the first one once we note
that an element of odd order in BrðXÞ=Br1ðXÞ comes from BrðX Þn for some odd n. r

3. The case of product of two elliptic curves

We now assume that A ¼ E � E 0 is the product of two elliptic curves. In this case we
can prove the same statement as in Corollary 2.3 but without the assumption on n.

The Künneth formula (see [11], Corollary VI.8.13) gives a direct sum decomposition
of G-modules

H2
�eetðA;Z=nÞ ¼ H2

�eetðE;Z=nÞlH2
�eetðE 0;Z=nÞlH2

�eetðA;Z=nÞprim;

where

H2
�eetðA;Z=nÞprim ¼ H1

�eetðE;Z=nÞnH1
�eetðE 0;Z=nÞ

is the primitive subgroup of H2
�eetðA;Z=nÞ. On twisting with mn we obtain the decomposition

of G-modules

H2
�eetðA; mnÞ ¼ Z=nlZ=nlH2

�eetðA; mnÞprim;

where

H2
�eetðA; mnÞprim ¼ H1

�eetðE;Z=nÞnH1
�eetðE 0; mnÞ:

The canonical isomorphism tE : HomðEn;Z=nÞ !@ H1
�eetðE;Z=nÞ from Lemma 2.1 gives an

isomorphism of G-modules

H2
�eetðA; mnÞprim ¼ HomðEn nE 0n; mnÞ:

Using the Weil pairing we obtain a canonical isomorphism

H1
�eetðE 0; mnÞ ¼ HomðE 0n; mnÞ ¼ E 0n:

Combining all this gives canonical isomorphisms of G-modules

H2
�eetðA; mnÞ ¼ Z=nlZ=nlH2

�eetðA; mnÞprim ¼ Z=nlZ=nlHomðEn;E
0
nÞ:ð17Þ
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Let p : A! E and p 0 : A! E 0 be the natural projections. The multiplication by n

map E ! E defines an E-torsor T with structure group En. We define the E 0-torsor T 0

similarly. The pullbacks p�T and p 0�T are A-torsors with structure groups En and E 0n,
respectively. Let ½T�n ½T 0� be the product of p�½T� and p 0�½T 0� under the pairing

H1
�eetðA;EnÞ �H1

�eetðA;E 0nÞ ! H2
�eetðA;En nE 0nÞ:

Consider the natural pairing

H2
�eetðA;En nE 0nÞ �HomGðEn nE 0n; mnÞ ! H2

�eetðA; mnÞ:

Let

x : HomGðEn nE 0n; mnÞ ! H2
�eetðA; mnÞ

be the map defined by pairing with ½T�n ½T 0�.

The following map is defined by the base change from k to k followed by the
Künneth projector to the primitive subgroup:

h : H2
�eetðA; mnÞ ! H2

�eetðA; mnÞ
G ! H2

�eetðA; mnÞ
G
prim ¼ HomGðEn nE 0n; mnÞ:

Lemma 3.1. We have h � x ¼ Id. In particular, h has a section, and hence is surjective.

Proof. We must check that the composed map

HomðEn nE 0n;Z=nÞ ! H2
�eetðA;Z=nÞ ! H1

�eetðE;Z=nÞnH1
�eetðE 0;Z=nÞð18Þ

defined by pairing with the image of ½T�n ½T 0� in H2
�eetðA;En nE 0nÞ followed by the

Künneth projector to the primitive subgroup, is the isomorphism

tE n tE 0 : HomðEn nE 0n;Z=nÞ !@ H1
�eetðE;Z=nÞnH1

�eetðE 0;Z=nÞ

(cf. Lemma 2.1). Note that the first arrow in (18) is tE n tE 0 followed by the composed
map

H1
�eetðE;Z=nÞnH1

�eetðE 0;Z=nÞ ! H1
�eetðA;Z=nÞnH1

�eetðA;Z=nÞ ! H2
�eetðA;Z=nÞ;ð19Þ

where the first arrow is p�n p 0�, and the second one is the cup-product. By [11], Corollary
VI.8.13, the composition of (19) with the Künneth projector is the identity, hence the
composed map in (18) is tE n tE 0 . r

Corollary 3.2. For A ¼ E � E 0 and any nf 1 the natural map

H2
�eetðA; mnÞ ! H2

�eetðA; mnÞ
G

has a section, and hence is surjective.
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Proof. We have a canonical map p� : H2
�eetðE; mnÞ ! H2

�eetðA; mnÞ. By Künneth decom-
position and Lemma 3.1 it is enough to check that

H2
�eetðE; mnÞ ! H2

�eetðE; mnÞ
G

has a section (and similarly for E 0). The Kummer sequences for E and E give a commuta-
tive diagram

0 ���! Z=n ���!@ H2
�eetðE; mnÞx???

x???
0 ���! PicðEÞ=n ���! H2

�eetðE; mnÞ:

The left vertical arrow is given by the degree map PicðEÞ ! Z. It has a section that sends
1 A Z=n to the class of the neutral element of E in PicðEÞ=n. r

Remark. This shows that if an abelian variety A is a product of elliptic curves, then
the condition on n in Proposition 2.2 is superfluous.

Recall that the natural map HomðE;E 0Þ=n! HomðEn;E
0
nÞ is injective [12], p. 124.

Write HomðE;E 0Þ ¼ HomGðE;E 0Þ for the group of homomorphisms E ! E 0.

Proposition 3.3. For A ¼ E � E 0 we have a canonical isomorphism of G-modules

BrðAÞn ¼ HomðEn;E
0
nÞ=

�
HomðE;E 0Þ=n

�
;

and a canonical isomorphism of abelian groups

BrðAÞn=Br1ðAÞn ¼ HomGðEn;E 0nÞ=
�
HomðE;E 0Þ=n

�G
:

Proof. The Kummer sequences for A and A give rise to the commutative diagram

0 ���! NSðAÞ=n ���! H2
�eetðA; mnÞ ���! BrðAÞn ���! 0x???

x???
H2

�eetðA; mnÞ ���! BrðAÞn ���! 0:

Using (10) and (17) we rewrite this diagram as follows:

0 ���! HomðE;E 0Þ=n ���! HomðEn;E
0
nÞ ���! BrðAÞn ���! 0x???

x???
H2

�eetðA; mnÞ ���! BrðAÞn ���! 0:

The upper row here is the first isomorphism of the proposition. From Lemma 3.1 we
deduce the commutative diagram
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0 ���! �
HomðE;E 0Þ=n

�G ���! HomGðEn;E 0nÞ ���! BrðAÞGnx???
???y

x???
H2

�eetðA; mnÞ ���! BrðAÞn ���! 0

where the left upward arrow is h, and the downward arrow is x. The second isomorphism
of the proposition is a consequence of the commutativity of this diagram. r

Until the end of this section we assume that n ¼ 2 and the points of order 2 of E

and E 0 are defined over k, i.e. E2 HEðkÞ and E 02 HE 0ðkÞ. The above considerations can
then be made more explicit. (This construction was previously used in [21], Appendix A.2,
see also [5], Section 3.2.) In this case

BrðAÞ2 ¼ BrðAÞG2 ¼ BrðAÞ2=Br1ðAÞ2:

Using the Weil pairing the map x gives rise to the map E2 nE 02 ! BrðAÞ2 whose image
maps surjectively onto BrðAÞ2. The elements of BrðAÞ2 obtained in this way can be given
by symbols as follows. The curves E and E 0 can be given by their respective equations

y2 ¼ xðx� aÞðx� bÞ; v2 ¼ uðu� a 0Þðu� b 0Þ;

where a and b are distinct non-zero elements of k, and similarly for a 0 and b 0. The multipli-
cation by 2 torsor E ! E corresponds to the biquadratic extension of the function field
kðEÞ given by the square roots of ðx� aÞðx� bÞ and xðx� bÞ, see, e.g., [8], Theorem 4.2,
p. 85. We choose e1 ¼ ð0; 0Þ and e2 ¼ ða; 0Þ as a basis of E2, and e 01 ¼ ð0; 0Þ and e 02 ¼ ða 0; 0Þ
as a basis of E 02; this gives rise to an obvious basis of E2 nE 02. The four resulting Azumaya
algebras on A are written as follows:

�
ðx� mÞðx� bÞ; ðu� nÞðu� b 0Þ

�
; m A f0; ag; n A f0; a 0g:ð20Þ

We note that the specialisation of any of these algebras at the neutral element of A is
0 A BrðkÞ. By the above, the classes of the algebras (20) in BrðAÞ generate BrðAÞ2.

The antipodal involution i sends ðx; yÞ to ðx;�yÞ, and ðu; vÞ to ðu;�vÞ, hence the
Kummer surface X ¼ KumðAÞ is given by the a‰ne equation

z2 ¼ xðx� aÞðx� bÞyðy� a 0Þðy� b 0Þ:ð21Þ

We denote by Am; n the class in Br
�
kðX Þ

�
given by the corresponding symbol (20).

For A ¼ E � E 0 it is convenient to replace X0 HX by a larger open subset. Let us
denote by EK

2 the set of k-points of E of exact order 2; in other words, E2 is the disjoint
union of f0g and EK

2 . Define W HX as the complement to the 9 lines that correspond to
the points of EK

2 � E 0K2 . The line loo ¼ p
�
s�1ð0Þ

�
, where 0 A AðkÞ is the neutral element, is

contained in W . Choose a k-point Q on loo, and denote by BrðWÞ0 the subgroup of BrðW Þ
consisting of the elements that specialise to 0 at Q. Since BrðP1

kÞ ¼ BrðkÞ, we see that
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BrðWÞ0 is the kernel of the restriction map BrðWÞ ! BrðlooÞ, hence BrðWÞ0 does not
depend on the choice of Q.

Lemma 3.4. We have Am; n A BrðWÞ02 for any m A f0; ag and n A f0; a 0g.

Proof. We have Am; n A BrðW Þ by [21], Lemma A.2. Every Am; n lifts to an element
of BrðAÞ with value 0 at the neutral element of A, hence Am; n A BrðW Þ0. Since Am; n is the
class of a quaternion algebra, we have Am; n A BrðWÞ02. r

The map ðm; nÞ 7! Am; n defines a group homomorphism o : E2 nE 02 ! BrðWÞ02.

Proposition 3.5. Assume one of the conditions of Proposition 1.4 (ii). Then we have

(i) Br1ðWÞ ¼ BrðkÞ;

(ii) ImðoÞ ¼ BrðWÞ02;

(iii) KerðoÞ ¼ HomðE;E 0Þ=2.

Proof (cf. [21], Appendix A2). (i) We have k½W �� ¼ k�, as it follows from
k½A0�� ¼ k�. We also have Br0ðWÞ ¼ BrðkÞ since W has a k-point. Then the Hochschild–
Serre spectral sequence Hp

�
k;Hq

�eetðW ;GmÞ
�
) Hpþq

�eet ðW ;GmÞ shows that it is enough to
prove H1

�
k;PicðWÞ

�
¼ 0. In the notation of Proposition 1.4 we have

PicðWÞ ¼ PicðX Þ=NL;

hence there is an exact sequence of G-modules analogous to (11):

0! NS ! PicðWÞ ! HomðE;E 0Þ ! 0:

By Shapiro’s lemma H1ðk;NLÞ ¼ 0, thus, under the assumptions of Proposition 1.4 (ii),
H1

�
k;PicðWÞ

�
¼ 0 follows from the long exact sequence of Galois cohomology.

(ii) Let AHBrðWÞ be the four-element set fAm; ng, and let �AA be the image of A in
BrðWÞ. By Proposition 1.2 we have BrðWÞ ¼ BrðX Þ, thus we can think of �AA as a subset
of BrðXÞ. The image of �AA under the isomorphism ðs�Þ�1p� : BrðXÞ ! BrðAÞ from Prop-
osition 1.3 generates BrðAÞ2, hence �AA generates BrðWÞ2. Therefore, any a A BrðWÞ02 can be
written as

a ¼ b þ
P

dm; nAm; n;

where dm; n A f0; 1g, and b A Br1ðWÞ has value zero at Q. It remains to apply (i).

(iii) By part (i) the natural map BrðWÞ0 ! BrðWÞ is injective, and we have just seen
that the latter group is naturally isomorphic to BrðAÞ. Now our statement follows from the
first formula of Proposition 3.3. r

We now calculate the residues of the Am; n at the 9 lines of XnW (cf. Proposition 1.2
and its proof).
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Lemma 3.6. The residues of Aa;a 0 , Aa;0, A0;a 0 , A00, at the lines l00, l0;a 0 , la;0, la;a 0 ,
written in this order, are the classes in k�=k�2 represented by the entries of the following

matrix:

1 ab a 0b 0 �aa 0

ab 1 aa 0 a 0ða 0 � b 0Þ
a 0b 0 aa 0 1 aða� bÞ
�aa 0 a 0ða 0 � b 0Þ aða� bÞ 1

0
BBB@

1
CCCA:ð22Þ

For any m A f0; ag and n A f0; a 0g the product of residues of Amn at the three lines lij, i3 0,
j 3 0, with fixed first or second index, is 1 A k�=k�2.

Proof. We write resij for the residue at lij. The local ring OH kðX Þ of lij is a discrete
valuation ring with valuation val : kðX Þ� ! Z. For f ; g A Onf0g the residue of ð f ; gÞ at lij
is computed by the following rule: if valð f Þ ¼ valðgÞ ¼ 0, then resijðð f ; gÞÞ is trivial, and if

valð f Þ ¼ 0, valðgÞ ¼ 1, then resijðð f ; gÞÞ is the class in kðlijÞ�=kðlijÞ�2 of the reduction of f

modulo the maximal ideal of O. In our case this class will automatically be in k�=k�2.

Let us calculate the residues of A00 ¼
�
xðx� bÞ; xðy� b 0Þ

�
. Using the above rule we

obtain

res0;a 0 ðA00Þ ¼ a 0ða 0 � b 0Þ; resa;0ðA00Þ ¼ aða� bÞ; resa;a 0 ðA00Þ ¼ 1:

Using equation (21) and the relation ðr;�rÞ ¼ 0 for any r A kðX Þ� we can write

A00 ¼
�
xðx� bÞ;�ðx� aÞðy� a 0Þ

�
:

The residue of A00 at l00 is then the value of �ðx� aÞðy� a 0Þ at x ¼ y ¼ 0, that is, �aa 0.
We thus checked the last row of (22). The residue of A00 at l0;b 0 is the class of aðb 0 � a 0Þ,
which shows that the product of residues of A00 at l00, l0;a 0 and l0;b 0 is 1. The calculations in
all other cases are quite similar. r

Question. Is there a conceptual explanation of the symmetry of (22)?

Let r be the rank of HomðE;E 0Þ, and let d be the dimension of the kernel of the
homomorphism

HomðE2;E
0
2Þ ¼ E2 nE 02 F ðZ=2Þ4 ! ðk�=k�2Þ4

given by the matrix ð22Þ.

Proposition 3.7. Let X ¼ KumðE � E 0Þ, where E and E 0 are elliptic curves with

rational 2-torsion points. Assume one of the conditions of Proposition 1.4 (ii). Then

dimF2
BrðX Þ2=BrðkÞ2 ¼ d � r:

In particular, if E ¼ E 0 and d ¼ 1, then BrðX Þ2 ¼ BrðkÞ2.
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Proof. This follows from Proposition 3.5 (ii) and (iii), and Lemma 3.6. r

Note that if E ¼ E 0 and d ¼ 1, then EndðEÞ has rank 1, so that E has no complex
multiplication over k.

4. Brauer groups of abelian surfaces

In the rest of this paper we discuss abelian surfaces of the following types:

(A) A ¼ E � E 0, where the elliptic curves E and E 0 are not isogenous over k.

(B) A ¼ E � E, where E has no complex multiplication over k.

(C) A ¼ E � E, where E has complex multiplication over k.

Case (A). In case (A), the Néron–Severi group NSðAÞ is freely generated by
the classes E � f0g and f0g � E 0, hence H2

�eetðA; mnÞ is the direct sum of G-modules
NSðAÞ=nlBrðAÞn, and we have

BrðAÞn ¼ HomðEn;E 0nÞ:ð23Þ

Proposition 4.1. Let E be an elliptic curve such that the representation of G in El is a

surjection G! GLðElÞ for every prime l. Let E 0 be an elliptic curve with complex multipli-

cation over k, which has a k-point of order 6. Then for A ¼ E � E 0 we have BrðAÞG ¼ 0.

Proof. Since BrðAÞ is a torsion group it is enough to prove that for every prime l
we have BrðAÞGl ¼ HomGðEl;E

0
lÞ ¼ 0.

By assumption E 0 has complex multiplication by some imaginary quadratic field K.
Thus there exists an extension k 0=k of degree at most 2 such that the image of Galðk=k 0Þ in
AutðE 0lÞ is abelian. Thus the image of G in AutðE 0lÞ is a solvable group. We note that for
lf 5 the group GLð2; FlÞ is not solvable. This implies that E has no complex multiplica-
tion over k. It follows that E and E 0 are not isogenous over k.

The G-module El is simple, hence any non-zero homomorphism of G-modules
El ! E 0l must be an isomorphism. This gives a contradiction for lf 5. If l ¼ 2 or l ¼ 3,
the curve E 0 has a k-point of order l, so that E 0l is not a simple G-module, which is again a
contradiction. r

Example (A1). Let k ¼ Q, let E be the curve y2 ¼ x3 þ 6x� 2 of conductor 2633,
and let E 0 be the curve y2 ¼ x3 þ 1 with the point ð2; 3Þ of order 6. It follows from [18],
5.9.2, p. 318, that the conditions of Proposition 4.1 are satisfied.

Example (A2). Here is a somewhat di¤erent construction for case (A), again over
k ¼ Q. Let us call a pair of elliptic curves ðE;E 0Þ non-exceptional if for all primes l the
image of the Galois group G ¼ GalðQ=QÞ in AutðElÞ �AutðE 0lÞ is as large as it can
possibly be, that is, it is the subgroup of GLð2; FlÞ �GLð2; FlÞ given by the condition
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detðxÞ ¼ detðx 0Þ. This implies HomGðEl;E
0
lÞ ¼ 0, so that BrðAÞG ¼ 0, where A ¼ E � E 0.

For example, let E be the curve y2 þ y ¼ x3 � x of conductor 37, and let E 0 be the curve
y2 þ y ¼ x3 þ x2 of conductor 43. The curve E has multiplicative reduction at 37, whereas
E 0 has good reduction, therefore E and E 0 are not isogenous over Q. By [18], the remark
on page 329, the pair ðE;E 0Þ is non-exceptional. In fact, most pairs ðE;E 0Þ are non-
exceptional in a similar sense to the remark after Proposition 4.3 (Nathan Jones, see [7]).

We now explore some other constructions providing an infinite series of examples
when BrðAÞG has no elements of odd order. Later we shall show that for such abelian sur-
faces A we often have Br

�
KumðAÞ

�
¼ BrðQÞ, see Example 3 in Section 5.

Proposition 4.2. Let E be an elliptic curve over Q such that val5
�

jðEÞ
�
¼ �2m and

val7
�

jðEÞ
�
¼ �2n, where m and n are non-negative integers. Let E 0 be an elliptic curve over

Q with good reduction at 5 and 7, and with rational 2-torsion, i.e. E 02 HE 0ðQÞ. Then E and

E 0 are not isogenous over Q, and HomGðEl;E
0
lÞ ¼ 0 for any prime l3 2. If A ¼ E � E 0,

then BrðAÞG is a finite abelian 2-group.

Proof. Since jðEÞ is not a 5-adic integer, E has potential multiplicative reduction at
5. But E 0 has good reduction at 5, so E and E 0 are not isogenous over Q.

Let p ¼ 5. Our assumption implies that there exists a Tate curve ~EE over Qp such that
E �Q Qp is the twist of ~EE by a quadratic or trivial character

w : GalðQp=QpÞ ! fG1g:

Consider the case when l3 5. Let K be the extension of Qp defined as follows: if w is trivial
or unramified, then K ¼ Qp, and if w is ramified, then K HQp is the invariant subfield of
KerðwÞ. Let p be the maximal ideal of the ring of integers of K . We note that in both cases
the residue field of K is Fp.

Since ~EE is a Tate curve, the l-torsion ~EEl contains a Galois submodule isomorphic to
ml. Then the quotient ~EEl=ml is isomorphic to the trivial Galois module Z=l. Hence there
is a basis of El such that the image of GalðQp=KÞ in AutðElÞFGLð2; FlÞ is contained in
the subgroup of upper-triangular matrices. Let qE be the multiplicative period of ~EE. Since
valpðqEÞ ¼ �valp

�
jðEÞ

�
is not divisible by the odd prime l, the image of the inertia group

IðpÞ in AutðElÞ contains IdþN for some nilpotent N 3 0, see [17], Chapter IV, Section
3.2, Lemma 1. Thus El has exactly one non-zero GalðQp=KÞ-invariant subgroup C 3El.
As a GalðQp=KÞ-module, C is isomorphic to ml if K 3Qp, and to ml twisted by the
unramified character w if K ¼ Qp. The GalðQp=KÞ-module El=C is isomorphic to Z=l if
K 3Qp, and to Z=l twisted by w if K ¼ Qp. In particular, the GalðQp=KÞ-modules C and
El=C are isomorphic if and only if K contains a primitive l-th root of unity.

Suppose that there exists a non-zero homomorphism of GalðQp=KÞ-modules
f : El ! E 0l. Since E 0 has good reduction at p, the inertia IðpÞ acts trivially on E 0l; in
particular f is not an isomorphism. Then KerðfÞ ¼ C, and E 0l contains a GalðQp=KÞ-
submodule isomorphic to Z=l (when w is ramified) or Z=l twisted by w (when w is unrami-
fied or trivial). In the first case let E 00 ¼ E 0, and in the second case let E 00 be the quadratic
twist of E 0 by w. Then E 00ðKÞ contains a point of order l, so that E 00ðKÞ contains a finite
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subgroup of order 4l. Since E 0 has good reduction at p, the curve E 00 also has good reduc-
tion at p. Then the group of F5-points on the reduction has at least 12 elements, which
contradicts the Hasse bound, according to which an elliptic curve over Fp cannot have
more than pþ 2

ffiffiffi
p
p þ 1 points, see [8].

It remains to consider the case l ¼ 5. The above arguments work equally well with
p ¼ 7. We obtain a contradiction with the Hasse bound since no elliptic curve over F7 can
contain as many as 4l ¼ 20 rational points.

The last statement of (i) follows from formula (23). r

Example (A3). The curve E in this proposition can be any curve with equation
y2 ¼ xðx� aÞðx� bÞ, where a and b are distinct non-zero integers such that exactly one
of the numbers a, b, a� b is divisible by 5, exactly one is divisible by 7, and none are
divisible by 25 or 49. (For example, a ¼ 5þ 35m, b ¼ 7þ 35n, where m3 2þ 5k and
n3 4þ 7k.) The modular invariant of E is

jðEÞ ¼ 28 ða2 þ b2 � abÞ3

a2b2ða� bÞ2
;

which is immediate from the standard formula

jðEÞ ¼ 1728
4p3

4p3 þ 27q2

for E written in the Weierstrass form y2 ¼ x3 þ pxþ q, see [8], Chapter III, Section 2.
It follows that val5

�
jðEÞ

�
¼ val7

�
jðEÞ

�
¼ �2. The curve E 0 can be any curve with equa-

tion y2 ¼ xðx� a 0Þðx� b 0Þ, where a 0 and b 0 are distinct non-zero integers such that a 0, b 0,
a 0 � b 0 are coprime to 35, e.g., a 0 ¼ 35m 0 þ 1, b 0 ¼ 35n 0 þ 2 for any m 0; n 0 A Z.

Case (B). In case (B), the group NSðAÞ is freely generated by the classes of the
curves E � f0g, f0g � E and the diagonal. The image of the class of the diagonal under
the map NSðAÞ ! EndðEÞ ! EndðEnÞ is the identity, hence Proposition 3.3 gives an iso-
morphism of Galois modules

BrðAÞn ¼ EndðEnÞ=Z=n;ð24Þ

where Z=n is the subring of scalars in EndðEnÞ.

Remark. Let A ¼ E � E, where E is an elliptic curve without complex multipli-
cation over k, such that the image of G in AutðE2Þ is GLð2; F2Þ. It is easy to check that
BrðAÞG2 ¼

�
EndðE2Þ=Z=2

�G
has order 2; in fact, the non-zero element of this group can be

represented by a symmetric 2� 2-matrix S over F2 such that S3 ¼ Id. Thus the 2-primary
component of BrðAÞG is finite cyclic. In this example the map H2

�eetðA;Z=2ÞG ! BrðAÞG2 is

zero. By the second formula of Proposition 3.3 the map BrðAÞ2 ! BrðAÞG2 is not surjective.

The following proposition shows that the non-zero element of BrðAÞG2 does not belong to
the image of the map BrðAÞ ! BrðAÞG.
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Proposition 4.3. Let A ¼ E � E, where E is an elliptic curve such that for every prime

l the image of G in AutðElÞ is GLð2; FlÞ. Then we have:

(i) BrðAÞ ¼ Br1ðAÞ.

(ii) BrðAÞG FZ=2m for some mf 1.

Proof. (i) We note that the argument in the proof of Proposition 4.1 shows that the
curve E has no complex multiplication. In view of the second formula of Proposition 3.3 it
is enough to prove the following lemma:

Lemma 4.4. Let G HGLð2;ZlÞ be a subgroup that maps surjectively onto GLð2; FlÞ.
Let Mat2ðZ=lnÞ be the abelian group of 2� 2-matrices with entries in Z=ln, and let

Mat2ðZ=lnÞG be the subgroup of matrices commuting with the image of G in GLð2;Z=lnÞ.
Then for any positive integer n we have Mat2ðZ=lnÞG ¼ Z=ln � Id.

Proof. We proceed by induction starting with the obvious case n ¼ 1. Suppose we
know the statement for n, and need to prove it for nþ 1. Consider the exact sequence of
G-modules

0!Mat2ðZ=lÞ !Mat2ðZ=lnþ1Þ !Mat2ðZ=lnÞ ! 0;

where the second arrow comes from the injection Z=l ¼ lnZ=lnþ1 ,! Z=lnþ1, and the
third one is the reduction modulo ln. By induction assumption Mat2ðZ=lnÞG ¼ Z=ln � Id.
Thus, the map Mat2ðZ=lnþ1ÞG !Mat2ðZ=lnÞG is surjective, and every element in

Mat2ðZ=lnþ1ÞG is the sum of a scalar multiple of Id and an element of Mat2ðZ=lÞG. But
Mat2ðZ=lÞG ¼ Z=l � Id, and so the lemma, and hence also part (i) of the proposition, are
proved.

(ii) For an odd prime l we have a direct sum decomposition of G-modules
EndðElÞ ¼ Z=llBrðAÞl, where BrðAÞl is identified with the group of endomorphisms of
trace zero. Our assumption implies that BrðAÞGl ¼ 0. The remark before the proposition
shows that BrðAÞG is a finite cyclic 2-group. r

Remark. By a theorem of W. Duke [2] ‘almost all’ elliptic curves over Q satisfy the
assumption of Proposition 4.3. More precisely, if y2 ¼ x3 þ axþ b is the unique equation
for E such that a; b A Z and gcdða3; b2Þ does not contain twelfth powers, the height HðEÞ
of E is defined to be maxðjaj3; jbj2Þ. For x > 0 write CðxÞ for the set of elliptic curves E

over Q (up to isomorphism) such that HðEÞe x6, and EðxÞ for the set of curves in CðxÞ
for which there exists a prime l such that the image of G in AutðElÞ is not equal to
GLð2; FlÞ. Then lim

x!þy
jEðxÞj=jCðxÞj ¼ 0. By Proposition 1.4 and Theorem 2.4 this implies

that for most Kummer surfaces

z2 ¼ ðx3 þ axþ bÞðy3 þ ayþ bÞ

we have BrðXÞ ¼ BrðQÞ. In particular, there are infinitely many such surfaces.

Proposition 4.5. Let E be an elliptic curve over Q satisfying the assumptions of

Proposition 4.2. Then E has no complex multiplication, and EndGðElÞ is the subring of
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scalars Fl � IdHEndðElÞ for any prime l3 2. If A ¼ E � E, then BrðAÞG is a finite abelian

2-group.

Proof. The curve E has no complex multiplication because jðEÞ is not an algebraic
integer. Let l be an odd prime, l3 p ¼ 5, and let f be a non-zero endomorphism of the
G-module El such that TrðfÞ ¼ 0. From the proof of Proposition 4.2 we know that there
exists a nilpotent N 3 0 in EndðElÞ such that the image of IðpÞ in AutðElÞ contains
IdþN. Since f is an endomorphism of the IðpÞ-module El, it commutes with N, and it
follows from TrðfÞ ¼ 0 that f is also nilpotent. As was explained in the proof of Prop-
osition 4.2, the existence of such an endomorphism f implies that GalðQp=KÞ-modules
Z=l and ml are isomorphic. However, K does not contain non-trivial roots of 1 of order l
when p ¼ 5 and l3 5 is odd, because the residue field of K is F5. This contradiction shows
that EndGðElÞ is the subring of scalars Z=lHEndðElÞ. If l ¼ 5 we repeat these arguments
with p ¼ 7 taking into account that Q7, and hence K , does not contain non-trivial 5-th
roots of 1. r

Example (B1). Let A ¼ E � E, where E=Q is an elliptic curve such that the repre-
sentation of G in El is a surjection G! GLðElÞ for every odd prime l. Then E has no com-
plex multiplication over Q (see the proof of Proposition 4.1). Then BrðAÞGl ¼ 0 if l3 2.
This assumption holds in the following examples which have the additional property that
the 2-torsion of E is rational, i.e., E2 HEðQÞ. For example, one can consider the curve
y2 ¼ ðx� 1Þðx� 2Þðxþ 2Þ of conductor 24, or the curve y2 ¼ ðxþ 1Þðxþ 2Þðx� 3Þ of
conductor 40. The computation of residues shows that in each of these two cases we have
BrðX Þ ¼ BrðQÞ for X ¼ KumðE � EÞ (see Example 4 in the next section).

Case (C). Lastly, we would like to consider the case when A ¼ E � E, where E is an
elliptic curve with complex multiplication.

Theorem 4.6. Let E be an elliptic curve over Q with complex multiplication, and let l
be an odd prime such that E has no rational isogeny of degree l, i.e., El does not contain a

Galois-invariant subgroup of order l. Let Gl be the image of G ¼ GalðQ=QÞ in AutðElÞ.
Then Gl is nonabelian, the order jGlj is not divisible by l, and the centralizer of Gl in

EndðElÞ is Fl ¼ Z=l.

The theorem remains true if one replaces Q by any real number field (with the same
proof).

Proof of Theorem 4.6. Suppose that E has complex multiplication by an order O of
an imaginary quadratic field K, that is, EndðEÞ ¼ O. We start with the observation that l
is unramified in O, or, equivalently, the 2-dimensional Fl-algebra O=lHEndðElÞ has no
nilpotents. Indeed, if the radical of O=l is non-zero, it is an Fl-vector space of dimension
1, and so is spanned by one element. Its kernel in El is a Galois-invariant cyclic subgroup
of order l. We assumed that such subgroups do not exist, so this is a contradiction.

Therefore, O=l is either Fl l Fl or the field Fl2 . In the first case ðO=lÞ� is a split
Cartan subgroup of order ðl� 1Þ2, whereas in the second case it is a non-split Cartan sub-
group of order l2 � 1, so that l does not divide jðO=lÞ�j. On the other hand, the image
of GalðQ=KÞ in AutðElÞ commutes with the Cartan subgroup ðO=lÞ�, and so belongs to
ðO=lÞ�. Since GalðQ=KÞ is a subgroup of G of index 2, we conclude that the order of Gl

divides 2jðO=lÞ�j and so is not divisible by l.
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The group Gl contains an element c corresponding to the complex conjugation. Any
z A OnlO such that TrðzÞ ¼ 0 anticommutes with complex conjugation. Since l is odd, the
non-zero image of z in O=l anticommutes with c. Thus c is not a scalar; in particular, c has
exact order 2. If Gl is abelian, then both eigenspaces of c in El are Galois-invariant cyclic
subgroups of order l, but these do not exist. This implies that Gl is nonabelian.

Finally, the absence of Galois-invariant order l subgroups in El implies that the
Gl-module El is simple, so the centralizer of Gl in EndðElÞ is Fl. r

Corollary 4.7. Let A ¼ E � E, where E is an elliptic curve over Q with complex

multiplication, and let l be an odd prime such that E has no rational isogeny of degree l.

Then BrðAÞGl ¼ 0.

Proof. It follows from Theorem 4.6 that the G-module EndðElÞ is semisimple, hence
H2

�eetðA; mlÞ ¼ ðZ=lÞ
2 lEndðElÞ is also semisimple. Thus H2

�eetðA; mlÞ ¼ NSðAÞ=llBrðAÞl
is a direct sum of G-modules. Since the identity in EndðElÞ corresponds to the diagonal in
E � E, it is contained in NSðAÞ=l. By Theorem 4.6 we have H2

�eetðA; mlÞ
GHNSðAÞ=l, so

that BrðAÞGl ¼ 0. r

Example (C1). Let A ¼ E � E, where E is the curve y2 ¼ x3 � x with complex
multiplication by Z½

ffiffiffiffiffiffiffi
�1
p

�. An application of sage [23] gives that every isogeny of prime
degree E ! E 0 defined over Q is the factorization by a subgroup of EðQÞtors ¼ E2. Hence
BrðAÞGl ¼ 0 for every odd prime l.

Example (C2). Let A ¼ E � E, where E is the curve y2 ¼ x3 � 1 with complex

multiplication by Z
1þ

ffiffiffiffiffiffiffi
�3
p

2

" #
. An application of sage gives that every isogeny of prime

degree E ! E 0 over Q is the factorization by a subgroup of EðQÞtors FZ=6. Hence
BrðAÞGl ¼ 0 for every prime lf 5.

5. Brauer groups of Kummer surfaces

Example 1. Let k ¼ Q. Examples (A1) and (A2) show that the Kummer surfaces X

given by the following a‰ne equations have trivial Brauer group BrðXÞ ¼ BrðQÞ:

z2 ¼ ðx3 þ 6x� 2Þðy3 þ 1Þ;ð25Þ

z2 ¼ ð4x3 � 4xþ 1Þð4y3 þ 4y2 þ 1Þ:ð26Þ

In both examples we have BrðXÞG ¼ 0.

Example 2. Other examples can be obtained using Proposition 4.3 in conjunc-
tion with Theorem 2.4. For example, for the following Kummer surface X we also have
BrðX Þ ¼ BrðQÞ, whereas BrðXÞG FZ=2m for some mf 1:

z2 ¼ ðx3 þ 6x� 2Þðy3 þ 6y� 2Þ:ð27Þ
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The interest of the following series of examples is that for them the image of BrðAÞ in
BrðAÞ contains BrðAÞ2, so in order to prove the triviality of BrðX Þ we need to compute the
residues at the nine lines in XnW .

Example 3. Let X be the Kummer surface over Q with a‰ne equation

z2 ¼ xðx� aÞðx� bÞyðy� a 0Þðy� b 0Þ;

such that a ¼ 5þ 35m, b ¼ 7þ 35n, where m; n A Z, m is not congruent to 2 modulo 5, n

is not congruent to 4 modulo 7, and a 0 ¼ 35m 0 þ 1, b 0 ¼ 35n 0 þ 2 for any m 0; n 0 A Z. We
have X ¼ KumðE � E 0Þ, where the elliptic curves E and E 0 are as in Example A3. Since
X ðQÞ3j we see that BrðQÞ is a direct factor of BrðX Þ. By Propositions 4.2 and 1.4 (ii)
to show that BrðX Þ ¼ BrðQÞ it is enough to prove that every element of BrðXÞ of order 2
is algebraic. By Proposition 3.7 we need to compute the dimension d of the kernel of the
matrix (22). Considering the first two entries in each row, and taking their valuations at 5
and 7 immediately shows that no product of some of the rows of (22) is trivial. Thus d ¼ 0,
hence BrðX Þ ¼ BrðQÞ.

Example 4. Let X ¼ KumðE � EÞ, where E is as in Example 3, or the elliptic curve
with conductor 24 or 40 mentioned in Example B1. In the latter case X is given by one of
the following equations:

z2 ¼ ðx� 1Þðx� 2Þðxþ 2Þðy� 1Þðy� 2Þðyþ 2Þ;ð28Þ

z2 ¼ ðxþ 1Þðxþ 2Þðx� 3Þðyþ 1Þðyþ 2Þðy� 3Þ:ð29Þ

One checks that the dimension of the kernel of (22) is 1, so that BrðXÞ ¼ BrðQÞ by Prop-
osition 3.7.

Kummer surfaces without rational points. There is a more general construction of
Kummer surfaces than the one previously considered. Let c be a 1-cocycle of G with coef-
ficients in A2 so that ½c� A H1ðk;A2Þ. All quasi-projective varieties and Galois modules
acted on by the k-group scheme A2 can be twisted by c. The twist of A is a principal homo-
geneous space Ac, also called a 2-covering of A. The action of A2 on A by translations
descends to an action of A2 on X ¼ KumðAÞ, so we obtain a twisted Kummer surface X c

together with morphisms Ac  A 0 c ! X c. For example, if A ¼ E � E 0, a 2-covering C

of E is given by y2 ¼ f ðxÞ, where f ðxÞ is a separable polynomial of degree 4, and a
2-covering C 0 of E 0 is given by a similar equation y2 ¼ gðxÞ, then the twisted Kummer
surface X c is given by the a‰ne equation

z2 ¼ f ðxÞgðyÞ:

The Hasse principle on such surfaces over number fields was studied in [21].

Proposition 5.1. Suppose that for every integer n > 1 we have

H2
�eetðA; mnÞ

G ¼
�
NSðAÞ=n

�G
(this condition is satisfied when BrðAÞG ¼ 0). Then BrðX cÞ ¼ Br1ðX cÞ for any ½c� A H1ðk;A2Þ.
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Proof. By Remark 3 after Proposition 1.3, A2ðkÞ acts trivially on BrðAÞ and on
BrðX Þ, thus we have the following isomorphisms of G-modules:

BrðX cÞFBrðX ÞFBrðAcÞFBrðAÞ:

Translations act trivially on étale cohomology groups of A, hence we have a canonical
isomorphism of G-modules H2

�eetðAc; mnÞ ¼ H2
�eetðA; mnÞ. In the commutative diagram

H2
�eetðAc; mnÞ

G ���! BrðAcÞGnx???
x???

H2
�eetðAc; mnÞ ���! BrðAcÞn

the bottom arrow is surjective, and the top arrow is zero by assumption. It follows that
BrðAcÞ ¼ Br1ðAcÞ. We conclude by Theorem 2.4. r

This proposition in conjunction with Proposition 4.1 gives many examples of twisted
Kummer surfaces X c such that BrðX cÞ ¼ Br1ðX cÞ.

Kummer surfaces with non-trivial transcendental Brauer group. Let E be an elliptic
curve over Q. As pointed out by Mazur [10], p. 133, the elliptic curves E 0 such that the
Galois modules El and E 0l are symplectically isomorphic correspond to Q-points on the
modular curve X ðlÞ twisted by El. Thus for le 5 there are infinitely many possibilities
for E 0 due to the fact that the genus of XðlÞ is zero, see [19], [16]. Now let l ¼ 7, 11 or
13. Examples of pairs of non-isogenous elliptic curves with isomorphic Galois modules
ElFE 0l for these values of l can be found in [4] and [1]. Our results imply that BrðX Þ,
where X ¼ KumðE � E 0Þ, contains an element of order l whose image in BrðXÞ is non-
zero.
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