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Introduction

A less known event of 1968 in Paris was the publication of “Dix exposés sur
la cohomologie des schémas” by J. Giraud, A. Grothendieck, S.L. Kleiman,
M. Raynaud and J. Tate. Included there, with a kind permission of N. Bourbaki,
were two talks by Grothendieck in the Bourbaki seminar, entitled “Le groupe de
Brauer I” and “Le groupe de Brauer II”, followed by a 100 pages long “Le groupe
de Brauer III”. More than fifty years later, it remains the principal source on
Grothendieck’s generalisation of the Brauer group of fields to the Brauer group
of schemes, in the language of étale cohomology. Masterfully written, with a
fresh appeal of a newly designed theory, Grothendieck’s two seminar talks and
a long paper are hardly a textbook.

Our first motivation for writing this book was to complement Grothendieck’s
foundational text with a more accessible modern exposition, and to give proofs
of some results not easily found in the literature. Our second motivation was to
describe recent developments in the theory of the Brauer–Manin obstruction and
local-to-global principles, as well as new geometric applications of the Brauer
group.

Let us give a brief sketch of the history of the Brauer–Grothendieck group.
Soon after the publication of “Le groupe de Brauer I, II, III” it became clear

that this is a very useful tool. In his 1970 ICM address, Manin defined a natural
pairing between the Brauer group of a variety X over a number field k and the
space of its adelic points X(Ak). He pointed out that this pairing generalises
pairings in the theory of abelian varieties (Cassels–Tate pairing on the Tate–
Shafarevich group, maps in the Cassels–Tate dual sequence) and in the theory
of algebraic tori (Voskresenskĭı). He also showed how several known counter-
examples to the Hasse principle building on reciprocity laws could be interpreted
in terms of this pairing. The Brauer–Manin obstruction revolutionised the the-
ory of Diophantine equations by enabling one to study local-to-global principles
for rational points beyond the narrow confines of varieties satisfying the Hasse
principle and weak approximation.

In a separate development, in 1972 Artin and Mumford used the birational
invariance of the Brauer group to construct examples of unirational but not
rational varieties over complex numbers. This gave a negative answer to the
Lüroth problem in dimension at least 3, by a method different from those of
Clemens–Griffiths and Iskovskikh-Manin, found about the same time. In 1984
the unramified Brauer group was used by Saltman who found examples of finite
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subgroups G ⊂ GL(n,C) such that the quotient GL(n,C)/G is not rational.
This gives a negative answer to a problem of Emmy Noether motivated by the
inverse Galois problem.

In the 1970s and 1980s, Colliot-Thélène and Sansuc developed the theory of
descent and universal torsors, and linked it to the Brauer–Manin obstruction.
Jointly with Swinnerton-Dyer they proved that the Brauer–Manin obstruction
correctly describes the closure of the set of rational points X(k) in X(Ak)
for some intersections of quadrics. Important results for conic bundles were
obtained by Salberger, who also studied analogous results for zero-cycles. In
contrast to these developments, in 1997 Skorobogatov constructed a bielliptic
surface X over Q which is a counter-example to the Hasse principle that cannot
be explained by the Brauer–Manin obstruction. Stronger versions of the Brauer–
Manin obstruction were soon proposed by Harari and Skorobogatov, but a more
radical counter-example found by Poonen in 2010 shows that these obstructions
are insufficient too.

Very recently, the birational invariance of the Brauer group has become
one of the ingredients of the specialisation method discovered by Voisin and
developed by Colliot-Thélène and Pirutka, and later by Schreieder. This method
was used by Hassett, Pirutka and Tschinkel to give examples of algebraic families
of smooth projective varieties over complex numbers some of which are rational
whereas some others are not even stably rational.

Contents

Let us give a brief outline of the contents of this book. We refer to the
introductions to individual chapters for more details.

The first two chapters contain preliminary material on Galois and étale co-
homology. For obvious reasons many results here are stated without proofs,
though we give a proof of compatibility of two definitions of the residue map
for the Brauer group of a discretely valued field.

Chapter 3 starts with definitions of the two Brauer groups of a scheme: the
Brauer group defined in terms of Azumaya algebras, which we call the Brauer–
Azumaya group, and the cohomological Brauer group, which we call the Brauer–
Grothendieck group. We reproduce de Jong’s proof of a theorem of Gabber
which says that a natural homomorphism from the Brauer–Azumaya group to
the torsion subgroup of the Brauer–Grothendieck group is an isomorphism for
a quasi-projective scheme over an affine scheme. Other fundamental subjects
discussed in this chapter are localisation and the purity theorem for the Brauer
group.

In Chapters 4, 5 and 6 we focus on the Brauer group of a smooth variety
over a field. In Chapter 4 we describe the structure of this group and methods
to compute it, both in the general case and for classes of varieties satisfying ad-
ditional geometric assumptions. In Chapter 5 we define the unramified Brauer
group and prove that the Brauer group of a smooth and proper variety is a bi-
rational invariant. Chapter 6 deals with Severi–Brauer varieties, quadrics, and,
more generally, projective and affine hypersurfaces. Here we give a proof that
the Severi–Brauer variety associated to a cyclic algebra is birationally equivalent
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to the affine hypersurface given by a norm equation, a result which seems hard
to find in the literature.

Chapter 7 contains various results on the Brauer group of singular varieties,
which in particular provide counterexamples to the familiar properties of the
Brauer group in the smooth case.

In Chapter 8 we collect results on the Brauer group and on the unramified
Brauer group of a variety equipped with an action of a linear algebraic group,
such as a torsor or a homogeneous space. We discuss theorems of Saltman and
of Bogomolov that can be used to give negative answers to Noether’s problem.

Chapters 9, 10 and 11 are devoted to the Brauer group of a family of varieties.
The subject of Chapter 9 is schemes over a local ring and varieties over a local
field. Here we also discuss split fibres and explore their properties. In Chapter
10, after defining the vertical Brauer group of a morphism, we explain how to
compute the Brauer group of a conic bundle over a 1- or 2-dimensional base.
We present the Artin–Mumford examples from this birational point of view.
Chapter 11 contains an exposition of the specialisation method with applications
to the behaviour of stable rationality in a family.

The next group of chapters concerns arithmetic applications. The Brauer–
Manin obstruction is introduced and studied in Chapter 12. Chapter 13 con-
tains an exposition of several results stating that for some classes of varieties
the Brauer–Manin obstruction correctly describes the closure of the set of ra-
tional points inside the topological space of adelic points. We discuss Schinzel’s
Hypothesis (H), applications of results in additive combinatorics due to Green,
Tao and Ziegler to rational points and sketch a proof of a theorem of Harpaz
and Wittenberg about families of rationally connected varieties. In this chapter
we also give an overview of the theory of obstructions to the local-to-global prin-
ciples for rational points. Chapter 14 deals with zero-cycle analogues of these
themes.

The last chapter concerns finiteness properties of the Brauer group of abelian
varieties, K3 surfaces, and varieties dominated by products of curves when the
ground field is finitely generated over its prime subfield. The treatment of K3
surfaces necessitates a detour via an interpretation of their moduli spaces as
Shimura varieties and the Kuga–Satake contruction. We give complete proofs
of the Tate conjecture and the finiteness of the Brauer group for K3 surfaces in
the case of characteristic zero.

The reader won’t fail to notice that the style of this book varies from chapter
to chapter, from a more in-depth treatment to a survey. The authors are aware
of these and other imperfections, as well as omissions of a number of important
subjects. In this book we only fleetingly discuss descent and torsors, for which
we refer to [Sko01]. Other subjects which could have been included but are not
included:

unramified cohomology in higher degrees,

the Brauer groups of varieties over finite fields,

Swinnerton-Dyer’s method for rational points on a pencil of genus 1 curves,

the integral Brauer–Manin obstruction.
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We recommend Poonen’s recent book [Po18] as an extremely helpful and com-
prehensive introduction to rational points. Another book on the Brauer group
of varieties was recently published by Gorchinskiy and Shramov [GSh18].
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Notation

For an abelian group A we denote by A[n] the n-torsion subgroup of A, i.e.
A[n] = {x ∈ A|nx = 0}. If ` is a prime number, we denote by A{`} the `-
primary subgroup of A, i.e. the set of elements x ∈ A such that `ix = 0 for
some i ≥ 1. We denote by Ators the torsion subgroup of A, i.e. the union of
A[n] for all n ≥ 1.

For a field k we write k̄ for a fixed algebraic closure of k, and ks ⊂ k̄ for the
separable closure of k in k̄. Let

Γ = Gal(ks/k)

be the Galois group of k. The characteristic exponent of k is 1 if char(k) = 0
and p if char(k) is a prime number p.

The p-cohomological dimension of a profinite group G, where p is a prime,
is the smallest integer n such that Hm(G,M){p} = 0 for all G-modules M such
that M = Mtors and all m > n. The cohomological dimension of a profinite
group G is the supremum of its p-cohomological dimensions over all primes p.
The cohomological dimension of a field k is the cohomological dimension of its
Galois group Γ.

For a scheme X over a field k, we write X = X ×k k̄ and Xs = X ×k ks. A
variety over k is defined as a separated scheme of finite type over k. In particular,
a variety is quasi-compact (i.e., it is a finite union of affine open subsets) and
quasi-separated (i.e., the diagonal morphism X→X×ZX is quasi-compact; this
implies that the intersections of two affine open subsets of a variety X over k is
a finite union of affine open subsets of X).
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Chapter 1

Galois cohomology

This chapter begins with a brief introduction to the classical theory of quater-
nion algebras over a field. After recalling basic facts about central simple al-
gebras, we give the classical definition of the Brauer group of a field in terms
of such algebras. We state several standard results about Galois cohomology
and descent, and then give the cohomological definition of the Brauer group
of a field and construct a natural isomorphism between the resulting groups.
For a thorough treatment of central simple algebras and the Brauer groups of
fields we refer to the book by P. Gille and T. Szamuely [GS17] from which we
borrowed some of the material for this chapter. Various aspects of the theory of
simple algebras and the Brauer group can be found in Bourbaki’s Algèbre, Ch.
VIII [BouVIII], and in the books by J.-P. Serre [SerCL, SerCG], A.A. Albert
[Alb31], I. Reiner [Rei03] and I.N. Herstein [Her68].

In this chapter we also state several results about cyclic algebras and the
vanishing of the Brauer group for specific fields, such as finite fields, function
fields in one variable over an algebraically closed field, C1-fields.

In Section 1.4 we discuss the Brauer group of discretely valued fields and
the associated crucial notion of residue. There are several approaches to the
definition of the residue; we explain how two of them are related to each other.
We finish by proving a theorem of D.K. Faddeev which describes the Brauer
group of the field of rational functions k(t), where k is a perfect field.

1.1 Quaternion algebras and conics

In this section k is a field of characteristic not equal to 2.

Quaternions

To a, b ∈ k∗ one can attach a non-commutative associative k-algebra in the
following way.

13



14 CHAPTER 1. GALOIS COHOMOLOGY

Definition 1.1.1 A quaternion algebra over k is a k-algebra isomorphic
to the 4-dimensional associative algebra Qk(a, b) with basis 1, i, j, ij and the
multiplication table

i2 = a, j2 = b, ij = −ji,
where a, b ∈ k∗.

For a field extension k ⊂ K there is a natural isomorphism

Qk(a, b)⊗k K−̃→QK(a, b).

Exercise 1.1.2 The map k→Qk(a, b) sending x to x · 1 identifies k with the
centre of Qk(a, b). The two-sided ideals of Qk(a, b) are 0 and Qk(a, b).

For example, QR(−1,−1) is the algebra of Hamilton’s quaternions H. This
is a division algebra: every non-zero element of H is invertible.

A natural question is: for which a, b ∈ k∗ is Qk(a, b) a division algebra?

Definition 1.1.3 Let Q be a quaternion algebra. A pure quaternion in Q is
0 or an element q ∈ Q such that q /∈ k but q2 ∈ k.

It follows that if Q ∼= Qk(a, b), then the pure quaternions are precisely the
elements of the form yi+ zj +wij. (To see this, square x+ yi+ zj +wij, then
there are some cancellations, and if x 6= 0, then y = z = w = 0). Thus each
quaternion q ∈ Q is uniquely written as q = q0 + q1, where q0 ∈ k and q1 is a
pure quaternion.

Definition 1.1.4 The conjugate of q = q0 +q1 ∈ Q is q̄ = q0−q1. The norm
of q ∈ Q is N(q) = qq̄ ∈ k. The trace of q ∈ Q is Tr(q) = q + q̄ ∈ k.

For any q1, q2 ∈ Q we have

q1.q2 = q̄2.q̄1, N(q1q2) = N(q1)N(q2), Tr(q1 + q2) = Tr(q1) + Tr(q2).

Exercise 1.1.5 If q ∈ Q is a pure quaternion such that q2 is not a square in
k, then 1, q span a quadratic field which is a maximal subfield of Q.

The quaternion k-algebras Qk(a, b) and Qk(c, d) are isomorphic if and only
if there exist anti-commuting pure quaternions I, J ∈ Q(a, b) such that I2 = c,
J2 = d. Then 1, I, J, IJ is a basis of the k-vector space Qk(a, b). Thus for any
u, v ∈ k∗ we have Qk(au2, bv2) ∼= Qk(a, b).

Lemma 1.1.6 If c ∈ k∗ is a norm from k(
√
a)∗, then Qk(a, b) ∼= Qk(a, bc).

Proof. Write c = x2 − ay2 with x, y ∈ k. Set J = xj + yij ∈ Qk(a, b). One
checks Ji = −iJ and J2 = −N(J) = bc. �

If z ∈ Qk(a, b) is an invertible element, then N(q) ∈ k∗. If N(q) = 0, then
qq̄ = 0, so q is a zero divisor. Thus the invertible elements are exactly the
elements with non-zero norm. The norm on Qk(a, b) is the diagonal quadratic
form 〈1,−a,−b, ab〉, and this leads us to the following criterion.

We write Mn(k) for the k-algebra of n × n-matrices with entries in k. In
fact, M2(k) can be seen as a quaternion algebra of a special kind.
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Proposition 1.1.7 Let Q = Qk(a, b), where a, b ∈ k∗. The following state-
ments are equivalent:

(i) Q is not a division algebra;
(ii) Q is isomorphic to the matrix algebra M2(k);
(iii) the diagonal quadratic form 〈1,−a,−b〉 represents zero in k;
(iv) the norm form N = 〈1,−a,−b, ab〉 represents zero in k;
(v) b is in the image of the norm homomorphism k(

√
a)∗→k∗.

Proof. First assume a ∈ k∗2. The equivalence of all statements but (ii) is clear.
To prove the equivalence with (ii) we can assume that a = 1. The matrix algebra
M2(k) is spanned by

1 = Id =

(
1 0
0 1

)
, i =

(
1 0
0 −1

)
, j =

(
0 b
1 0

)
, ij =

(
0 b
−1 0

)
,

and so is isomorphic to Qk(1, b).
Now assume that a ∈ k∗ is not a square. Then (i) is equivalent to (iv) since

N(q) = qq̄. Next, (iv) implies (v) because the ratio of two non-zero norms is a
norm. It is clear that (v) implies (iii) which implies (iv), since N is the diagonal
quadratic form 〈1,−a,−b, ab〉. So (iii), (iv) and (v) are all equivalent to (i).
Lemma 1.1.6 shows that under the assumption of (v) the algebra Qk(a, b) is
isomorphic to Qk(a, b2) ∼= Qk(a, 1), so we use the result of the first part of the
proof to prove the equivalence with (ii). �

If the conditions of this theorem are satisfied one says that Qk(a, b) is split.
If K is a field extension of k such that QK(a, b) ∼= Qk(a, b) ⊗k K is split, then
one says that K splits Qk(a, b).

Since any quaternion algebra Qk(a, b) is split by ks, we see that Qk(a, b) is
a (ks/k)-form of the 2× 2-matrix algebra, which means that

Qk(a, b)⊗k ks
∼= M2(ks).

For example, H⊗R C ∼= M2(C).
It is an easy exercise to show that the pure quaternions in M2(k) are precisely

the traceless matrices.

Proposition 1.1.8 Any quaternion algebra Q split by k(
√
a) contains this field

and can be written as Q = Qk(a, c) for some c ∈ k∗. Conversely, if Q contains
k(
√
a), then Q is split by k(

√
a).

Proof. If the algebra Q is split, take c = 1. Assume Q is not split, hence is a
division algebra. In particular, a is not a square in k. There exist q0, q1 ∈ Q,
not both equal to 0, such that N(q0 + q1

√
a) = 0. Since Q is a division algebra,

we have q0 6= 0 and q1 6= 0. We have

N(q0 + q1

√
a) = N(q0) + aN(q1) +

√
a(q0q̄1 + q1q̄0) = 0,

hence N(q0) + aN(q1) = 0 and q0q̄1 + q1q̄0 = 0. Set q2 = q0.q̄1. We have

q2
2 = q0.q̄1.q0.q̄1 = −q̄0.q̄1.q1.q̄0 = −N(q0)N(q1) = aN(q1)2.
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Let I = q2/N(q1). Then I2 = a. Since a is not a square in k, we see that
I /∈ k. The conjugation by I is a k-linear transformation of Q. It preserves the
subspace of pure quaternions, since it preserves the condition z2 ∈ k. The order
of this linear transformation is 2 because I /∈ k, hence I is not in the centre of Q.
Thus the −1-eigenspace is non-zero, so we can find a non-zero pure quaternion
J ∈ Q such that IJ + JI = 0. We have J2 = c ∈ k, since J is pure. This is
enough to conclude that Q ∼= Qk(a, c).

The converse follows from the fact that k(
√
a)⊗k(

√
a) contains zero divisors

(the norm form x2 − ay2 represents zero in k(
√
a)). Hence the same is true for

Q⊗k k(
√
a). �

Corollary 1.1.9 The quadratic fields that split a quaternion division algebra
are exactly the quadratic subfields of this algebra.

Conics

Definition 1.1.10 Let Q be a quaternion algebra over k. Let Q1 ⊂ Q be the
3-dimensional subspace of pure quaternions. The norm form on Q induces a
non-degenerate quadratic form on Q1. The conic attached to Q is the conic
C(Q) defined by this quadratic form in the projective plane P2

k = P(Q1).

Thus the conic attached to the quaternion algebra Qk(a, b) is the plane
algebraic curve C(a, b) ⊂ P2

k given by the equation

−ax2 − by2 + abz2 = 0.

Up to a change of variables, this conic is also given by the equation

z2 − ax2 − by2 = 0.

By Proposition 1.1.7 the conic C(Q) has a k-point if and only if the quaternion
algebra Q is split.

Remark 1.1.11 1. Since the characteristic of k is not 2, every conic can be
given by a diagonal quadratic form, and so is attached to some quaternion
algebra.

2. The projective line is isomorphic to the conic xz − y2 = 0 via the map
(X : Y ) 7→ (X2 : XY : Y 2).

3. If a conic C has a k-point, then C ∼= P1
k. (The projection from a k-point

gives rise to a rational parameterisation of C, which is an isomorphism.)
4. Thus the function field k(C) of a conic C is a purely transcendental

extension of k if and only if C has a k-point.

Exercise 1.1.12 1. Check that Qk(a, 1− a) and Qk(a,−a) are split.
2. Check that if k = Fq is a finite field, then all quaternion k-algebras are

split. (By assumption q is not a power of 2. Write ax2 = 1 − by2 and use a
counting argument for x and y to prove the existence of a solution in Fq.)
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3. Let Q be a quaternion algebra over k and let C be the associated conic.
Then Q is split over k if and only if Qk(t) is split over k(t). (Take a k(t)-point
on C ⊂ P2

k represented by three polynomials not all divisible by t, and reduce
modulo t.)

4. Q is split over k(C(Q)). (Consider the generic point of the conic.)

The following theorem of Max Noether [Noe70] is a special case of Tsen’s
theorem (Theorem 1.2.12 below). It plays an important rôle in the classification
of complex algebraic surfaces. The proof given here is due to Tsen.

Theorem 1.1.13 (M. Noether) Let k be an algebraically closed field. Then
all quaternion k(t)-algebras are split.

Proof. It is enough to show that any conic over k(t) has a point (this is Max
Noether’s statement). We can assume that the coefficients of the corresponding
quadratic form are polynomials in t of degree at most m. We look for a solution
(X,Y, Z), where X, Y and Z are polynomials in t (not all of them zero) of degree
n for some large integer n. The coefficients of these polynomials can be thought
of as points of the projective space P3n+2. The solutions bijectively correspond
to the points of a closed subset of P3n+2 given by 2n + m + 1 homogeneous
quadratic equations. Since k is algebraically closed this set is non-empty when
3n + 2 ≥ 2n + m + 1, by a standard result from algebraic geometry. (If an
irreducible variety X is not contained in a hypersurface H, then dim(X ∩H) =
dim(X) − 1. This implies that on intersecting X with r hypersurfaces the
dimension drops at most by r, see [Sha74, Ch. 1]). �

The following theorem is due to Witt [Wit35, §2]

Theorem 1.1.14 (Witt) Two quaternion algebras are isomorphic if and only
if the conics attached to them are isomorphic.

Proof. We reproduce the proof of [GS17, Thm. 1.4.2]. Recall that C(Q)
denotes the conic attached to the quaternion algebra Q. An isomorphism of
quaternion algebras Q ∼= Q′ induces an isomorphism of their vector spaces of
pure quaternions respecting the norm form. Hence it induces an isomorphism
C(Q) ∼= C(Q′).

Let us prove that if C(Q) ∼= C(Q′), then Q ∼= Q′. If Q is split, then C(Q)
has a k-point. Thus C(Q′) also has a k-point. But then the norm form of Q′

represents zero, and this implies that Q′ is split.
Assume from now on that neither algebra is split. Write Q = Qk(a, b) and

write C for the conic C(Q′) ∼= C(Q) = C(a, b) given by the equation

z2 − ax2 − by2 = 0.

Let K = k(
√
a) and let K(C) be the function field of the conic CK = C ×k K.

The conic C has a K-point, hence Q′ is split by K. By Proposition 1.1.8 we
can write Q′ = Qk(a, c) for some c ∈ k∗. By Exercise 4 above Q′ is split by the
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function field k(C). By Proposition 1.1.7 this implies that c ∈ k∗ ⊂ k(C)∗ is
contained in the image of the norm map

c ∈ Im[K(C)∗ −→ k(C)∗].

Let σ ∈ Gal(K/k) ∼= Z/2 be the generator. Then we can write c = f.σ(f), where
f is a rational function on the conic CK . One can replace f with fσ(g)g−1 for
any g ∈ K(C)∗ without changing c.

The group Div(CK) of divisors on CK ∼= P1
K is freely generated by the closed

points of CK . This is a module of Z/2 = 〈σ〉 with a σ-stable basis. The divisors
of functions are exactly the divisors of degree 0. The divisor D = div(f) is an
element of Div(CK) satisfying (1 + σ)D = 0. By comparing the multiplicities
of points in the support of D we deduce that there is G ∈ Div(CK) such that
D = (1 − σ)G. Let P = (1 : 0 :

√
a). If n = deg(G) the divisor G − nP ∈

Div(CK) has degree 0. Since CK ∼= P1
K , this implies G− nP = div(g) for some

g ∈ K(C)∗. We have

div(fσ(g)g−1) = D+ σG−G+ n(P − σP ) = n(P − σP ) = n div

(
z −
√
ax

y

)
.

It follows that

fσ(g)g−1 = e

(
z −
√
ax

y

)n
∈ K(C)∗

for some e ∈ K∗. Taking norms, we obtain

c = fσ(f) = NK/k(e)

(
z2 − ax2

y2

)n
= NK/k(e)bn ∈ k(C)∗

hence c = NK/k(e).bn ∈ k∗. Thus Q′ = Q(a, c) = Q(a,Nk(
√
a/k(e).bn) for some

integer n. By Lemma 1.1.6, it is isomorphic to Q(a, b) or to Q(a, 1). Since Q′

is not split, we must have Q′ ∼= Q(a, b). �

1.2 The language of central simple algebras

1.2.1 Central simple algebras

Quaternion algebras and matrix algebras are particular cases of central simple
algebras.

Definition 1.2.1 An associative k-algebra A is called simple if the only two-
sided ideals of A are 0 and A. An associative k-algebra A is called central if its
centre is k. A central simple algebra is a finite dimensional k-algebra that
is both central and simple.

Recall that if V and W are vector spaces over k, then V ⊗k W is the linear
span of vectors v ⊗ w, v ∈ V , w ∈W , subject to the axioms

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w, v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2,
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and

c(v ⊗ w) = (cv)⊗ w = v ⊗ (cw) for any c ∈ k.

This turns V ⊗k W into a k-vector space. If (ei) is a basis of V , and (fj) is a
basis of W , then (ei⊗ fj) is a basis of V ⊗kW . The vector spaces (V ⊗U)⊗W
and V ⊗ (U ⊗W ) are canonically isomorphic.

Given two k-algebras A and B, one defines the structure of a k-algebra on
A⊗k B by the rule (x⊗ y) · (x′ ⊗ y′) = (xx′)⊗ (yy′).

Properties. 1. Any central division algebra is a central simple algebra.

2. For any integer n ≥ 1 the algebra of matrices Mn(k) is a central simple
algebra. More generally, if D is a central division algebra, then Mn(D) is a
central simple algebra [GS17, Example 2.1.2].

3. Mm(k)⊗kMn(k) ∼= Mmn(k).

Later we will use the following important property of matrix algebras.

Proposition 1.2.2 Any automorphism of the k-algebra Mn(k) is induced by
conjugation by an invertible matrix. This invertible matrix is well defined up to
multiplication by a scalar matrix.

Proof. [GS17, Lemma 2.4.1, Cor. 2.4.2]. �

The structure of central simple algebras is described by a theorem of Wed-
derburn.

Theorem 1.2.3 (Wedderburn) For any central simple algebra A there is a
central division algebra D such that A ∼= D ⊗kMn(k) = Mn(D).

The integer n is well defined, and the algebra D is well defined up to a
non-unique isomorphism. Proofs of this fundamental theorem can be found in
[BouVIII, §5, no. 4, Cor. 2], [Her68, Thm. 2.1.6], [GS17, Thm. 2.1.3].

Corollary 1.2.4 Any central simple algebra over an algebraically closed field k
is isomorphic to a matrix algebra Mn(k).

Proof. We need to prove that a central division k-algebra D coincides with its
centre k. Pick any x ∈ D. Let I ⊂ k[t] be the ideal consisting of polynomials
vanishing on x. This is a non-zero ideal, generated by some f(t) ∈ k[t]. Since
D is a division algebra, f(t) is irreducible. As k is algebraically closed, f(t) has
degree 1, hence x ∈ k. �

Lemma 1.2.5 Let k be a field and let A be a finite-dimensional k-algebra. Let
K/k be a finite field extension. Then A is a central simple k-algebra if and only
if A⊗k K is a central simple K-algebra.

Proof. This is [GS17, Lemma 2.2.2]. �
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Theorem 1.2.6 Let k be a field and let A be a finite-dimensional k-algebra.
Then A is a central simple algebra if and only if there exists a positive integer
n and a finite field extension K/k such that A ⊗k K is isomorphic to Mn(K).
Moreover, if this is so, one can choose K separable over k.

Proof. See [GS17, Thm. 2.2.1, Thm. 2.2.7]. See also [Alb31, Ch. IV, §7, Thm.
18] and [BouVIII, §10, no. 3, Prop. 4]. �

This theorem and properties 2 and 3 immediately imply that the tensor
product A⊗kB of two central simple algebras is again a central simple algebra.
It also immediately implies that the dimension of a central simple algebra over
its centre k is a square of a positive integer d. This integer d is called the degree
of the algebra.

Two central simple algebras A and B are called equivalent if there are n and
m such that A⊗kMn(k) ∼= B⊗kMm(k). The relation is transitive by property
3. The equivalence class of k consists of the matrix algebras of all sizes.

Theorem 1.2.7 (Brauer) The tensor product equips the set of equivalence
classes of central simple algebras over k with the structure of an abelian group.
It is called the Brauer group of k and is denoted by Br(k).

Proof. The neutral element is the class of k. Associativity follows from the asso-
ciativity of the tensor product. Commutativity follows from the isomorphisms
A⊗B−̃→B⊗A given by x⊗y 7→ y⊗x. The inverse element of the class of A is
the equivalence class of the opposite algebra Aop. Indeed, A⊗k Aop is a central
simple algebra, and there is a non-zero homomorphism A⊗kAop→Endk(A) that
sends a ⊗ b to x 7→ axb. It is injective since a central simple algebra has no
two-sided ideals, and hence is an isomorphism by the dimension count. �

We write the group operation in Br(k) additively.

Theorem 1.2.3 implies that any class α ∈ Br(k) is represented by a central
division algebra D which is well defined up to a non-unique isomorphism. In
particular, the degree of the algebra D is well defined. It is called the index of
(any algebra in) the class α. The exponent of α is the order of α in the group
Br(k).

From Theorem 1.2.3 it follows that two central simple algebras of the same
dimension and the same class in Br(k) are isomorphic. We deduce that cancel-
lation holds: A⊗B ∼= A⊗ C implies B ∼= C.

By Corollary 1.2.4, the Brauer group of an algebraically closed field is zero.
By Theorem 1.2.6 this also holds for a separably closed field. Since R, C and
H are the only finite dimensional division R-algebras (and C is not central), we
see from Theorem 1.2.3 that Br(R) = Z/2.

Given a field extension K/k there is a natural restriction map

resK/k : Br(k) −→ Br(K)
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defined by [A] 7→ [A⊗k K]. The kernel of resK/k is denoted by Br(K/k) and is
called the relative Brauer group.

In the following lemma we assume that the characteristic of k is not 2.

Lemma 1.2.8 For any a, b, b′ ∈ k∗ we have the following properties:
(i) Qk(a, b)⊗k Qk(a, b′) ∼= Qk(a, bb′)⊗kM2(k).
(ii) Qk(a, b)⊗k Qk(a, b) ∼= M4(k).

Proof [GS17, Lemma 1.5.2] The vector subspace of Qk(a, b)⊗kQk(a, b′) spanned
by 1⊗1, i⊗1, j⊗j′, ij⊗j′ is A1 = Qk(a, bb′). Similarly, the span of 1⊗1, 1⊗j′,
i⊗ i′j′, −b(i⊗ i′) is A2 = Qk(b′,−a2b′). The conic associated to Qk(b′,−a2b′)
clearly has a k-point, so A2

∼= M2(k). The canonical map

A1 ⊗k A2 −→ Qk(a, b)⊗k Qk(a, b′)

defined by the product in Qk(a, b) ⊗k Qk(a, b′), is surjective. The kernel of
a homomorphism is a two-sided ideal, hence it is zero so that this map is an
isomorphism. This proves (i), and (ii) follows. �

Given a, b ∈ k∗ we write (a, b) for the class of Qk(a, b) in Br(k). By Lemma
1.2.8 (i) we have (a, b) ∈ Br(k)[2]. We have already seen that (au2, bv2) = (a, b)
for any u, v ∈ k∗. Lemma 1.2.8 (ii) shows that associating to a, b ∈ k∗ the class
(a, b) ∈ Br(k)[2] induces a bilinear map

k∗/k∗2 × k∗/k∗2 −→ Br(k)[2].

By Proposition 1.1.7 we have (a, b) = 0 if and only if the conic z2−ax2−by2 = 0
has a rational point. In particular, we have (a,−a) = 0, and (a, b) = 0 if
a+ b = 1. Merkurjev proved that the 2-torsion subgroup of Br(k) is generated
by classes (a, b) (see [GS17, §8]).

1.2.2 Cyclic algebras

Quaternion algebras are a special case of the following construction, cf. [GS17,
§2.5]. Let K/k be a Galois extension of fields such that the Galois group G =
Gal(K/k) is cyclic of order n. Let σ be a generator of G and let χ : G−̃→Z/n
be the character sending σ to 1 ∈ Z/n. Let b ∈ k∗.

The cyclic algebra Dk(χ, b) is defined as the k-algebra generated by the field
K and a symbol y with the relations yn = b and λy = yσ(λ) for any λ ∈ K.
This is a central simple k-algebra of degree n, which contains K as a maximal
subfield. Conversely, any central simple k-algebra of degree n which contains a
maximal subfield K which is cyclic of degree n over k is isomorphic to Dk(χ, b)
for some b ∈ k∗.

We write (χ, b) for the class of Dk(χ, b) in Br(k).
When char(k) does not divide n and k contains all n-th roots of 1, one can

describe the cyclic algebra Dk(χ, b) without mentioning the Galois action. Let
ω ∈ µn be a primitive root. For a, b ∈ k∗ let (a, b)ω be the k-algebra with
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generators x, y and relations xn = a, yn = b, xy = ωyx. One checks that this is
a central simple k-algebra. Permuting x and y we find

(a, b)ω ∼= (b, a)ω−1 .

Assume that K = k[t]/(tn − a) is a field. Then K is a cyclic extension of k
of degree n. Let n

√
a ∈ K be the image of t in K. There is a unique element

σ ∈ G = Gal(K/k) such that σ( n
√
a) = ω n

√
a. If χ : G→Z/n is the character

that sends σ to 1 ∈ Z/n, then the k-algebras (a, b)ω and Dk(χ, b) are isomorphic
[GS17, Cor. 2.5.5].

1.2.3 C1-fields

The point of view of central simple algebras allows one to prove the triviality of
the Brauer group of several types of fields which are fundamental for arithmetic
and geometry.

Definition 1.2.9 (Lang) A field k is called a C1-field if any homogeneous form
of degree d in n > d variables with coefficients in k has a non-trivial zero in k.

One easily checks that any finite field extension of a C1-field is a C1-field
[GS17, Lemma 6.2.4].

Theorem 1.2.10 If k is a C1-field, then Br(k) = 0.

Proof. A central simple k-algebra A comes equipped with a reduced norm,
which is a homomorphism NrdA : A∗→k∗. Let d be the degree of A. Choosing
a basis of the vector space A over k one can write NrdA as a homogeneous
form of degree d in d2 variables with coefficients in k. (By Theorem 1.2.6, after
extending the ground field from k to ks the algebra A ⊗k ks can be identified
with the matrix algebra Md(ks). Under this identification, the reduced norm
becomes the determinant.) If A = D is a skewfield such that D 6= k, then NrdD
has no non-trivial zero. (For all this, see [GS17, §2.6, §6.2].) Thus if k is a
C1-field, then D = k, so that Br(k) = 0. �

Theorem 1.2.11 If k is a finite field, then k is a C1-field and Br(k) = 0.

Proof. By Wedderburn’s Little Theorem every finite ring with no zero divisors
is a field. In particular, the only central division k-algebra is k itself. This
gives Br(k) = 0. The stronger statement that a finite field is a C1-field is the
Chevalley–Warning theorem [GS17, Thm. 6.2.6]). �

Theorem 1.2.12 (Tsen) Let k be a field of transcendence degree 1 over an
algebraically closed field. Then k is a C1-field and Br(k) = 0.

Proof. This is proved in [GS17, Thm. 6.2.8]. The proof is an extension of the
proof of Theorem 1.1.13. �
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For fields of transcendence degree 1 over a separably closed field, see Propo-
sition 3.8.2.

Recall that a local ring R with maximal ideal m and residue field k is
henselian if for every monic polynomial f(x) ∈ R[x] every simple root in k
of the reduction of f(x) modulo m lifts to a root of f(x) in R. Define the com-

pletion of R at m as R̂ = lim←−R/m
n. A local ring R is m-adically complete if the

canonical map R→R̂ is an isomorphism. Using Newton’s approximation one
proves that any complete local ring is henselian. (See [Stacks, Section 04GE].)

If m is finitely generated, then the completion R̂ of R at m is a complete local
ring with maximal ideal mR̂ and residue field k, see [Stacks, Section 00M9].

Theorem 1.2.13 Let R be a henselian discrete valuation ring with algebraically
closed residue field k. Let K be the fraction field of R.

(i) If R is excellent, for example, if char(K) = 0 or R is complete, then K
is a C1-field and Br(K) = 0.

(ii) In general, we have Br(K) = 0.

Proof. (i) See Lang’s thesis [Lan52], see also [Shatz, Thm. 27, p. 116]. The

excellence property, which is needed to ensure that K̂ is a separable extension
of K, is discussed in [BLR90, III, §6].

(ii) There are several other ways to establish Br(K) = 0 under the assump-
tion that R is complete [SerCL, Ch. XII, §1, §2]. As pointed out in [Mil80, Ch.
III, Example 2.22 (a)], these proofs also give Br(K) = 0 for R henselian with
algebraically closed residue field. �

See Proposition 1.4.3 for the case when the residue field is separably closed
but not algebraically closed.

Corollary 1.2.14 Let R be a complete discrete valuation ring with perfect
residue field k and field of fractions K of characteristic zero. Let Knr be the
maximal unramified extension of K. Then Knr is a C1-field.

Proof. The field Knr is the field of fractions of a henselian discrete valuation
ring with algebraically closed residue field. Since char(K) = 0, the result is a
special case of Theorem 1.2.13. �

Remark 1.2.15 Let K a henselian discretely valued field and let K̂ be the
completion of K. Then the natural map Br(K)→Br(K̂) is an isomorphism. For
a proof see Proposition 6.1.10.

1.3 The language of Galois cohomology

1.3.1 Group cohomology and Galois cohomology

We now assume that the reader is familiar with the cohomology theory of ab-
stract groups, which can be found in many places in the literature, for example
in [AW65], [SerCG], [SerCL], [GS17] and [Har17].
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Let G be a group and let M be a G-module. The group H0(G,M) := MG

is the set of G-invariant elements of M . Higher cohomology groups Hn(G,M),
n ≥ 1, are the right derived functors of the functor from the category of G-
modules to the category of abelian groups that sends M to MG. They can
be computed using the standard projective resolution P•→Z of the trivial G-
module Z, as the cohomology groups of the complex HomG(P•,M). This leads
to the definition in terms of homogeneous cocycles, which can be restated as a
definition in terms of inhomogeneous cocycles.

We refer to the books mentioned above for the following aspects of the
cohomology of groups:

• relation with the cohomology of subgroups: restriction, inflation, and core-
striction in the case of a subroup H ⊂ G of finite index, Shapiro’s lemma;

• long exact sequences coming from the Hochschild–Serre spectral sequence;

• cup-products and their properties with respect to boundary maps in exact
cohomology sequences;

• cohomology of cyclic groups.

Let G be a group that acts on a not necessarily commutative group A pre-
serving its group structure. We denote the result of applying σ ∈ G to a ∈ A
by σa. A 1-cocycle is a function a = {aσ} : G→A which satisfies the relation

aστ = σaτ · aσ

for all σ, τ ∈ G. The function G→A whose image is the identity element of A is
called the trivial cocycle. Let Z1(G,A) be the set of 1-cocycles. Two cocycles
{aσ} and {bσ} are called equivalent if there exists c ∈ A such that for any σ ∈ G
one has

aσ = σc · bσ · c−1.

The 1-cohomology set H1(G,A) is defined as the set of equivalence classes of
Z1(G,A) with respect to this relation. The class of the trivial cocycle is the
distinguished point of H1(G,A), so we can talk about H1(G,A) as a pointed set.

Now suppose that G is a profinite group and the action of G on A is continu-
ous when A is given the discrete topology. One defines the continuous cohomol-
ogy pointed set H1(G,A) as the direct limit of the pointed sets H1(G/U,AU ),
where U ⊂ G ranges over all open normal subgroups – any such subgroup being
of finite index in G. Alternatively, one defines H1(G,A) as the set of equiva-
lence classes of continuous cocycles G→A. Note that for an infinite group G
the continuous cohomology set need not coincide with the abstract cohomology
set. Unless otherwise mentioned, we shall only use continuous cohomology sets
in this book.

Given a short exact sequence of continuous discrete G-groups

1 −→ A −→ B −→ C −→ 1,
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where A is normal in B, there is a long exact sequence of pointed sets

1→AG→BG→CG→H1(G,A)→H1(G,B)→H1(G,C).

If A is central in B, it extends to an exact sequence of pointed sets

1→AG→BG→CG→H1(G,A)→H1(G,B)→H1(G,C)→H2(G,A).

An important particular case is when k is a field with separable closure ks

and absolute Galois group Γ = Gal(ks/k) acting on the group of ks-points of
an algebraic group A over k. The pointed set H1(Γ, A(ks)) does not depend on
the choice of ks; it is well defined up to canonical isomorphism [SerCG, Ch. II,
§1, 1.1] and is denoted by H1(k,A). The map K 7→ H1(K,A ×k K) defines a
functor from the category of field extensions of k to the category of pointed sets.

We shall mostly deal with the case of the projective linear group, so let us
recall its definition. The group PGLn(k) is defined by the exact sequence of
groups

1 −→ k∗ −→ GLn(k) −→ PGLn(k) −→ 1,

where the second map is the embedding of the central subgroup of scalar ma-
trices. The multiplicative group Gm,k represents the functor associating to a
commutative k-algebra R the group of invertible elements R∗. The algebraic
group GLn,k represents the functor GLn(R). (In particular, Gm,k = GL1,k.) Fi-
nally, the algebraic group PGLn,k is defined by the exact sequence of algebraic
k-groups

1 −→ Gm,k −→ GLn,k −→ PGLn,k −→ 1. (1.1)

If M is a continuous discrete G-module, then the continuous cohomology
group Hi(G,M) is defined for any i ≥ 0 as the direct limit of Hi(G/U,MU ) over
the set of open normal subgroups U ⊂ G.

If A is a commutative algebraic group over k and Γ = Gal(ks/k), the abelian
group Hi(Γ, A(ks)) is well defined for any integer i ≥ 0, up to canonical iso-
morphism [SerCG, Chap. II, §1, 1.1]; it is denoted by Hi(k,A). The map
K 7→ Hi(K,A ×k K) defines a functor from the category of field extensions K
of k to the category of abelian groups.

1.3.2 Galois descent

A general reference for Galois descent is [BLR90, Section 6.2, Example B], see
also [SerCL, Ch. X], [PR91, Section 2.2], [Sko01, Section 2], [GS17, Ch. 2.3],
[Ols16, Ch. 4] and [Po18, Ch. 4].

Let K/k be a finite Galois extension of fields with Galois group Gal(K/k).
The descent problem deals with the following question: when can a scheme
X ′ over K be descended to k, that is, is there a scheme X over k such that
X ′ ∼= X ×k K? Grothendieck explored the analogy with the classical case,
where a topological space or a differentiable manifold can be constructed by
glueing together open subsets via transition functions which satisfy a compat-
ibility condition on triple intersections. A ‘descent datum’ is an analogue of
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this for schemes. (Descent data can be defined more generally for any category
fibred over a category with finite fibred products, see [Ols16, Section 4.2] or
Section 2.6.2 below.) In [BLR90, pp. 140-141] it is shown that giving a ‘descent
datum’ on a K-scheme X ′ with respect to K/k is equivalent to giving an action
of Gal(K/k) on X ′ that is compatible with the action of Gal(K/k) on K by
automorphisms. This descent problem is ‘effective’ (that is, there is a scheme X
over k such that X ′ ∼= X ×k K) when X ′ is quasi-separated and the Gal(K/k)-
orbit of every point of X ′ is contained in a quasi-affine open subscheme of X ′. In
particular, Galois descent is effective for quasi-projective varieties over a field.

Let X be a variety over k. Let K/k be a Galois extension (not necessarily
finite) with Galois group Gal(K/k). A k-variety Y is called a (K/k)-form of X
if there is an isomorphism Y ×k K ∼= X ×k K of K-varieties. Using effectivity
of Galois descent one shows that if X is a quasi-projective variety over k, then
the (K/k)-forms of X are classified, up to isomorphism, by the elements of
the Galois cohomology set H1(Gal(K/k),Aut(X ×k K)) in such a way that the
isomorphism class of X corresponds to the distinguished point. See [Po18, §4.4,
§4.5] for a detailed proof of this classical result.

For example, the (ks/k)-forms of a projective space are called Severi–Brauer
varieties. It is not hard to see that Severi–Brauer varieties of dimension 1 are
precisely the plane projective conics. By a theorem of Châtelet, a Severi–Brauer
variety is isomorphic to Pn−1

k if and only if it has a k-point, see Section 6.1 for
this and other results on Severi–Brauer varieties. Note that the automorphism
functor of Pn−1

k is represented by the group k-scheme PGLn,k.

More generally, suppose that we have a quasi-projective variety X over k
endowed with an action of a group k-scheme A. By definition, each cohomology
class in H1(k,A) contains a 1-cocycle c : Γ = Gal(ks/k)→A(ks); it comes from
a 1-cocycle c : Gal(K/k)→A(K) for some finite Galois extension k ⊂ K. The
cocycle c defines a twisted action of Gal(K/k) on X×kK as the composition of
the action on X×kK via the second factor with the action of c(g) ∈ A(K). The
cocycle condition is equivalent to this being an action of Gal(K/k) on X ×k K
compatible with the action of Gal(K/k) on K by automorphisms. By effectivity
of Galois descent, there exists a quasi-projective variety Xc over k such that the
K-varieties X ×k K and Xc ×k K are isomorphic; this isomorphism identifies
the action of Gal(K/k) on Xc ×k K via the second factor with the twisted by
c action of Gal(K/k) on X ×k K. The variety Xc is called the twist of X by c.
By construction, it is a (ks/k)-form of X. Replacing c by an equivalent cocycle
gives rise to a variety non-canonically isomorphic to Xc. Particular cases of this
situation include (see [Sko01, pp. 12–13], [Po18, §4.5]):

(a) Twists of the vector space kn by a 1-cocycle with coefficients in A = GLn,k
are isomorphic to kn, cf. [Po18, §1.3].

(b) Twists of the matrix algebra Mn(k) by a 1-cocycle with coefficients in
A = PGLn,k are central simple algebras of degree n. Moreover, by [SerCL,
Ch. X, §5, Prop. 8], this gives a bijection between the isomorphism classes
of central simple algebras of degree n and the pointed set H1(k,PGLn,k).
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(c) Torsors of an algebraic k-group A are obtained by twisting A by a 1-
cocycle with coefficients in A acting on itself on the left. In this case A
represents the automorphism functor of A considered together with its
right action on itself, i.e. of A as a right A-torsor. Using effectivity of
Galois descent one shows that the isomorphism classes of right A-torsors
over k bijectively correspond to the elements of H1(k,A). (This is the
easy case of [BLR90, §6.5, Thm. 1], see also [Sko01, p. 13].) For example,
the affine conic x2 − ay2 = c is a torsor for the norm 1 torus given by
x2 − ay2 = 1. Also, a smooth projective curve of genus 1 is a torsor for
its Jacobian.

(d) Suppose that an algebraic k-group A acts on an algebraic k-group G by
automorphisms. Twisting G by a 1-cocycle Γ→A one obtains a (ks/k)-
form of G. For example, the group of invertible elements of a central
simple k-algebra of degree n is the group of k-points of a twist of GLn,k
by a 1-cocycle with values in A = PGLn,k. For any commutative algebraic
group one defines quadratic twists by taking A = {±1}, where −1 sends
x to x−1. For example, the quadratic twists of Gm,k are the norm tori
x2 − ay2 = 1, where a ∈ k∗. The quadratic twists of an elliptic curve
y2 = x3 + ax+ b are the elliptic curves cy2 = x3 + ax+ b, where c ∈ k∗.

Looking closer at the case of vector spaces one deduces the triviality of 1-
cocycles with coefficients in GLn,k.

Theorem 1.3.1 (Speiser) For any Galois extension of fields K/k with Galois
group G we have H1(G,GLn(K)) = {1}.

Proof. The automorphism functor of the n-dimensional vector space is repre-
sented by GLn. The twist of kn by a 1-cocycle c : G→GLn(K) is a vector space
over k of dimension n, so it is isomorphic to kn. This isomorphism, after tensor-
ing with K, gives a linear transformation ϕ ∈ GLn(K) such that c(g) = gϕ·ϕ−1.
Thus c represents the trivial class. See also [GS17, Example 2.3.4] and [Po18,
Prop. 1.3.15]. �

This theorem is often proved by a direct cocycle computation, see [SerCL,
Ch. X, Prop. 3].

Theorem 1.3.2 (Hilbert’s theorem 90) For any Galois extension of fields
K/k with Galois group G we have H1(G,K∗) = 0.

This is a particular case of Speiser’s theorem for n = 1. For later use let us
record a corollary of this theorem. Given field extensions k ⊂ K ⊂ L with L/k
and K/k Galois, there is a short exact sequence

0 −→ H2(Gal(K/k),K∗) −→ H2(Gal(L/k), L∗) −→ H2(Gal(L/K), L∗) (1.2)

where the first arrow is inflation and the second arrow is restriction.
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Applying Hilbert’s theorem 90 to (1.1) we see that for any field extension
K/k the group of K-points of PGLn,k is precisely PGLn(K). Proposition 1.2.2
shows that the natural map

PGLn(K) −→ AutK−alg(Mn(K))

is an isomorphism of groups, where K-alg stands for the category of K-algebras.
When K is a Galois extension of k, this isomorphism respects the Galois action
on both sides. This shows that the automorphism functor of the matrix algebra
Mn(k) (which is a functor from the category of field extensions of k to the
category of groups) is represented by the algebraic group PGLn,k.

Theorem 1.3.3 (Skolem–Noether) All automorphisms of a central simple
algebra over a field are inner automorphisms.

Proof. Let A be a central simple algebra over a field k. Pick a finite Galois
extension K/k that splits A. The homomorphism A∗→Autk−alg(A) sending an
element to the conjugation by this element extends to a similar map over K.
Let G = Gal(K/k). We then have the exact sequence of G-modules

1 −→ K∗ −→ (A⊗k K)∗ −→ AutK−alg(A⊗k K) −→ 1,

where surjectivity of the third map follows from Proposition 1.2.2. The long
exact cohomology sequence gives an exact sequence of pointed sets

1 −→ k∗ −→ A∗ −→ Autk−alg(A) −→ H1(G,K∗).

Since H1(G,K∗) = 0 by Hilbert’s theorem 90, the homomorphismA∗→Autk−alg(A)
is surjective. �

There is actually a more general result.

Theorem 1.3.4 (Skolem–Noether) Let k be a field, let B be a simple k-
algebra and let A be a central simple algebra over k. Then all non-zero k-
homomorphisms B→A are injective and can be obtained from one another by
conjugations in A.

Proof. See [Rei03, Thm. 7.21]. �

1.3.3 Cohomological description of the Brauer group

Let K/k be a finite Galois extension of fields with Galois group G. Recall that
a central simple algebra of degree n over k is split by K, i.e., is a (K/k)-form
of Mn(k), if and only if there exists an isomorphism of K-algebras A ⊗k K ∼=
Mn(K). Let us denote by Azn,K the set of isomorphism classes of central simple
algebras of degree n over k which are split by K. As discussed in the previous
section, we have a bijection of pointed sets

Azn,K−̃→H1(G,PGLn(K)).
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Since H1(G,GLn(K)) = {1} by Theorem 1.3.1, the exact sequence of pointed
cohomology sets attached to (1.1)

H1(G,GLn(K)) −→ H1(G,PGLn(K)) −→ H2(G,K∗),

gives rise to maps
Azn,K −→ H2(G,K∗)

with trivial kernel. One easily checks that for given n and r there is a commu-
tative diagram

1 → k∗ → GLn(k) → PGLn(k) → 1
|| ↓ ↓

1 → k∗ → GLnr(k) → PGLnr(k) → 1

where the middle vertical map sends a matrix M to the matrix with r diagonal
blocks equal to M and zero elsewhere. Replacing k by K and taking Galois
cohomology we obtain commutative diagrams

H1(G,PGLn(K)) → H2(G,K∗)
↓ ||

H1(G,PGLnr(K)) → H2(G,K∗)

The left vertical map can be identified with the map Azn,K→Aznr,K sending A
to A⊗kMr(k). Passing to the limit over n we obtain a map of pointed sets

Br(K/k) −→ H2(G,K∗)

with trivial kernel. Using Theorem 1.2.6 and passing to the limit over finite
Galois extensions K/k, we get a map of pointed sets

Br(k) −→ H2(k, k∗s )

with trivial kernel. One then establishes the following properties.

• These maps are homomorphisms of groups, hence they are injective. See
[GS17, Prop. 2.7.9].

• These maps are surjective. This is proved by a cocycle computation using
the classical construction of crossed products, see [SerCL, Ch. X, §5, Prop.
9]. An elegant cocycle-free proof is given in [GS17, Thm. 4.4.1].

We summarise this as the following theorem.

Theorem 1.3.5 For a field k and a Galois extension of fields K/k there are
natural isomorphisms of abelian groups

Br(K/k)−̃→H2(Gal(K/k),K∗)

and
Br(k)−̃→H2(k, k∗s ).
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The second isomorphism is functorial with respect to arbitrary field exten-
sions of k, see [SerCL, Ch. 10, §4].

The cohomological description of the Brauer group is very useful. For ex-
ample, it immediately gives

Corollary 1.3.6 For any field k the Brauer group Br(k) is a torsion group.

Proof. The group Br(k) is the direct limit of Br(K/k) = H2(Gal(K/k),K∗),
where K/k is a finite Galois extension. But if G is finite, then Hi(G,M), where
M is any G-module and i ≥ 1, is annihilated by the order of G. (This follows
from the fact that the composition of the restriction to a subgroup H ⊂ G
followed by the corestriction is the multiplication by the index [G : H]. One
applies this to the case when H is the identity element of G.) �

Theorem 1.3.7 Let k be a perfect field, char(k) = p > 0. Then Br(k){p} = 0.

Proof. Let ks be a separable closure of k. The map x 7→ xp is an isomorphism
of the Galois module k∗s . Thus multiplication by p is an automorphism of the
group Br(k) = H2(k, k∗s ). Since this is a torsion group, we are done. �.

Let k ⊂ K be an arbitrary field extension. The map

resK/k : Br(k)→Br(K)

defined by associating to a central simple k-algebra A the central simple K-
algebra A⊗k K coincides with the cohomological restriction map

H2(k, k∗s )→H2(K,K∗s ).

Let us spell out the formalism of corestriction in the special case of the Brauer
group and finite separable extensions of fields. For a more general context,
which includes not necessarily separable field extensions, see Section 3.8. Let
K ⊂ ks be a separable finite field extension of k. We have an isomorphism

Br(K) = H2(K, k∗s ) = H2(k, (ks ⊗k K)∗)

obtained using Shapiro’s lemma and the fact that (ks⊗kK)∗ is the direct product
of finitely many copies of k∗s indexed by the embeddings of K ↪→ ks, so the
Gal(ks/k)-module (ks ⊗k K)∗ is induced from the Gal(ks/K)-module k∗s . The
norm NK/k : K→k gives rise to a map of Galois modules (ks⊗kK)∗→k∗s , hence
to a homomorphism H2(k, (ks ⊗k K)∗)→H2(k, k∗s ). This defines a corestriction
map

coresK/k : Br(K) = H2(K, k∗s ) = H2(k, (ks ⊗k K)∗) −→ H2(k, k∗s ) = Br(k).

Since NK/k(x) = xn for x ∈ k, where n = [K : k], the composition

coresK/k ◦ resK/k : Br(k) −→ Br(K) −→ Br(k)

is the multiplication by the degree [K : k].
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1.3.4 Kummer sequence, cyclic algebras and cup-products

Let k be a field with separable closure ks and Galois group Γ = Gal(ks/k).
Assume that n is invertible in k. Then the map x 7→ xn on k∗s induces an

exact sequence of Galois modules

1 −→ µn −→ k∗s −→ k∗s −→ 1, (1.3)

called the Kummer sequence. Taking Galois cohomology, and using Hilbert’s
theorem 90, we obtain isomorphisms

k∗/k∗n−̃→H1(k, µn) and H2(k, µn)−̃→Br(k)[n].

The first of these isomorphisms associates to an element a ∈ k∗ the class of the
1-cocycle g 7→ g(b)b−1 ∈ µn(ks), where b ∈ k∗s is such that bn = a, and g ∈ Γ.
This is precisely the image of a ∈ k∗ under the connecting map δ : k∗→H1(k, µn)
in the long exact sequence of Galois cohomology attached to (1.3).

Let G be a cyclic group of order n. Fix a generator σ of G. Let χ ∈
Hom(G,Z/n) = H1(G,Z/n) be the homomorphism sending σ to 1 ∈ Z/n. The
exact sequence

0 −→ Z −→ Z −→ Z/n −→ 0

induced by multiplication by n on Z gives rise to an isomorphism

∂ : H1(G,Z/n)−̃→H2(G,Z)[n],

and so defines the class ∂(χ) ∈ H2(G,Z)[n]. For any G-module A the cup-
product with ∂(χ) ∈ H2(G,Z) defines an isomorphism

Hi(G,A)−̃→Hi+2(G,A)

for i ≥ 1. For i = 0 it induces an isomorphism

AG/NGA = Ĥ0(G,A)−̃→H2(G,A),

where NG ∈ Z[G] is the formal sum of all elements of G. The first equality here
is the definition of Tate’s cohomology group Ĥ0(G,A).

For a Galois field extension K/k with cyclic Galois group Gal(K/k) = Z/n
with generator σ, the previous considerations give an isomorphism

k∗/NK/k(K∗)−̃→H2(G,K∗) = Ker[Br(k)→Br(K)]. (1.4)

It is defined by the cup-product with ∂(χ) ∈ H2(G,Z), so it depends on the
choice of a generator σ ∈ G.

Recall that for a ∈ k∗ we denote by (χ, a) ∈ Br(k) the class of the cyclic
algebra Dk(χ, a), see Section 1.2.2. It is known [GS17, Prop. 4.7.3, Cor. 4.7.4]
that

(χ, a) = a ∪ ∂(χ) = ∂(χ) ∪ a = χ ∪ δ(a) ∈ Br(k). (1.5)

Here δ(a) ∈ k∗/k∗n = H1(k, µn) is the image of a under the connecting map
define by the Kummer sequence, and χ ∪ δ(a) ∈ H2(k, µn) ⊂ Br(k) is given
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by the cup-product H1(k,Z/n)×H1(k, µn)→H2(k, µn). From the isomorphism
(1.4) we deduce that (χ, a) = 0 in Br(k) if and only if a ∈ k∗ is a norm for the
extension K/k.

Now assume µn(ks) ⊂ k, so that µn is isomorphic to Z/n as a Γ-module.
Since H1(k, µn) = k∗/k∗n we see that every cyclic field extension of k of degree
n is of the form k( n

√
a) for some a ∈ k∗. The cup-product pairing

∪ : k∗/k∗n × k∗/k∗n = H1(k, µn)×H1(k, µn) −→ H2(k, µ⊗2
n ).

is anticommutative, that is, a∪ b = −b∪ a. Choose an isomorphism µn−̃→Z/n,
which is equivalent to choosing a primitive root of unity ω ∈ k (sent to 1 ∈ Z/n).
This induces an isomorphism µ⊗2

n −̃→µn, hence an isomorphism

H2(k, µ⊗2
n ) = H2(k, µn)⊗ µn−̃→H2(k, µn) = Br(k)[n].

The inverse map sends a class α ∈ H2(k, µn) to α⊗ ω. For a, b ∈ k∗ we denote
the image of (a, b) under the composite map

k∗ × k∗ −→ k∗/k∗n × k∗/k∗n −→ H2(k, µ⊗2
n ) −→ H2(k, µn) = Br(k)[n]

by (a, b)ω. Under the isomorphism H2(k, µ⊗2
n ) = H2(k, µn)⊗ µn the class a ∪ b

corresponds to (a, b)ω ⊗ ω.
The class of (a, b)ω is the class of the algebra defined in Section 1.2.2, see

[GS17, Prop. 4.7.1]. The equality (a, b)ω = −(b, a)ω follows from the equality
a ∪ b = −b ∪ a.

For any integer n > 1, by treating separately odd and even integers one
checks that both −a and 1 − a are norms for the extension k[t]/(tn − a) of k.
Thus a ∪ (−a) = 0 and a ∪ (1− a) = 0.

When n = 2 is invertible in k we recover the case of quaternion algebras.
The bilinearity of the cup-product then gives various properties that we proved
in a more explicit way in Section 1.1.

1.4 Galois cohomology of discretely valued fields

Let R be a discrete valuation ring with field of fractions K and residue field
k. Let ` be a prime number invertible in R. The literature contains various
constructions of residue maps

∂R : Br(K){`} −→ H1(k,Q`/Z`).

When k is perfect of characteristic p > 0, there are constructions of a residue
map

∂R : Br(K) −→ H1(k,Q/Z)

which also take care of the p-primary subgroup of Br(K).
One approach that we do not pursue here is via the Merkurjev–Suslin the-

orem, which gives an isomorphism K2(F )/n ∼= H2(F, µ⊗2
n ) valid for any field



1.4. GALOIS COHOMOLOGY OF DISCRETELY VALUED FIELDS 33

F and any integer n invertible in F (see, e.g., [GS17, Ch. 8]). When, more-
over, µn ⊂ F , we obtain an isomorphism K2(F )/n−̃→Br(F )[n], which depends
on the choice of a primitive n-th root of unity in F . Thus if µn ⊂ K and
(char(K), n) = 1 we can combine the Merkurjev–Suslin isomorphism with the
tame symbol K2(K)/n→k∗/k∗n to obtain a composite map

Br(K)[n] ∼= K2(K)/n
tame−→ k∗/k∗n

without assuming that k is perfect or has characteristic coprime to n.
The classical case is that of local fields, i.e. complete discretely valued fields

K with finite (hence perfect) residue field k. Then K is either a finite extension
of the p-adic field Qp or the field of formal power series in one variable over
a finite field. In these cases the local class field theory gives an isomorphism
Br(K)−̃→Q/Z, often called the local invariant. Its construction goes back to the
1930s and is due to Hasse and Witt [Wit37], and so predates Galois cohomology.
This approach uses Brauer classes of central simple algebras over local fields and
maximal orders in such algebras; the key fact is that a central division ring over
K contains a maximal subfield which is unramified over K, see [SerCL, Ch. XII,
§2] and [Rei03, Ch. 8]. We do not discuss this here but concentrate instead on
the cohomological constructions with finite and infinite coefficients.

1.4.1 Residue with finite coefficients

For this construction we assume that n is coprime to char(k). The goal is to
define a residue map

H2(K,µn) −→ H1(k,Z/n),

which can then be composed with the inverse of the isomorphism

H2(K,µn)−̃→Br(K)[n]

provided by the Kummer sequence (1.3). Our exposition in this section is based
on Chapters II and III of [Ser03] and Chapters 6 and 7 of [GS17].

Theorem 1.4.1 Let G be a profinite group and let N be a closed normal sub-
group of G. Let C be a discrete G-module.

(i) Suppose that Hn(N,C) = 0 for n > 1. Then there is a long exact sequence

. . .→Hi(Γ, CN )→Hi(G,C)→Hi−1(Γ,H1(N,C))→Hi+1(Γ, CN )→ . . . (1.6)

(ii) Define Γ = G/N . In addition to the assumptions of (i) assume that N
acts trivially on C, so that C can be considered as a Γ-module. If, moreover,
the exact sequence

1 −→ N −→ G −→ Γ −→ 1 (1.7)

is split, then for each i ≥ 1 there is a split exact sequence

0 −→ Hi(Γ, C) −→ Hi(G,C) −→ Hi−1(Γ,Hom(N,C)) −→ 0. (1.8)
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Here Hom(N,C) denotes the group of continuous homomorphisms N→C,
i.e. homomorphisms with finite image and open kernel.

Proof. (i) There is the Hochschild–Serre spectral sequence

Hp(Γ,Hq(N,C))⇒ Hp+q(G,C).

The assumption of (i) implies that this spectral sequence gives rises to the exact
sequence (1.6).

(ii) We have CN = C. Let σ : Γ→G be a homomorphism such that the
composition Γ→G→Γ is the identity map. The composition of the inflation
map Hi(Γ, C)→Hi(G,C) from (1.6) with the restriction σ∗ : Hi(G,C)→Hi(Γ, C)
is the identity. This implies the injectivity of Hi(Γ, C)→Hi(G,C) for i ≥ 0.
Thus we obtain the exact sequences (1.8). The same argument gives that these
sequences are split. �

Let R be a henselian discrete valuation ring with field of fractions K and
residue field k. We have a chain of field extensions

K ⊂ Knr ⊂ Kt ⊂ Ks,

where Ks is a separable closure of K, Knr ⊂ Ks is the maximal unramified
extension of K, and Kt ⊂ Ks is the maximal tamely ramified extension of K.
Let G = Gal(Ks/K) and Γ = Gal(Knr/K) = Gal(ks/k). Let I = Gal(Ks/Knr)
be the inertia group and let N = Gal(Kt/Knr) be the tame inertia group. By
Hensel’s lemma, the field Knr contains all n-th roots of 1, for n prime to the
characteristic of k.

The field Kt is obtained from Knr by adjoining the n-th roots of a fixed
uniformiser π ∈ Knr, for all n coprime to char(k). Indeed, let L be a finite tame
extension of Knr and let e = [L : Knr] be its degree, which is prime to char(k).
Let π1 ∈ L be a uniformiser. We have π = uπe1, where u is a unit in L. By
Hensel’s lemma, any unit in L is an e-th power. Thus we can choose π1 such
that π = πe1. By Eisenstein’s criterion, L = Knr(π

1/e).
Hence N = lim←−µn, where (char(k), n) = 1. In other words, the profinite

group N is isomorphic to Ẑ if char(k) = 0, and is isomorphic to the quotient of

Ẑ by its maximal pro-p-subgroup if char(k) = p > 0. It follows that cd(N) ≤ 1,
that is, for any discrete torsion Galois module C we have Hi(N,C) = 0 for
any i ≥ 2. The wild inertia subgroup Gal(Ks/Kt) is trivial if char(k) = 0,
otherwise it is a pro-p-group. Thus for any continuous discrete torsion G-module
C annihilated by an integer coprime to char(k), one has Hi(Gal(Ks/Kt), C) = 0
for i > 0. The Hochschild–Serre spectral sequence then gives that Hi(I, C) = 0
for all i ≥ 2.

For each n > 1 coprime to p choose an n-th root πn of π in Ks in such a
way that (πmn)m = πn for all m,n. Let K ′ be the extension of K generated by
all the roots πn. It is clear that Knr and K ′ are linearly disjoint over K, and
Kt = KnrK

′. This implies that the exact sequence

0 −→ N −→ G/Gal(Ks/Kt) −→ Γ −→ 1
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is split. Since the p-cohomological dimension of Γ is at most 1 [SerCG, Ch. 2,
§2, Prop. 3], every homomorphism Γ→G/Gal(Ks/Kt) lifts to a homomorphism
Γ→G, see [SerCG, Ch. 1, §3, Prop. 16]. Hence the following exact sequence is
also split:

1 −→ I −→ G −→ Γ −→ 1.

Now Theorem 1.4.1 gives rise to split exact sequences for all i ≥ 1

0 −→ Hi(k,C) −→ Hi(K,C)
r−→ Hi−1(k,C(−1)) −→ 0. (1.9)

Definition 1.4.2 Let C be a Γ-module of exponent coprime to char(k), where
Γ = Gal(Knr/K) = Gal(ks/k). For i ≥ 1 the map

r : Hi(K,C) −→ Hi−1(k,C(−1))

is called the residue map. An element x ∈ Hi(K,C) is called unramified if
r(x) = 0.

We have a cup-product pairing of Galois cohomology groups of K

∪ : H1(K,µn)×Hi−1(K,C(−1)) −→ Hi(K,C). (1.10)

The exact sequence (1.9) allows one to identify Hj−1(k,C(−1)) with a subgroup
of Hj−1(K,C(−1)). This gives rise to the pairing

∪ : H1(K,µn)×Hi−1(k,C(−1)) −→ Hi(K,C). (1.11)

The pairing (1.10) is functorial in K, so (1.11) is too (see [Ser03, Prop. 8.2]).

Examples Let C = µn, where (n, char(k)) = 1.

(1) For i = 1 and one obtains a split exact sequence

0 −→ k∗/k∗n −→ K∗/K∗n
r−→ Z/n −→ 0. (1.12)

The residue map in this sequence is induced by the valuation v : K∗→Z. Indeed,
the following diagram commutes:

K∗/K∗n
r−→ Z/n

↑ ↑
K∗

v−→ Z

To see this we check that (π)n ∈ K∗/K∗n is sent by r to

1 ∈ Z/n = Hom(µn, µn) = Hom(N,µn) = Hom(I, µn).

By definition, r sends the class of the K-torsor with the equation xn = π to the
class of the same torsor over Knr. The smallest extension of Knr over which the
points of this torsor are defined, is Knr( n

√
π). Thus the inertia group I acts on

the points on this torsor through its tame quotient N , more precisely, through
Gal(Knr( n

√
π)/Knr) = µn. This is exactly the isomorphism used in the above
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description of N as the inverse limit of µn, for n coprime to char(k), so the
action on the points of our torsor corresponds to 1 ∈ Z/n.

(2) For i = 2 one obtains a split exact sequence

0 −→ H2(k, µn) −→ H2(K,µn)
r−→ H1(k,Z/n) −→ 0, (1.13)

which, in view of the Kummer exact sequence (1.3), can be rewritten as follows:

0 −→ Br(k)[n] −→ Br(K)[n] −→ H1(k,Z/n) −→ 0. (1.14)

Proposition 1.4.3 Let R be a henselian discrete valuation ring with fraction
field K and residue field k. Let Γ be the absolute Galois group of K. Let p be
the characteristic exponent of k. If R is strictly henselian, i.e., if k is separably
closed, then we have the following statements.

(i) For any prime ` 6= p, any `-primary torsion Γ-module C and any integer
i ≥ 2, we have Hi(K,C) = 0. In other words, cd`(K) ≤ 1.

(ii) For any i ≥ 1 the group Hi(K,Gm) is a p-primary torsion group (so the
group is trivial when p = 1).

(iii) The Brauer group Br(K) is a p-primary torsion group.
(iv) If k is algebraically closed, then cd(K) ≤ 1 and Hi(K,Gm) = 0 for all

i ≥ 1.

Proof. Part (i) is an immediate consequence of the exact sequence (1.9). State-
ment (ii) then follows from the Kummer sequence (1.3) and statement (iii) is
just the special case i = 2.

We owe the following proof of (iv) to L. Moret-Bailly. Quite generally, if R is
a discrete valuation ring with field of fractions K and L/K is an arbitrary finite
field extension, the integral closure S ⊂ L (which need not be finite over R if
R is not excellent) is a semilocal Dedekind domain, and for each maximal ideal
q of S, the quotient S/q if finite over R/(q ∩ R). This is a special case of the
Krull–Akizuki Theorem [BouAC, Ch. 7, §2, no. 5]. If, moreover, R is henselian,
then since S is integral over R and has no zero-divisors, a limit argument shows
that it is a henselian local ring [Ray70b, Chap. I, §2, Prop. 2 p. 7]. In the
case considered in (iv), the residue fields of R and hence of S are algebraically
closed. By Theorem 1.2.13 we thus have Br(L) = 0 for any finite field extension
L/K. By [SerCG, Chap. II, §3.1, Prop. 5], this implies cd(K) ≤ 1, which in
turn implies Hi(K,Gm) = 0 for all i ≥ 1. �

Remark 1.4.4 Let R be a complete discrete valuation ring with fraction field
K of characteristic 0 and residue field k of characteristic p > 0. Assume that K
contains the p-th roots of 1. When k is not perfect, Kato [Kat86] has constructed
a filtration on Br(K)[p] whose smallest term is H1(k,Z/p) ⊂ Br(K)[p] but whose
successive quotients involve the groups of absolute differentials Ωik/Z of k, i.e.

the groups of differentials Ωik/kp . See also [CT99a] and [GO08].

Proposition 1.4.5 Let R be a henselian discrete valuation ring with field of
fractions K and residue field k. Let C be a Γ-module of exponent n invertible
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in R. Let π be a uniformiser of R and let (π)n be the image of π under the
map K∗→H1(K,µn) given by the Kummer sequence (1.3). Any α ∈ Hi(K,C)
is uniquely written as

α = α0 + (π)n ∪ α1,

where α0 ∈ Hi(k,C) and α1 ∈ Hi−1(k,C(−1)). Moreover, α1 = r(α).

Proof. See [Ser03, Ch. II, Prop. 7.11, p. 18]. �

Using this, one proves the following general formula [Ser03, II.6.5, Exercise
7.12]. Let A,B,C be n-torsion Γ-modules such that there is a Γ-equivariant
pairing A×B→C. It induces the pairing

∪ : Hp(K,A)×Hq(K,B) −→ Hp+q(K,C).

For α ∈ Hp(K,A) and β ∈ Hq(K,B), one has

r(α∪ β) = r(α)∪ β+ (−1)pα∪ r(β) + r(α)∪ r(β)∪ (−1)n ∈ Hp+q−1(k,C(−1)),

where (−1)n ∈ H1(k, µn) denotes the class of −1 ∈ k∗/k∗n = H1(k, µn).

Here are some applications of this formula.

• The cup-product followed by the residue

H1(K,µn)×H1(K,µn)
∪−→ H2(K,µ⊗2

n )
r−→ H1(k, µn)

gives rise to the skew-symmetric pairing

K∗/K∗n ×K∗/K∗n −→ k∗/k∗n. (1.15)

The above formula for the residue of the cup-product shows that the value
of this pairing on the classes of a, b ∈ K∗ is the image in k∗/k∗n of the
following element of A∗:

(−1)v(a)v(b)bv(a)/av(b) ∈ A∗. (1.16)

• If we consider

H1(K,Z/n)×H1(K,µn)
∪−→ H2(K,µn)

r−→ H1(k,Z/n),

then for any χ ∈ H1(k,Z/n) ⊂ H1(K,Z/n) and any b ∈ K∗ we obtain

r(χ ∪ b) = −v(b)χ ∈ H1(k,Z/n).

• However if we consider

H1(K,µn)×H1(K,Z/n)
∪−→ H2(K,µn)

r−→ H1(k,Z/n),

then for any χ ∈ H1(k,Z/n) ⊂ H1(K,Z/n) and any b ∈ K∗ we obtain

r(b ∪ χ) = v(b)χ ∈ H1(k,Z/n).

This implies that the map s : H1(k,Z/n)→H2(K,µn) given by

s(χ) = (π)n ∪ χ, (1.17)

where (π)n is the image of π in K∗/K∗n, is a section of the residue r.
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1.4.2 Extensions of rings

Let R be a discrete valuation ring with field of fractions K and residue field k.
Let L be a finite separable extension of K. Then the integral closure B of R
in L is a semi-local Dedekind domain which is a finitely generated R-module
[SerCL, Ch. I, §4, Prop. 8]. Let mi, for i = 1, . . . , n, be the maximal ideals of
B. Let ki = B/mi be the residue field at mi. Let ei be the ramification index
of mi over K.

Proposition 1.4.6 Let ` be a prime invertible in R. Then one has commutative
diagrams

Br(L){`} r // H1(ki,Q`/Z`)

Br(K){`} r //

resK/L

OO

H1(k,Q`/Z`)

eiresk/ki

OO
Br(L){`} r //

coresK/L

��

⊕n
i=1 H1(ki,Q`/Z`)∑

coresk/ki

��
Br(K){`} r // H1(k,Q`/Z`)

Proof. We give a sketch of the proof and refer to [Ser03, §8] for details.

Let R̂ be the completion of R and let K̂ be the completion of K. Let
B̂i be the completion of B with respect to the discrete valuation defined by mi.
Similarly, let L̂i be the completion of L at mi. Clearly, K̂ is the field of fractions
of R̂ and L̂i is the field of fractions of B̂i. By [SerCL, Ch. II, §3] we have

L⊗K K̂−̃→
n∏
i=1

L̂i, B ⊗R R̂−̃→
n∏
i=1

B̂i.

It is enough to prove the proposition in the case when R is complete. For the
first diagram, using Proposition 1.4.5, it suffices to check commutativity for
(πR) ∪ χ ∈ Br(K){`}, where χ ∈ H1(k,Q`/Z`) and πR is a uniformiser of R.
This follows from the functoriality of the pairing with respect to extensions of
the field K.

For the second diagram, one can reduce to the following two cases: L/K
unramified, i.e. e(L/K) = 1 and the residue field extension kL/k is separable,
and L/K with kL/k purely inseparable. In the first case, one considers (πR)∪χ,
where χ ∈ H1(kL,Q`/Z`). In the second case it is enough to consider the
elements of Br(L){`} of the form (πB)∪χ, where χ ∈ H1(k,Q`/Z`). The result
follows from the standard “projection formulae”. �

Proposition 1.4.7 Let K ⊂ L be an unramified extension of henselian dis-
cretely valued fields with residue fields k ⊂ kL. Let α ∈ Br(K){`}, where
` is invertible in k. Suppose that resL/K(α) ∈ Br(L) is unramified, so that
resL/K(α) is the image of an element β ∈ Br(kL) under the injective map
Br(kL){`}→Br(L){`} from the exact sequence (1.14). Then β is contained in
the image of the restriction map reskL/k : Br(k)→Br(kL).

Proof. Take any n such that `nα = 0. By Proposition 1.4.5, α is uniquely
written as

α = α0 + (π)`n ∪ α1,
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where π ∈ K is a uniformiser, (π)`n ∈ H1(K,µ`n) is the image of π ∈ K∗

under the boundary map of the Kummer sequence, α0 ∈ Br(k)[`n] and α1 ∈
H1(k,Z/`n). Moreover, α1 = rK(α) is the residue of α. By the compatibility of
pairings for K and L, the image of (π)`n ∪ α1 in Br(L) is (π)`n ∪ reskL/k(α1),
where π is understood as an element of L.

Since resL/K(α0) and resL/K(α) are unramified, (π)`n ∪ reskL/k(α1) is also
unramified. As L is unramified over K, the uniformiser π ∈ K is also a uni-
formiser of L. Therefore, the residue map rB : Br(L)[`n]→H1(kL,Z/`n) sends
(π)`n ∪ reskL/k(α1) to reskL/k(α1) ∈ H1(kL,Z/`n), so this last element is zero.
Hence (π)`n ∪ α1 goes to zero in Br(L), so that resL/K(α) is the image of
reskL/k(α0). �

Corollary 1.4.8 Let R ⊂ B be an unramified extension of (not necessarily
henselian) discrete valuation rings with fraction fields K ⊂ L and residue fields
κ ⊂ λ. Let α ∈ Br(K){`}, where ` is a prime invertible in R. Suppose that
the image of α in Br(L) is unramified, so it is the image of a (well defined)
element β ∈ Br(B). Then the image of β under the natural map Br(B)→Br(λ)
is contained in the image of the restriction map Br(κ)→Br(λ).

Proof. The statement only concerns the value of β at the closed point Spec(λ)
of Spec(B), so we can assume without loss of generality that R and B are
henselian. In this case the statement follows from Proposition 1.4.7. �

1.4.3 Witt residue

Let R be a henselian discrete valuation ring with fraction field K and perfect
residue field k. As above, we have inclusions of discretely valued fields

K ⊂ Knr ⊂ Kt ⊂ Ks.

The residue field of any of the fields Knr, Kt, Ks is the algebraic closure of k.
We have Γ = Gal(Knr/K) = Gal(ks/k).

By Theorem 1.2.13 we have Br(Knr) = 0. By Hilbert’s theorem 90 the
Hochschild–Serre spectral sequence

Hp(Γ,Hq(Knr,K
∗
s ))⇒ Hp+q(K,K∗s ) (1.18)

gives an isomorphism H2(Γ,K∗nr)−̃→Br(K). Composing it with the Galois
equivariant map v : K∗nr→Z given by the valuation we obtain

Br(K)←̃−H2(Γ,K∗nr)
v∗−→ H2(Γ,Z)←̃−H1(Γ,Q/Z) = Homcont(Γ,Q/Z),

where the isomorphism H1(Γ,Q/Z)−̃→H2(Γ,Z) comes from Galois cohomology
of the exact sequence

0 −→ Z −→ Q −→ Q/Z −→ 0. (1.19)
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Definition 1.4.9 The resulting map

rW : Br(K) −→ H1(k,Q/Z)

is called the Witt residue.

We note that the choice of a uniformiser defines a section of the homomor-
phism v : K∗nr→Z, and hence of rW . In particular, the Witt residue map rW
is surjective (for the kernel of the Witt residue, see Theorem 3.6.2). This sec-
tion can be described in terms of the cup-product. Since Γ is a quotient of
Gal(Ks/K), we can view a continuous character χ : Γ→Q/Z as a character of
Gal(Ks/K). Applying the differential in the long exact sequence attached to
the exact sequence of Gal(Ks/K)-modules (1.19) we obtain δ(χ) ∈ H2(K,Z).
For any b ∈ K∗ the cup-product δ(χ) ∪ b under the pairing

H2(K,Z)×H0(K,K∗s ) −→ Br(K) (1.20)

is an element of Br(K), see also [SerCL, Ch. XIV, §1]. (In Section 1.3.4 this
element was denoted by (χ, b).) Thus, if π ∈ R is a uniformiser, then the map

sW (χ) = δ(χ) ∪ π (1.21)

is a section of rW .

1.4.4 Compatibility of residues

Theorem 1.4.10 Let R be a henselian discrete valuation ring with fraction
field K and perfect residue field k. Let n be an integer invertible in R. The
composite map

H2(K,µn)−̃→Br(K)[n]
rW−→ H1(k,Z/n),

where the first map comes from the Kummer sequence (1.3), coincides with the
opposite of the residue r : H2(K,µn)→H1(k,Z/n).

Proof. This was proved by Serre’s in his 1991–1992 course at Collège de France,
cf. the appendix to the thesis of E. Frossard [Fro95, Lemme A.3.2]. See also
[GS17, Prop. 6.8.9].

The idea is to use explicit splittings of the residue maps r and rW given by
their respective sections s and sW , see (1.17) and (1.21). Let χ ∈ H1(k,Z/n) =
Hom(Γ,Z/n). We need to show that the Brauer class given by s(χ) = (π)n ∪ χ
is the opposite of sW (χ) = δ(χ) ∪ π. The proof of this property works more
generally for any field K of characteristic coprime to n. Let G = Gal(Ks/K).
We shall show that for any character χ ∈ Hom(G,Z/n) and any a ∈ K∗ the
image of (a)n ∪ χ ∈ H2(G,µn) in H2(G,K∗s ) equals −δ(χ) ∪ a.

We shall use the following well known properties, see [HS70, Ch. IV, §9] or
[BouX, §7.6, Prop. 5]. Suppose we are given an exact sequence of G-modules

0 −→ A −→ B −→ C −→ 0,
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a G-module M , and a positive integer m.

(a) The differential ExtmG (M,C)→Extm+1
G (M,A) in the second argument can

be identified with the class of the splicing of an m-fold extension of M by C
with the given short exact sequence.

(b) The differential ExtmG (A,M)→Extm+1
G (C,M) in the first argument can

be identified with the class of the splicing of an m-fold extension of A by M
with the given short exact sequence, multiplied by (−1)m+1.

We have a canonical isomorphism of functors ExtnG(Z, ·) = Hn(K, ·). Thus
χ ∈ Hom(G,Z/n) = H1(K,Z/n) = Ext1

G(Z,Z/n) gives rise to an extension of
Z by Z/n. This gives us the first short exact sequence in

0→Z/n→Eχ→Z→0, 0→Z→Z→Z/n→0; (1.22)

the second short exact sequence is obtained from the multiplication by n map
[n] : Z→Z. We denote it by Mn, and write [Mn] for the class of Mn in
Ext1

G(Z/n,Z). Given a ∈ K∗, we let fa : Z→K∗s be the map of G-modules
sending 1 to a.

We write Mn∪Eχ for the 2-fold extension of Z by Z obtained by splicing the
short exact sequences in (1.22). We write fa∗Mn for the extension of Z/n by K∗s
which is the push-forward of Mn via fa. Similarly, fa∗(Mn∪Eχ) = fa∗Mn∪Eχ
is the push-forward of Mn ∪ Eχ by fa. We use square brackets to denote the
classes of these extensions in the relevant Ext-groups.

The first two rows in the following diagram of pairings are Yoneda pairings,
which are defined by splicing exact sequences:

Ext1
G(Z/n,Z) × Ext1

G(Z,Z/n) −→ Ext2
G(Z,Z) = H2(G,Z)

↓ || ↓ ↓
Ext1

G(Z/n,K∗s ) × Ext1
G(Z,Z/n) −→ Ext2

G(Z,K∗s ) = H2(G,K∗s )
ε ↑' || ↑

H1(G,µn) × H1(G,Z/n)
∪−→ H2(G,µn)

The upper vertical maps denoted by arrows are given by the push-forward via
fa : Z→K∗s . It is thus clear that the upper part of this diagram commutes.
The map ε is the edge map H1(G,Hom(Z/n,K∗s ))→Ext1

G(Z/n,K∗s ) from the
spectral sequence

Hp(G,Extq(Z/n,K∗s ))⇒ Extp+qG (Z/n,K∗s ).

In the category of abelian groups we have Extq(Z/n,K∗s ) = 0 for q ≥ 1 since K∗s
is divisible by n, hence ε is an isomorphism. The pairing in the bottom row is the
cup-product pairing, which is defined via the tensor product µn ⊗Z Z/n−̃→µn.
The commutativity of the lower part of the diagram, i.e., the equality of the
‘internal product’ to the ‘Yoneda-edge-product’, is proved in [GH70, Prop. 4.5].

The upper pairing of the diagram applied to [Mn] ∈ Ext1
G(Z/n,Z) and

[Eχ] ∈ Ext1
G(Z,Z/n) gives [Mn ∪ Eχ] ∈ Ext2

G(Z,Z), see [BouX, §7.4, Prop.
3]. By property (a) above this equals the differential of [Eχ] in the long exact
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sequence of ExtnG(Z, ·)’s in the second argument. This sequence is the same as
the long exact sequence of Hn(G, ·), so we conclude that [Mn ∪ Eχ] = δ(χ). It
follows that the middle pairing of the diagram sends [fa∗Mn] and [Eχ] to

[fa∗Mn ∪ Eχ] = fa∗(δ(χ)) = δ(χ) ∪ a = a ∪ δ(χ).

The bottom pairing sends (a)n and χ to (a)n ∪ χ. By definition χ goes to [Eχ],
so to prove that δ(χ) ∪ a is the image of −(a)n ∪ χ it remains to show that the
edge map ε sends (a)n to −[fa∗Mn].

To check this consider the following diagram:

HomG(Z,K∗s ) −→ Ext1
G(Z/n,K∗s )

|| ε ↑'
H0(G,Hom(Z,K∗s )) −→ H1(G,Hom(Z/n,K∗s ))

Here the upper horizontal arrow is the differential in the long exact sequence
of Ext’s in the first argument associated to the exact sequence Mn. The lower
horizontal arrow is the differential in the long exact sequence of cohomology
attached to the Kummer exact sequence (1.3). The commutativity of the last
diagram is proved by a standard derived category argument based on the rep-
resentation of the left derived functor RHomG(·,K∗s ) from the bounded derived
category of continuous discrete G-modules to abelian groups as the composition
of the derived functors of Hom(·,K∗s ) and M 7→ MG. By property (b) above
applied to m = 0 the upper arrow sends a to −[fa∗Mn]. We conclude that
ε((a)n) = −[fa∗Mn]. �

1.5 The Faddeev exact sequences

Let k be a perfect field with algebraic closure ks = k̄ and Galois group Γ =
Γk = Gal(k̄/k). To a monic irreducible polynomial P (t) ∈ k[t] we attach a free
Z-module ZP generated by the roots of P (t) in k̄ with a natural action of Γ
permuting these generators. It is clear that the Γ-module ZP is induced from
the trivial Gal(k̄/k(P ))-module Z, where k(P ) = k[t]/(P (t)). In particular, by
Shapiro’s lemma, we have Hn(Γk,ZP ) = Hn(Γk(P ),Z) for all n ≥ 0. For n = 2
we obtain a canonical isomorphism

H2(Γk,ZP ) = Hom(Γk(P ),Q/Z).

The valuations attached to the roots of P (t) give rise to a map of Γ-modules

k̄(t)∗ −→ ZP ,

which has a section sending the generator of ZP corresponding to a root ε ∈ k̄
to t−ε. Using this notation we rewrite the natural exact sequence of Γ-modules

0 −→ k̄∗ −→ k̄(t)∗ −→ Div(A1
k̄) −→ 0 (1.23)
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as a split exact sequence of Γ-modules

0 −→ k̄∗ −→ k̄(t)∗ −→
⊕
P (t)

ZP −→ 0, (1.24)

where the sum is over all monic irreducible polynomials P (t) ∈ k[t].

Proposition 1.5.1 (D.K. Faddeev) Let k be a perfect field. There is a split
exact sequence

0 −→ Br(k) −→ Br(k(t)) −→
⊕
P (t)

Hom(Γk(P ),Q/Z) −→ 0, (1.25)

where the direct sum is over all monic irreducible polynomials P (t) ∈ k[t]. The
second arrow is given by the inclusion of fields k ⊂ k(t). For each P (t), the
map Br(k(t))→Hom(Γk(P ),Q/Z) factors through the Witt residue attached to
the valuation given by P (t).

Proof. Applying H2(Γk, ·) to (1.24) we obtain (1.25), once we identify the middle
term with Br(k(t)). The natural isomorphism Γk = Gal(k̄(t)/k(t)) gives rise to
the inflation map

inf : H2(Γk, k̄(t)∗) −→ H2(Gal(k(t)/k(t)), k(t)
∗
) = Br(k(t)).

It is enough to prove that this map is an isomorphism. Indeed, inf fits into the
Hochschild–Serre spectral sequence

Hp(Γk,H
q(Gal(k(t)/k̄(t), k(t)

∗
))⇒ Hp+q(Gal(k(t)/k(t)), k(t)

∗
).

We have H1(Gal(k(t)/k̄(t)), k(t)
∗
) = 0 (Theorem 1.3.2, Hilbert’s theorem 90)

and H2(Gal(k(t)/k̄(t)), k(t)
∗
) = Br(k̄(t)) = 0 (Theorem 1.2.12, Tsen’s theorem).

The spectral sequence now implies that inf is an isomorphism.
It remains to check the compatibility with the Witt residue. Let k[t]P be

the localisation of k[t] at the principal ideal (P (t)), let k[t]hP be the henselisation
of k[t]P . It is a henselian discrete valuation ring with residue field k(P ). The
integral closure of k in k[t]hP is a field of representatives for k(P ) inside k[t]hP ,
that is, the reduction map induces an isomorphism between this field and the
residue field k(P ). Henceforth we denote this field by k(P ).

Let K ⊂ k(t) be the fraction field of k[t]hP . Let Knr be the maximal unram-
ified extension of K. We note that Knr = K ⊗k(P ) k̄ and Gal(Knr/K) = Γk(P ).
The map Br(k(t))→Hom(Γk(P ),Q/Z) comes from H2(Γk, k̄(t)∗)→H2(Γk,ZP )
which factors as

H2(Γk, k̄(t)∗) −→ H2(Γk, (K ⊗k k̄)∗) −→ H2(Γk,ZP ).

Since H2(Γk, (K⊗kk̄)∗) = H2(Γk(P ), (K⊗k(P )k̄)∗) = H2(Γk(P ),K
∗
nr) by Shapiro’s

lemma, our map can also be written as

H2(Γk, k̄(t)∗) −→ H2(Γk(P ),K
∗
nr) −→ H2(Γk(P ),Z).

Here the second map is given by the valuation, so, by definition, it is the Witt
residue. �
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Theorem 1.5.2 Let k be a perfect field. There is a split exact sequence

0→Br(k)→Br(k(t))→
⊕

x∈(P1
k)(1)

H1(k(x),Q/Z)→H1(k,Q/Z)→0, (1.26)

where the direct sum is over all closed points of P1
k. The third map is compatible

with the Witt residues. The fourth map is the sum of corestrictions coresk(x)/k

over all closed points of P1
k, including the point at infinity.

Proof. Instead of (1.23) we now consider the exact sequence of Γ-modules

0 −→ k̄∗ −→ k̄(t)∗ −→ Div(P1
k̄) −→ Z −→ 0, (1.27)

where the fourth arrow is given by the degree. This sequence can be obtained
by splicing two exact sequences of Γ-modules, both of which are split:

0 −→ k̄∗ −→ k̄(t)∗ −→ Div0(P1
k̄) −→ 0,

where Div0(P1
k̄
) is the degree 0 subgroup of Div(P1

k̄
), and

0 −→ Div0(P1
k̄) −→ Div(P1

k̄) −→ Z −→ 0.

Applying H2(Γk, ·) to (1.27) we obtain (1.26). The compatibility of the third
arrow with the Witt residues follows from the last sentence of Theorem 1.5.1.
The fourth map is the sum of maps

H2(Γk,Zk(x)) −→ H2(Γk,Z),

each of which is induced by the summation map Zk(x)→Z. This implies the
final statement of the theorem. �

The exact sequence (1.25) is split and it is instructive to write down an
element of Br(k(t)) that lifts a character χ ∈ Hom(Γk(P ),Q/Z) for a given monic
irreducible polynomial P (t). Let δ(χ) ∈ H2(k(P ),Z) be the image of χ under
the differential δ in the long exact sequence of cohomology groups attached to
the exact sequence of Γk(P )-modules (1.19). We also denote by δ(χ) the image
of this element in H2(k(P )(t),Z) under the restriction from k(P ) to k(P )(t).
Let τP be the image of t in k(P ) = k[t]/(P (t)). Then t− τP ∈ k(P )(t). Let us
denote by Aχ ∈ Br(k(P )(t)) the cup-product of δ(χ) and t− τP with respect to
the pairing (1.20):

H2(k(P )(t),Z)×H0(k(P )(t),Gm) −→ Br(k(P )(t)).

It is clear that Aχ is unramified on P1
k(P ) away from the k(P )-point t = τP and

the point at infinity, i.e. the residues of Aχ at all other closed points of P1
k(P )

are trivial. In Section 1.4.1 we have seen that the residue of Aχ at t = τP is

r(Aχ) = v(t− τP )χ = χ ∈ H1(k(P ),Z/n).
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The same formula shows that the residue of Aχ at the point at infinity is −χ.
Let us abbreviate the notation for the corestriction map from k(P )(t) to k(t)

as coreskP /k. Using Proposition 1.4.6 we see that coreskP /k(Aχ) is an element of
Br(k(t)) unramified away from the closed point P , which is the zero set of P (t),
and possibly the point at infinity. More precisely, the residue of coresk(P )/k(Aχ)
at P is χ and the residue at ∞ is −coresk(P )/k(χ).

Let A ∈ Br(k(t)) be an arbitrary element. Let χP be the residue of A at
the closed point P of P1

k. Let S be the set of closed points P ∈ A1
k for which

χP 6= 0. Then A −
∑
P∈S coresk(P )/k(AχP

) is unramified over A1
k. Faddeev’s

exact sequence (1.25) now shows that

A =
∑
P∈S

coresk(P )/k(AχP
) +A0,

for some A0 ∈ Br(k). In particular, if A is unramified at ∞, then A0 = A(∞)
is the value of A at ∞.
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Chapter 2

Étale cohomology

In the first two sections of this chapter we introduce notation and terminology,
and state basic results about étale sheaves and étale cohomology. It would not
be realistic to give proofs; instead, we try to help the reader navigate through
J.S. Milne’s book [Mil80], a main reference for this chapter. We refer to [SGA4 1

2 ,
Arcata] for a helpful gentle introduction to étale cohomology. See also [Tam94].

The third section reports on purity results for étale cohomology with torsion
coefficients and on residues in the étale cohomological context.

In the next two sections we discuss the first cohomology group of the multi-
plicative group, which is the Picard group, and then the relative Picard group
and the Picard scheme. Already for a smooth projective variety over a field, the
Brauer group of the ground field appears naturally when one wants to see if a
Galois invariant element of the geometric Picard group comes from an element
of the Picard group of the variety.

The last section is a very short summary of stacks and gerbes based on
M. Olsson’s book [Ols16, Ch. 9]. This material will be used in the next chapter.

2.1 Topologies, morphisms and sheaves

2.1.1 Grothendieck topologies on a scheme

We start with the basic definitions [Mil80, II, §1].
Let E be a class of morphisms of schemes which contains all isomorphisms

and is closed under composition, such that a base change of any morphism in
E is in E.

Let X be a scheme. Let CX be a full subcategory of the category of schemes
over X such that for any Y→X in CX and any morphism U→Y in E the
composition U→X is in CX .

An E-covering of an object Y of CX is a family of E-morphisms {gi : Ui→Y }
such that Y = ∪gi(Ui).

The class of all such coverings of all such objects is called the E-topology on
CX . The category CX with the E-topology is the E-site CX,E . A map V→W

47
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in CX which is in E is referred to as an open set of W in the E-topology.

A site CX,E is small if the underlying category of schemes CX is the category
of schemes Y/X such that Y→X is in E.

A site CX,E is big if the underlying category CX is the category of all schemes
over X. We recall the definitions of the sites that will be used in this book.

Xét is the small étale site, i.e. the category of schemes that are étale over
X endowed with the étale topology. In other words, an “open set” Ui→Y is an
étale morphism.

XÉt is the big étale site, i.e. the category of schemes over X endowed with
the étale topology.

Xzar is the small Zariski site, i.e. the category of open subschemes of X
endowed with the Zariski topology.

XZar is the big Zariski site, i.e. the category of schemes over X endowed
with the Zariski topology.

Xfppf is the big flat site, so that the category consists of all schemes over X.
An “open set” U→Y is a flat morphism which is locally of finite presentation.

2.1.2 Presheaves and sheaves

A presheaf of abelian groups on X is a contravariant functor P from the under-
lying category of the site to the category of abelian groups. We refer to P(Y )
as the group of sections over Y . For example,

Ga,X is the presheaf such that Ga,X(Y ) = H0(Y,OY ),

Gm,X is the presheaf such that Gm,X(Y ) = H0(Y,O∗Y ).

µn,X , for n > 0, is the presheaf such that µn(Y ) = {x ∈ H0(Y,O∗Y )|xn = 1}.

Presheaves on X form an abelian category, where a sequence of presheaves
is exact if and only if the corresponding sequence of sections over Y is an exact
sequence of abelian groups, for any Y/X in the underlying category. We denote
this abelian category by P(X), when the topology is clear from the context.

A presheaf P is a sheaf if for any scheme Y/X in our category, and any
covering {Ui} of Y , any section over Y is uniquely determined by its restrictions
to all the Ui, and any family of sections over the Ui which agree on Ui×Y Uj come
from a section over Y . We denote by aP the sheaf associated to the presheaf P
[Mil80, Thm. II.2.11]. One can give an explicit construction of aP in terms of
the sheafified 0-th Čech cohomology presheaf Ȟ0(P), namely, aP = Ȟ0(Ȟ0(P)),
see [Mil80, Remark III.2.2 (c)].

Let us define the category of sheaves S(X) as the full subcategory of P(X)
whose objects are sheaves. Thus, if F and G are sheaves on X, then a morphism
ϕ : F→G in S(X) is the same as a morphism of presheaves F→G. The kernel
Ker(ϕ) in S(X) is the same as the kernel of the morphism of presheaves ϕ : F→G
(which is a sheaf). However, the cokernel presheaf Coker(ϕ) is not always a sheaf
(for example, the cokernel of the differentiation on the sheaf of holomorphic
functions on Cr{0} is not a sheaf). The cokernel in S(X) is the sheaf associated
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to the presheaf Coker(ϕ). This makes S(X) an abelian category1. It follows that
the inclusion functor i : S(X)→P(X) is left exact, and a : P(X)→S(X) is the
left adjoint of i, so we have an isomorphism of (bi-)functors

HomS(X)(aP,F) = HomP(X)(P, iF),

see [Mil80], Remark II.2.14 (a) and Thm. II.2.15. The functor a : P(X)→S(X)
is exact [Mil80, Thm. 2.15 (a)].

If G is a commutative group scheme over X, then the functor represented
by G, that is, the functor associating to a scheme Y/X the abelian group
HomX(Y,G), is not only a presheaf but is actually a sheaf for each of the topolo-
gies mentioned above, by [Mil80, Cor. II.1.7]. In particular, the presheaves Ga,X
and Gm,X are sheaves because they are represented by the additive group scheme
Ga = Spec(Z[x]) and the multiplicative group scheme Gm = Spec(Z[x, x−1]),
respectively. This also holds for µn,X .

2.1.3 Points and stalks in the étale topology

Let x = Spec(k(x)) be a point of the scheme X. The local ring of X at x is
denoted by OX,x. We have

OX,x = lim−→O(U),

where the injective limit is taken over all open subsets U ⊂ X containing x.
The analogue of the local ring in the étale topology is

Oh
X,x = lim−→O(U),

where U is a connected étale X-scheme equipped with a lifting x ↪→ U of x ↪→ X.
The superscript h says that Oh

X,x is the henselisation of the local ring OX,x. The

residue field of the local ring Oh
X,x is k(x).

Now let x̄→X be a geometric point, i.e. a morphism Spec(k(x̄))→X, where
k(x̄) is algebraically closed. One says that x̄ lies over x if x is the image of x̄ in
X; then k(x) ⊂ k(x̄). Define

Osh
X,x = lim−→O(U),

where U is a connected étale X-scheme equipped with a lifting x̄→U of x̄→X.
The superscript sh says that Osh

X,x is strictly henselian; it is the strict henseli-

sation of the local ring OX,x. The residue field of the local ring Osh
X,x is the

separable closure of k(x) in k(x̄). Speaking of “the” strict henselisation is a
common abuse of language, which we shall keep in this book. If k(x) is not
separably closed, the ring extension Osh

X,x of OX,x is defined up to a non-unique
isomorphism. Replacing x̄→X by a different geometric point over x produces a
local ring isomorphic to Osh

X,x; this isomorphism is determined by the induced

1Thus S(X) is an abelian category and is also a full subcategory of P(X), but S(X) is not
an abelian subcategory of P(X), because the notion of cokernel is not the same.
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isomorphism of residue fields, which are two separable closures of k(x), hence
they are isomorphic but in a non-unique way.

One writes OX,x̄ = Osh
X,x.

For more on henselisation and strict henselisation see [Ray70b, Chap. VIII],
[BLR90, §2.3] and [Stacks, Section 0BSK].

The stalk of an étale presheaf P on X at a geometric point u : x̄→X is
defined as

Px̄ = lim−→P(U),

where U is connected and étale over X such that u factors through U→X, see
[Mil80], Section II.2. It is clear from the definition that we have

(Ga,X)x̄ = OX,x̄, (Gm,X)x̄ = O∗X,x̄.

2.1.4 Morphisms of sites. Direct and inverse images of
sheaves

Let π : X ′→X be a morphism of schemes. Suppose that we have a site on X
and a site on X ′. Then π is continuous or, in other words, defines a morphism
of sites, if the following properties are satisfied:

(a) if Y/X is in the underlying category of X, then Y ×X X ′/X ′ is in the
underlying category of X ′;

(b) if U→Y is “an open subset” of Y/X, then U ×X X ′→Y ×X X ′ is “an
open subset” of Y ×X X ′/X ′.

For example, the identity map on X defines morphisms of sites

Xfppf→XÉt→Xét→Xzar.

Here is another example. Let K/k be an arbitrary extension of fields. Let
X be a k-scheme and XK = X ×k K. For each of the above topologies, the
morphism of schemes XK→X defines a morphism of the associated sites.

A continuous morphism of sites π : X ′→X defines a functor πp : P(X ′)→P(X)
which associates to a presheaf P on X ′ the presheaf on X which sends Y/X
from the underlying category of X to P(Y ×X X ′). It is obvious that πp is an
exact functor.

For a presheaf P on X and an object Y ′/X ′ of the underlying category of
X ′, define

πp(P)(Y ′) = lim−→P(Y ),

where Y/X ranges over the objects of the underlying category of X such that
the composed map Y ′→X ′→X factors though Y . Then it is easy to check that
πp is a functor P(X)→P(X ′) which is left adjoint to πp:

HomP(X)(P1, πpP2) = HomP(X′)(π
pP1,P2).

In particular, the stalk of an étale presheaf P at the geometric point u : x̄→X is
the abelian group Px̄ = upP. If π : X ′→X belongs to the underlying category
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of X, then πp(P) is easy to describe: this is just the restriction of the presheaf
P to X ′.

It is easy to see that πp sends sheaves to sheaves [Mil80, II.2.7]. In general,
this does not hold for πp. However, for a geometric point u : x̄→X, up does
send étale sheaves to étale sheaves. This implies that P and aP have the same
stalks [Mil80, Remark II.2.14 (c)]. A sequence of étale sheaves is exact if and
only if the corresponding sequence of stalks is exact for all geometric points x̄
of X, see [Mil80, Thm. II.2.15 (c)].

Let π : X ′→X be a continuous morphism, and let F be a sheaf on X ′. The
direct image π∗F is defined as πpF , that is, π∗F(Y ) = F(Y ×XX ′), where Y/X
is in the underlying category of the site on X. The inverse image π∗G of a sheaf
G on X is defined as aπpG, so one can write π∗ = aπpi. If the Grothendieck
topologies on X and X ′ are the same and the morphism π : X ′→X is in the
underlying category of X, then π∗ is the restriction of F to X ′.

In particular, if GX is a sheaf on X represented by a commutative group
scheme G over X, then π∗GX = GX′ when π : X ′→X is in the underlying
category of X. For example, this holds for the big étale site. (But π∗GX 6= GX′

for the small étale site unless π is étale.)

The functors π∗ and π∗ are adjoint:

HomS(X)(F , π∗F ′) = HomS(X′)(π
∗F ,F ′),

and this implies that π∗ is left exact. Note that since the cokernels in P(X) and
S(X) are not the same, π∗ is not in general an exact functor. (Though π∗ is
exact if X ′→X is a finite morphism, and the sites on X ′ and X are the small
étale sites, see [Mil80, Cor. II.3.6].) As for π∗, this functor is exact for the small
étale or Zariski sites, and also when the underlying category of the site is the
category of X-schemes ([Mil80], Prop. II.2.6 (a) and the beginning of Section
II.3). Thus π∗ is exact for all the sites listed in Section 2.1.1.

Let π : X ′→X be a morphism, and let F be an étale sheaf on X. If x′ is a
point of X ′ that maps to x ∈ X, then we can choose a geometric point over x′

to be also a geometric point over x, that is, x̄ = x̄′. This formally implies that
we have (π∗F)x̄′ = Fx̄ (see also [Mil80, Thm. II.3.2 (a)]).

Now let π be quasi-compact. Let x = Spec(k(x)) ∈ X, and let x̄ =
Spec(k(x)s). Let F be an étale sheaf on X ′. One proves that the stalk of
π∗F at x̄ can be computed at the strict henselisation of X at x:

(π∗F)x̄ = F̃(X ′ ×X Spec(Osh
X,x̄)), (2.1)

where F̃ is the inverse image of F with respect to the first projection

X ′ ×X Spec(Osh
X,x̄) −→ X ′,

see [Mil80, Thm. II.3.2 (b)].
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2.2 Cohomology

2.2.1 Definition and basic properties

One proves that the category of sheaves onX has enough injectives [Mil80, Prop.
III.1.1], which makes it possible to define the cohomology groups Hn(X,F) as
the right derived functors of the sections functor F 7→ F(X). If π : X ′→X is
a continuous morphism, e.g. a morphism of schemes, then the higher derived
image sheaves (Rnπ∗)(F) are the right derived functors of π∗. One proves that
(Rnπ∗)(F) is the sheaf associated to the presheaf that sends an ‘open set’ U to
the group Hn(U ×X X ′,F).

If G is a sheaf on X, then the functor HomX(G, ·) is left exact; so one defines
ExtnX(G, ·) as its right derived functors. Since F(X) = HomX(ZX ,F), where
ZX is the constant sheaf defined by Z, we have ExtnX(Z,F) = Hn(X,F).

Let us consider the small étale site on a scheme X. If π : X ′→X is a quasi-
compact morphism, then the stalk of (Rnπ∗)(F) at x̄ can be described in the
same way as we described (π∗F)x̄ in (2.1):

(Rnπ∗)(F)x̄ = Hn(X ′ ×X Spec(Osh
X,x̄), F̃),

where F̃ is as in the end of the previous section. See [Mil80, Thm. III.1.15].

If π : X ′→X is a proper morphism, then a corollary of the proper base
change theorem says that for a torsion sheaf F on X ′, the stalk of (Rnπ∗)(F) at
x̄ is Hn(X ′x̄,F), where X ′x̄ = π−1(x̄) is the fibre of π at x̄. See [Mil80, VI.2.5].

By a corollary of the smooth base change theorem [Mil80, VI.4.2], if X is
a connected scheme, π : X ′→X is a smooth and proper morphism, and n is
prime to the residual characteristics of X, then the groups Hn(X ′x̄,Z/n) are
isomorphic for all geometric points x̄. These results have many applications.
For example, if π : X→Spec(R) is a smooth and proper morphism, where R is a
discrete valuation ring with fraction field K and residue field k, and n is prime
to char(k) and char(K), then the restriction of the representation of Gal(Ks/K)
in Hn(Xs,Z/n) to the inertia group is trivial.

2.2.2 Étale and Galois cohomology

Let k be a field. Consider the small étale site on Spec(k). The underlying
category consists of finite dimensional étale k-algebras, i.e. finite direct products
of finite separable field extensions of k. Choose a separable closure ks of k, and
let Γ = Gal(ks/k) be the absolute Galois group of k.

Let P be a presheaf on Spec(k). For a finite, separable field extension k′/k
we write P(k′) for P(Spec(k′)). When k′/k is Galois, the Galois group Gal(k′/k)
acts on P(k′). If P sends disjoint unions of schemes to direct products of abelian
groups, then it is a sheaf if and only if P(k′) = P(k′′)Gal(k′′/k′) for every finite
separable extension k′/k and every finite Galois extension k′′/k′, cf. [Mil80,
Prop. II.1.5].
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A continuous discrete Γ-module M defines a presheaf FM on Spec(k) by the
formula

FM (

n∏
i=1

ki) =

n∏
i=1

MGal(ks/ki),

where the fields ki are such that k ⊂ ki ⊂ ks. One checks that FM is a sheaf
[Mil80, Lemma II.1.8], and that M 7→ FM defines an equivalence of the category
of discrete Γ-modules with the category of étale sheaves on Spec(k), see [Mil80,
Thm. II.1.9].

The inverse correspondence associates to a presheaf P on Spec(k) the discrete
Galois module

MP = lim−→P(k′),

where k′/k is a finite separable extension. Indeed, we can assume that k′ is
Galois over k, so that Γ acts on each P(k′), and thus on MP . This module
is discrete because MP is the union of the invariants with respect to all open
subgroups of Γ.

For a discrete Γ-module M the Galois cohomology group Hn(Γ,M) for n ≥ 0
is defined as the inductive limit of Hn(Γ/U,MU ), where U ranges over all open
normal subgroups of Γ, see [SerCG, Ch. I, §2]. Recall from the previous chapter
that the resulting group is well defined up to unique isomorphism. It does not
depend on the choice of ks and is denoted by Hn(k,M), see [SerCG, II, §1].

The étale cohomology groups Hn
ét(Spec(k),FM ) are canonically isomorphic

to the Galois cohomology groups Hn(k,M), since these are the right derived
functors of M 7→ MΓ. Similarly, the Ext group ExtnSpec(k)(FM ,FM ′) in the
category of étale sheaves on Spec(k) is the same as the Ext group Extnk (M,M ′)
in the category of discrete Γ-modules.

Now assume that π : X→Spec(k) is a scheme over a field k equipped with
the étale topology. Define Xs = X ×k ks, and let F̃ be the inverse image of F
with respect to the morphism Xs→X. The sheaf π∗(F) on Spec(k) corresponds
to the Γ-module

(π∗F)ks = lim−→F(X ×k k′) = F̃(Xs),

where k′/k ranges over finite subextensions of ks/k. In the same way, the sheaf
(Rnπ∗)(F) corresponds to the Γ-module

(Rnπ∗)(F)ks = lim−→Hn(X ×k k′,F) = Hn(Xs, F̃).

2.2.3 Standard spectral sequences

Recall that when we have three abelian categories A, B and C, such that A and
B have enough injectives, and left exact functors F : A→B and G : B→C such
that F sends injective objects in A to G-acyclic objects in B, then there is a
convergent first quadrant Grothendieck spectral sequence

Ep,q2 = (RpG)(RqF )A⇒ Rp+q(GF )A, (2.2)
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where A ∈ Ob(A), see [Wei94, Thm. 5.8.3], [Mil80, Appendix B]. Let D+(A)
denote the derived category of bounded below complexes in the abelian category
A (for which we refer to [Wei94, Ch. X]). The above spectral sequence can be
viewed as the spectral sequence of composed functors between derived categories
RF : D+(A)→D+(B) and RG : D+(B)→D+(C). In this interpretation (2.2)
comes from the fact that R(GF ) is the composition RG◦RF , see [Wei94, Thm.
10.8.3].

Suppose that we have continuous morphisms of sites

X ′′
π′−→ X ′

π−→ X,

and A, B and C are the categories of sheaves on X ′′, X ′, X, respectively. Since
π∗ has a left adjoint functor π∗ which is exact, π∗ sends injectives to injectives,
and hence for any sheaf F on X ′′ we obtain the Leray spectral sequence [Mil80,
Thm. III.1.18(b)]

Ep,q2 = (Rpπ∗)(R
qπ′∗)F ⇒ Rp+q(ππ′)∗F . (2.3)

Similarly, for a continuous morphism π : X ′→X we obtain the spectral sequence
[Mil80, Thm. III.1.18(a)]

Ep,q2 = Hp(X, (Rqπ∗)(F))⇒ Hp+q(X ′,F), (2.4)

where F is a sheaf on X ′.

Applications of these spectral sequences are many.

(1) Assume that X is a scheme over a field k equipped with the étale
topology. Let Γ = Gal(ks/k). Let us apply (2.4) to the structure morphism
π : X→Spec(k) and a sheaf F on X. To simplify notation we denote the in-
verse image of F on Xs = X ×k ks also by F . As we have seen in Section
2.2.2, the sheaf (Rnπ∗)(F) on Spec(k) corresponds to the Γ-module Hn(Xs,F).
Therefore, we obtain the spectral sequence

Ep,q2 = Hp(k,Hq(Xs,F))⇒ Hp+q(X,F). (2.5)

(2) Let π : XÉt→Xét be the continuous morphism induced by the identity
on X. For a sheaf F on Xét there is a canonical isomorphism Hn

ét(X,F) =
Hn

Ét
(X,π∗F), see [Tam94, Thm. II. 3.3.1] or [Mil80, Prop. III.3.1]. Since π

is induced by the identity on X, the functor π∗ is clearly exact. Thus for any
sheaf G on XÉt the spectral sequence (2.4) gives a canonical isomorphism

Hn
ét(X,π∗G)−̃→Hn

Ét
(X,G).

In particular, if G = GX is the sheaf on XÉt represented by a commutative
group scheme G over X, then π∗G is the sheaf on Xét obtained by restricting G
from the category of all X-schemes to the category of étale X-schemes, so π∗G
is the sheaf on Xét represented by G. Thus we obtain a canonical isomorphism

Hn
ét(X,GX)−̃→Hn

Ét
(X,GX). (2.6)
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For any commutative group scheme G over Y this allows one to define a natural
map

f∗ : Hi
ét(Y,GY ) −→ Hi

ét(X,GX) (2.7)

for any morphism f : X→Y , where GX is the sheaf defined by the group X-
scheme G ×Y X. Indeed, in view of the canonical isomorphism (2.6) we can
replace the small étale site by the big étale site. Then f : X→Y is in the
underlying category of Y , so f∗GY = GX , see Section 2.1.4. The adjunction
morphism GY→f∗f∗GY = f∗GX gives rise to the first arrow in

Hi
Ét

(Y,GY ) −→ Hi
Ét

(Y, f∗GX) −→ Hi
Ét

(X,GX),

where the second arrow comes from the spectral sequence (2.4) attached to
f : X→Y . The map in (2.7) is defined as the composition of these two maps.

(3) Now let π : Xfppf→Xét be the continuous morphism induced by the
identity on X. We refer to [Mil80, Thm. III.3.9] for the following fact. If G is a
smooth quasi-projective commutative group scheme over X, then (Riπ∗)(G) = 0
for i > 0. The Leray spectral sequence then gives isomorphisms

Hn
ét(X,G)−̃→Hn

fppf(X,G). (2.8)

In fact, the assumption that G is quasi-projective can be dropped, see [Gro68,
III, Thm. 11.7] and [Mil80, Rem. 3.11 (b)].

2.2.4 Passing to the limit

Suppose that we have a filtering projective system of quasi-compact and quasi-
separated schemes Xi indexed by a set I, with affine morphisms Xi→Xj for all
i, j ∈ I such that i ≥ j. Then there is a scheme X = lim←−Xi. Now assume that
G0 is a group scheme over X0 for some 0 ∈ I. For each i ∈ I such that i ≥ 0
define Gi = G0 ×X0

Xi. Let G = G0 ×X0
X. Then for any integer n ≥ 0 the

natural homomorphism

lim−→Hn
ét(Xi, Gi)−̃→Hn

ét(X,G)

is an isomorphism [SGA4, VII, Cor. 5.9], see also [Mil80, Ch. III, Lemma 1.16,
Remark 1.17 (a)]. In particular, we have natural isomorphisms

lim−→Hn
ét(Xi,Gm)−̃→Hn

ét(X,Gm).

2.3 Cohomological purity

2.3.1 Absolute purity with torsion coefficients

Let X be a scheme. We write D+(Xét) for the derived category of bounded
below complexes of étale sheaves of abelian groups on X. Similarly, we write
D+(Xét,Z/`m) for the derived category of bounded below complexes of étale
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Z/`m-sheaves on X (for the comparison of the corresponding derived functors
see [Mil80, Ch. III, Exercise 2.25]). A standard reference for derived categories
is [Wei94].

Let F be a sheaf of abelian groups on X. Suppose that we have a closed
immersion i : Z→X. Let U ⊂ X be the complement to Z. To an étale morphism
V→X one associates the abelian group

Ker[F(V ) −→ F(VU )].

The associated sheaf vanishes on U . It is the image under i∗ of a sheaf on Z
which is denoted by i!F . The functor from X-sheaves to abelian groups that
sends F to (i!F)(Z) is left exact. Its derived functors are denoted by Hn

Z(X,F)
and called the cohomology groups of F with support in Z.

At the level of sheaves we get the functor Ri! : D+(Xét)→D+(Zét). The
cohomology sheaves (Rni!)(F) of (Ri!)F are denoted by HnZ(X,F). By defini-
tion, these are the derived functors of the functor from X-sheaves to Z-sheaves
sending F to i!F . There is a Grothendieck spectral sequence of composed func-
tors involving Ri! and the derived functor of the sections functor Γ(Z, ·) (see
[Mil80, p. 241]):

Epq2 = Hp(Z,HqZ(X,F))⇒ Hp+q
Z (X,F). (2.9)

Assume n is invertible on X. For c > 0 one defines the sheaf Z/n(c)X := µ⊗cn,X .
For c = 0, one writes Z/n(0)X = Z/nX . For c < 0, one defines Z/n(c)X as the
sheaf which associates to an étale Y→X the group HomY (Z/n(−c)Y ,Z/nY ).
For a sheaf F of Z/n-modules, one defines F(c) := F ⊗ Z/n(c). See [Mil80,
Ch. II, §3, p. 78/79] for a general definition of Hom sheaves and tensor product
sheaves.

Theorem 2.3.1 (Gabber) Let X be a regular scheme, let i : Z ↪→ X be a
closed regular subscheme of codimension c everywhere, let ` be a prime different
from the residual characteristics of X and let m be a positive integer. In D+(Zét)
we have an isomorphism Z/`m−̃→(Ri!)(Z/`m)(c)[2c]. In particular,

HnZ(X,Z/`m) = 0 for n 6= 2c, (Z/`m)(−c)Z−̃→H2c
Z (X,Z/`m).

See [Rio14, Cor. 3.1.1, p. 324]. For schemes locally of finite type over a
perfect field, the theorem was proved in [SGA4, XVI, Cor. 3.9], see also [Mil80,
Thm. VI.5.1].

We record a useful corollary of Theorem 2.3.1. By a strict normal crossing
divisor we understand an effective divisor D = D1 + . . .+Dr in a regular scheme
X such that each irreducible component Di is regular and all intersections of
these components are transversal. Transversality means that at each point
x ∈ D the local equations of the components Di containing x form a part of a
regular system of parameters for the local ring OX,x. The following corollary of
Gabber’s absolute purity theorem is proved in [Rio14, Cor. 3.1.4, p. 324].
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Corollary 2.3.2 (Gabber) Let X be a regular scheme and let j : U→X be an
open immersion such that X r U is a strict normal crossing divisor with the
irreducible components D1, . . . , Dr. Let ` be a prime different from the residual
characteristics of X. For n ≥ 1 we have canonical isomorphisms of X-sheaves

(Rnj∗)(Z/`m) =

n∧
(R1j∗)(Z/`m) =

n∧( r⊕
i=1

(Z/`m)(−1)Di

)
.

2.3.2 Gysin exact sequence

We return to the situation where X is a regular scheme, i : Z ↪→ X is a closed
regular subscheme of codimension c everywhere, and ` is a prime invertible on
X. Let U = X r Z and let j : U→X be the natural open immersion. The
functor j∗ has a left adjoint functor j! which is exact [Mil80, p. 78]. This
implies that we have an exact sequence of étale sheaves on X:

0 −→ ZU −→ ZX −→ ZZ −→ 0, (2.10)

where ZU = j!j
∗Z and ZZ = i∗i

∗Z, see [Mil80, p. 92]. Applying the functor
Ext(·,F), defined as the derived functor of the internal Hom, to (2.10) gives a
long exact sequence which breaks down into isomorphisms

(Rn−1j∗)(j
∗F)−̃→HnZ(X,F), n ≥ 2, (2.11)

see [Mil80, p. 242]. Thus the stalk of the sheaf HnZ(X,F) at a geometric point
z̄ ∈ Z is

HnZ(X,F)z̄ = Hn−1(Spec(Osh
X,z̄) r Spec(Osh

Z,z̄),F). (2.12)

From (2.11) we obtain canonical isomorphisms

j∗(Z/`m) = Z/`m, (R2c−1j∗)(Z/`m) = (Z/`m)(−c)Z (2.13)

and
(Rnj∗)(Z/`m) = 0 for n 6= 0, 2c− 1.

In view of these isomorphisms the spectral sequence

Epq2 = Hp(X, (Rqj∗)(Z/`m))⇒ Hp+q(U,Z/`m) (2.14)

gives rise to the Gysin exact sequence

. . .→Hn−2c(Z,Z/`m(−c))→Hn(X,Z/`m)→Hn(U,Z/`m)→Hn−2c+1(Z,Z/`m(−c))→ . . .
(2.15)

Here we used the canonical isomorphism

Hn(X, (Z/`m)Z) = Hn(X, i∗(Z/`m)) = Hn(Z,Z/`m)

coming from the spectral sequence Hp(X,Rqi∗(Z/`m)) ⇒ Hp+q(Z,Z/`m). In-
deed, i∗ is an exact functor, because the closed immersion i : Z→X is a finite
morphism.
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Alternatively, the Gysin sequence can be obtained as follows. Consider the
long exact sequence

. . .→Hn
Z(X,Z/`m)→Hn(X,Z/`m)→Hn(U,Z/`m)→Hn+1

Z (X,Z/`m)→ . . . ,

obtained by applying ExtX(·,Z/`m) to (2.10). Then one identifies Hn
Z(X,Z/`m)

with Hn−2c(Z,Z/`m(−c)) using the spectral sequence (2.9) and Theorem 2.3.1.

2.3.3 Cohomology of a henselian discrete valuation ring

Let A be a henselian discrete valuation ring with fraction field K and residue
field k. If we set

X = Spec(A), Z = Spec(k), U = Spec(K),

then i : Spec(k)→Spec(A) is a closed immersion of regular schemes of codimen-
sion c = 1, so this is a particular case of the situation considered in the previous
section. By Section 2.2.2 the étale cohomology groups of Spec(k) and Spec(K)
coincide with Galois cohomology groups of k and K, respectively. We now
describe how to interpret the étale cohomology of Spec(A) in terms of Galois
cohomology.

As before, let G = Gal(Ks/K), I = Gal(Ks/Knr), Γ = Gal(Knr/K) = G/I,
where Knr ⊂ Ks is the maximal unramified extension of K, so Knr is the field
of fractions of the strict henselisation Ash. The category of étale sheaves on
Spec(A) is equivalent to the category of triples (M,N,ϕ), where M is a Γ-
module, N is a G-module, and ϕ : M→N I is a homomorphism of Γ-modules
[Mil80, Example II.3.12]. A morphism of triples

(M,N,ϕ)→(M ′, N ′, ϕ′)

is a pair consisting of a map of Γ-modules M→M ′ and a map of G-modules
N→N ′ such that the obvious resulting diagram is commutative. To a sheaf F on
Spec(A) one associates the triple (i∗F , j∗F , ϕ), where ϕ is the natural morphism
i∗F→i∗j∗j∗F . This agrees with the definition of triples, because the stalk
of the Spec(A)-sheaf j∗N at Spec(ks) is computed at the strict henselisation,
see (2.1), thus the Spec(k)-sheaf i∗j∗N corresponds to the Γ-module N I . In
particular, the Spec(A)-sheaf j∗M , where M is a G-module, corresponds to the
triple (M I ,M, id).

Let F(M,N,ϕ) be the sheaf on Spec(A) corresponding to the triple (M,N,ϕ).
It can be constructed as the fibred product of i∗M and j∗N over i∗i

∗j∗N , see
[Mil80, Thm. II.3.10]. The constant Spec(A)-sheaf Z corresponds to the triple
(Z,Z, id), thus the group of sections of F(M,N,ϕ) is MΓ. It follows that

Hi(Spec(A),F(M,N,ϕ)) = Hi(k,M). (2.16)

2.3.4 Gysin sequence: residues and functoriality

We continue the discussion of the previous section keeping the same notation.
Let ` be a prime not equal to char(k). Then µ`m , where m is a positive integer,
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is an étale sheaf on Spec(A). By (2.16) we have

Hn(Spec(A), µ`m) = Hn(k, µ`m)

for any n ≥ 1. Thus, after twisting, the Gysin sequence (2.15) becomes the
exact sequence

. . .→Hn(k, µ`m)→Hn(K,µ`m)→Hn−1(k,Z/`m)→Hn+1(k, µ`m)→ . . . (2.17)

This looks very similar to the exact sequence (1.9) with C = µ`m :

0 −→ Hn(k, µ`m) −→ Hn(K,µ`m)
r−→ Hn−1(k,Z/`m) −→ 0. (2.18)

These two sequences are indeed the same, at least up to inverting the sign of
the residue map r.

Lemma 2.3.3 The long exact sequences (2.17) and (2.18) coincide, after re-
placing r with −r.

Proof. We need to check that these sequences come from identical spectral
sequences. In our case the spectral sequence (2.14) has the form

Hp(Spec(A), (Rqj∗)(µ`m))⇒ Hp+q(K,µ`m). (2.19)

whereas the Hochschild–Serre spectral sequence is

Hp(Γ,Hq(I, µ`m))⇒ Hp+q(G,µ`m).

On the one hand, the Hochschild–Serre spectral sequence is the spectral se-
quence of composed functors: the functor M 7→M I from continuous G-modules
to continuous Γ-modules, followed by the functor of Γ-invariants. On the other
hand, the spectral sequence (2.19) is the spectral sequence of composed functors
j∗ from Spec(K)-sheaves to Spec(A)-sheaves, followed by the functor of sections
from Spec(A)-sheaves to abelian groups. As we have seen in the previous sec-
tion, the dictionary between étale Spec(A)-sheaves and triples interprets the first
of these as the functor sending a G-module M to the triple (M I ,M, id). The
functor of sections sends this to MG, which shows that the spectral sequences
are indeed identical.

Finally, to compare the residue map r in (2.18) with the corresponding
arrow in (2.17) we need to make sure that the identification of Hom(I, µ`m)
with Z/`m on the Hochschild–Serre side is compatible with the identification
of (R1j∗)(µ`m) with (Z/`m)Spec(k) in (2.13). Since ` is coprime to the char-
acteristic of k, the field Knr contains roots of unity of degree `m and we have
Hom(I, µ`m) = Hom(Gal(Kt/Knr), µ`m), where Kt ⊂ Ks is the maximal tamely
ramified extension of K. If π is a uniformiser of K, then the action of I on the
Ks-points of the torsor t`

m

= π for µ`m factors as

I = Gal(Ks/Knr) −→ Gal(Kt/Knr) −→ Gal(Knr(π
1/`m)/Knr) = µ`m .
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This homomorphism corresponds to 1 ∈ Z/`m on the Hochschild–Serre side.
As explained in [Rio14, p. 324], the isomorphism (R1j∗)(µ`m) = (Z/`m)Spec(k)

in Gabber’s absolute purity theorem is induced by the section of (R1j∗)(µ`m)
which is the opposite of the class of the torsor t`

m

= π. This finishes the proof
of the lemma. �

We now make some observations regarding the functoriality of the Gysin
sequence.

Let f : X ′→X be a morphism of integral regular schemes. Let Z ⊂ X
and Z ′ ⊂ X ′ be regular integral closed subschemes of codimension 1 such that
f(Z ′) ⊂ Z. Let U = X rZ and U ′ = X ′rZ ′. Assume that f(U ′) ⊂ U , so that
there is a commutative diagram

U ′
j′ //

f

��

X ′

f

��

Z ′
i′oo

f

��
U

j // X Z
ioo

Since f(X ′) is not contained in Z, we have a well defined divisor f−1(Z) ⊂ X ′
supported on Z ′. Thus we can write f−1(Z) = rZ ′, where r is a positive integer.
Explicitly, since X is regular, any point of Z has an open affine neighbourhood
V ⊂ X such that Z ∩V is the zero set of a regular function on V . If π is a local
equation of Z ⊂ X in such an open set V , where V ∩ f(X ′) 6= ∅, then π gives
rise to a non-zero rational function on X ′; moreover, vZ′(π) = r, where vZ′ is
the valuation of the discrete valuation ring OX′,Z′ .

Lemma 2.3.4 Let ` be a prime invertible on X. There is a commutative dia-
gram

. . . // Hn(X ′, µ`m) // Hn(U ′, µ`m) // Hn−1(Z ′,Z/`m) // . . .

. . . // Hn(X,µ`m) //

f∗

OO

Hn(U, µ`m) //

f∗

OO

Hn−1(Z,Z/`m) //

[r]f∗

OO

. . .

Proof. By the construction of the Gysin sequence, the bottom row comes from
the spectral sequence of composed functors Rj∗ : D+(Uét)→D+(Xét) and the
sections functor RΓ : D+(Xét)→D+(Ab), where Ab is the category of abelian
groups (and similarly for the top row). From the functoriality of the spec-
tral sequence and the purity theorem we obtain the commutative diagram as
above, where we only need to identify the map linking Hn−1(Z,Z/`m) and
Hn−1(Z ′,Z/`m).

A canonical adjunction morphism µ`m→(Rf∗)µ`m inD+(Uét) induces a mor-
phism in D+(Xét):

(Rj∗)µ`m −→ (Rj∗)(Rf∗)µ`m = (R(jf)∗)µ`m = (Rf∗)(Rj
′
∗)µ`m .
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Since f∗ and f∗ are adjoint functors, we obtain a canonical morphism inD+(X ′ét):

f∗(Rj∗)µ`m −→ (Rj′∗)µ`m .

We need to compute the induced map f∗(R1j∗)µ`m→(R1j′∗)µ`m . Recall from
the previous section that (R1j∗)µ`m is identified with (Z/`m)Z in such a way
that 1 ∈ Γ(Z,Z/`m) corresponds to the negative of the class of the torsor given
by t`

m

= π. Since vZ′(π) = r, the map Hn−1(Z,Z/`m)→Hn−1(Z ′,Z/`m) in the
diagram is [r]f∗. �

2.4 H1 with coefficients Z and Gm

Lemma 2.4.1 Let X be a scheme. Let L be a field and let f : Spec(L)→X be
a morphism. We have the following properties:

(i) H1
ét(X, f∗ZL) = 0;

(ii) H1
ét(X, f∗Gm,L) = 0;

(iii) R1f∗ZL = 0;
(iv) R1f∗Gm,L = 0.

If F is a sheaf on Spec(L), then for any i ≥ 1

(v) the sheaf Rif∗F is a torsion sheaf;
(vi) the group Hi

ét(X, f∗F) is a torsion group.

Proof. The spectral sequence (2.4) gives an injection

H1
ét(X, f∗(F)) ↪→ H1

ét(Spec(L),F).

Statements (i) and (ii) then follow since H1(L,ZL) = 0 and H1(L,Gm,L) = 0
(Hilbert’s theorem 90).

The sheaf R1f∗ZL is associated to the presheaf sending an étale open set
U→X to H1

ét(U×X Spec(L),ZL). But this group is zero, because U×X Spec(L)
is either empty or the spectrum of a finite product of fields, and H1

ét(E,ZE) = 0
when E is a field. This proves (iii).

A similar argument, which uses Hilbert’s theorem 90, proves (iv).
The sheaf Rif∗F is associated to the presheaf which sends an open set U→X

to Hi
ét(U ×X Spec(L),F). This group is a direct sum of Galois cohomology

groups, which are torsion groups for i ≥ 1. This proves (v).
In our case the spectral sequence (2.4) takes the form

Epq2 = Hp
ét(X,R

qf∗F)⇒ Hn
ét(Spec(L),F).

By part (v) the terms Epq2 are torsion groups when q ≥ 1. It follows that the
kernel of the natural map

Hi
ét(X, f∗F) −→ Hi

ét(Spec(L),F)

is a torsion group. But Hi(Spec(L),F) is also a torsion group for i ≥ 1, so
statement (vi) follows. �
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Proposition 2.4.2 Let X be a normal scheme. Then H1
ét(X,ZX) = 0.

Proof. Here ZX is the sheaf associated to the constant presheaf Z. We may
assume that X is irreducible. Let i : η→X be the generic point of X. We have
the natural map ZX→i∗Zη. We claim it is an isomorphism. Indeed, let U→X
be an étale morphism. Then U is normal. If it is connected, then it is integral.
This shows that the map ZX→i∗Zη is an isomorphim. Then Lemma 2.4.1 (i)
gives H1

ét(X,ZX) = 0. �

The Proposition holds more generally under the assumption that X is geo-
metrically unibranch.

2.5 The Picard group and the Picard scheme

Definition 2.5.1 The Picard group Pic(X) of a scheme X is the group of
invertible coherent sheaves of OX-modules, considered up to isomorphism.

By this definition we have

Pic(X) = H1
zar(X,O∗X) = H1

zar(X,Gm,X).

Let π : Xét→Xzar be the continuous morphism induced by the identity on X.
We have (R1π∗)(Gm) = 0; this is Grothendieck’s version of Hilbert’s theorem 90,
see [Mil80, Prop. III.4.9]. The Leray spectral sequence then entails a canonical
isomorphism

Pic(X) = H1
zar(X,Gm,X)−̃→H1

ét(X,Gm,X). (2.20)

The same is true for H1
fppf(X,Gm,X). Alternatively, to an invertible sheaf L one

directly associates a torsor T for Gm,X defined by T (U) = IsomU (OU , f∗L),
where f : U→X is étale. This gives an equivalence of the category of invert-
ible sheaves of OX -modules and the category of étale X-torsors for Gm,X , see
[SGA4 1

2 , Arcata, Prop. II.2.3].
The rest of this section is based on Kleiman’s excellent survey [Kle05], see

also [BLR90, Ch. 8]. Fix a noetherian base scheme S and let f : X→S be a
separated morphism of finite type. For an S-scheme T we write XT = X ×S T
and write fT : XT→T for the projection to T .

The relative Picard functor PicX/S is defined as follows:

PicX/S(T ) = Pic(XT )/Pic(T ).

Let Pic(X/S) Zar, Pic(X/S) Ét, Pic(X/S) fppf be the associated sheaves in the big
Zariski, big étale, and fppf topologies.

Proposition 2.5.2 Assume that for any S-scheme T the canonical adjunction
morphism OT→fT∗f∗TOS = fT ∗OXT

is an isomorphism. Then the following
natural maps of presheaves on the category of schemes locally of finite type over
S are injective:

PicX/S ↪→ Pic(X/S) Zar ↪→ Pic(X/S) Ét−̃→Pic(X/S) fppf , (2.21)
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and the last map is an isomorphism. The first two maps in (2.21) are isomor-
phisms if f has a section. The second map is an isomorphism if f has a section
locally in the Zariski topology.

Proof. This is [Kle05, Thm. 2.5]. We sketch the proof given in [Kle05, Remark
2.11] because it is a good illustration of the use of the spectral sequence (2.4).

Take an S-scheme T . The Zariski sheaf on T , which is associated to the
presheaf sending Z/T to H1

Zar(XZ ,Gm,XZ
), is R1fT∗Gm,XT

. Hence

Pic(X/S) Zar(T ) = H0
Zar(T,R

1fT∗Gm,XT
).

The morphism fT : XT→T gives rise to the spectral sequence (2.4):

Hp
Zar(T,R

qfT∗Gm,XT
)⇒ Hp+q

Zar (XT ,Gm,XT
).

The assumption OT −̃→fT∗OXT
implies Gm,T −̃→f∗Gm,XT

. Hence the begin-
ning of the exact sequence of low degree terms of the spectral sequence is

0→Pic(T )→Pic(XT )→Pic(X/S) Zar(T )→H2
Zar(T,Gm,T )→H2

Zar(XT ,Gm,XT
),

proving the injectivity of PicX/S→Pic(X/S) Zar. A section of f induces a retrac-
tion of each canonical map

Hn
Zar(T,Gm,T )−̃→Hn

Zar(XT ,Gm,XT
),

which is therefore injective. This implies that the first map in (2.21) is an
isomorphism.

Using (2.20), the same arguments apply to the étale and fppf topologies.
Hence we obtain a commutative diagram of exact sequences

Pic(T ) → Pic(XT ) → Pic(X/S) Zar(T ) → H2
Zar(T,Gm) → H2

Zar(XT ,Gm)
|| || ↓ ↓ ↓

Pic(T ) → Pic(XT ) → Pic(X/S) Ét(T ) → H2
Ét

(T,Gm) → H2
Ét

(XT ,Gm)

|| || ↓ ↓ ↓
Pic(T ) → Pic(XT ) → Pic(X/S) fppf(T ) → H2

fppf(T,Gm) → H2
fppf(XT ,Gm)

The injectivity of PicX/S→Pic(X/S) Ét formally implies the injectivity of

Pic(X/S) Zar −→ Pic(X/S) Ét,

since the latter map is obtained from the former by passing from presheaves
to associated Zariski sheaves, and this operation preserves injectivity by the
exactness of the functor a from presheaves to sheaves [Mil80, Thm. 2.15 (a)].

In view of (2.8), the Five Lemma applied to the two lower rows of the diagram
gives an isomorphism Pic(X/S) Ét−̃→Pic(X/S) fppf . �

Remark 2.5.3 If f : X→S is flat and proper with geometrically integral fibres,
then for any morphism T→S, the map OT→fT∗OXT

is an isomorphism. (See
[Kle05, Exercise 9.3.11].) This applies for instance when S = Spec(k) is the
spectrum of a field and X is a proper, geometrically integral variety over k.



64 CHAPTER 2. ÉTALE COHOMOLOGY

The following proposition shows that the condition that OT→fT∗OXT
is an

isomorphism holds for any flat S-scheme T if it holds for T = S.

Proposition 2.5.4 Let f : X→S be a separated morphism of noetherian schemes
such that OS→f∗OX is an isomorphism. Then for any flat scheme T→S the
map OT→fT∗OXT

is an isomorphism.

Proof. The statement is local on S and T . We may thus assume S = Spec(A)
and T = Spec(B) with B flat over A. Since X is separated, we can write X as a
finite union X = ∪iXi of affine open sets Xi = Spec(Ai) with affine intersections
Xij = Spec(Aij). We have the obvious exact sequence of A-modules

0 −→ H0(X,OX) −→
∏
i

Ai −→
∏
ij

Aij .

The hypothesis that OS→f∗OX is an isomorphism then gives the exactness of
the sequence of A-modules

0 −→ A −→
∏
i

Ai −→
∏
ij

Aij .

Since B is flat over A, we have an exact sequence of B-modules

0 −→ B −→
∏
i

Ai ⊗A B −→
∏
ij

Aij ⊗A B.

The scheme XT = X×S T is covered by open subsets Xi×S T = Spec(Ai⊗AB)
with intersections Xij×S T = Spec(Aij⊗AB), hence we have an exact sequence

0 −→ H0(XT ,OXT
) −→

∏
i

Ai ⊗A B −→
∏
ij

Aij ⊗A B.

Comparing the last two exact sequences, we find H0(T,OT ) = B = H0(XT ,OXT
),

thus OT (T )→fT∗OXT
(T ) is an isomorphism. The same argument holds for any

Zariski open subset of T . We thus obtain an isomorphism OT −̃→fT∗OXT
. �

Remark 2.5.5 This result is a particular case of the following general state-
ment. Let f : X→S be a quasi-compact and quasi-separated morphism and
let F be a quasi-coherent sheaf on X. Then the formation of the direct image
sheaves Rif∗F , where i ≥ 0, commutes with flat base change over S. See (EGA
III, Prop. 1.4.15) and [Stacks, Lemma 02KH].

If any of the functors PicX/S , Pic(X/S) Zar, Pic(X/S) Ét, Pic(X/S) fppf is repre-

sentable, then the representing scheme (which is uniquely determined) is called
the Picard scheme and is denoted by PicX/S .

The main existence theorem for PicX/S is the following result of Grothendieck,
see [Kle05, Thm. 4.8] for a slightly stronger statement.
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Theorem 2.5.6 Assume f : X→S is projective and flat with integral geometric
fibres. Then the scheme PicX/S representing Pic(X/S) Ét exists, is separated and
locally of finite type over S.

For f : X→S is projective and flat, Mumford showed that PicX/S exists if
the condition that the geometric fibres are integral is weakened to the condition
that the geometric fibres are reduced and connected, provided that the irre-
ducible components of all fibres are geometrically irreducible, see [Kle05, Thm.
4.18.1]. Another important result of Grothendieck is the following theorem
[Kle05, Thm. 4.18.2, Cor. 4.18.3].

Theorem 2.5.7 Assume that S is integral and X→S is proper. Then there is a
non-empty open subset V ⊂ S such that PicXV /V exists, represents Pic(XV /V ) fppf ,
and is a disjoint union of open quasi-projective schemes. In particular, this holds
for S = Spec(k), where k is a field.

Corollary 2.5.8 Let X be a proper and geometrically integral variety over a
field k. Then for any k-scheme T there is an exact sequence of abelian groups

0 −→ PicX/k(T ) −→ PicX/k(T ) −→ Br(T ) −→ Br(XT ). (2.22)

If X(k) 6= ∅, then PicX/k(T ) = PicX/k(T ) for any k-scheme T , so that the
Picard group scheme PicX/k represents the relative Picard functor PicX/k.

Proof. By the representability of Pic(X/k) Ét we obtain (2.22) from the middle

row of the commutative diagram in the proof of Proposition 2.5.2. If X(k) 6= ∅,
then the morphism XT→T has a section, so that the map Br(T ) −→ Br(XT ) is
injective. �

Corollary 2.5.9 Let X be a proper and geometrically integral variety over a
field k. Then there is an exact sequence of abelian groups

0 −→ Pic(X) −→ PicX/k(k) −→ Br(k) −→ Br(X). (2.23)

If K is a finite Galois extension of k with Galois group G = Gal(K/k) such that
X(K) 6= ∅, then we have a canonical isomorphism

PicX/k(k) ∼= Pic(XK)G.

Proof. The exact sequence (2.23) is obtained from (2.22) by taking T = Spec(k).
Taking T = Spec(K) in (2.22), we obtain a compatible exact sequence

0 −→ Pic(XK) −→ PicX/k(K) −→ Br(K) −→ Br(XK).

This is also a sequence of G-modules. Since X(K) 6= ∅, Corollary 2.5.8 gives an
isomorphism Pic(XK)−̃→PicX/k(K). For the group k-scheme PicX/k, we have
PicX/k(k) = PicX/k(K)G. �
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2.6 Appendix. The language of stacks

This section will only be used in our sketch of de Jong’s proof of Gabber’s
theorem in Section 3.3. Our goal here is to give a very short list of key concepts
with some examples. This is not a replacement for a detailed introduction to
stacks, algebraic spaces and gerbes, for which we refer the reader to a very
helpful book by Olsson [Ols16], see also [Gir71] and [Vis05].

2.6.1 Fibred categories

We start with the definition of a fibred category [Ols16, §3.1].

Let C be a category. (We shall be mostly interested in the case when C is
the category of schemes over a base scheme S.) A category over C is a category
F together with a functor p : F→C. For an object U of C define the fibre F (U)
over U as the category whose objects are the objects u of F over U , i.e. such
that p(u) = U , and whose morphisms are morphisms in F that lift id : U→U .

A fibred category over C is a category F equipped with a functor p : F→C
such that for every morphism f : U→V in C and for every v ∈ F (V ) there exist
u ∈ F (U) and a lifting φ : u→v of f such that the following property holds.
If ψ : w→v is a morphism in F such that p(ψ) = fh is the precomposition
of f = p(φ) with a morphism h : p(w)→p(u) = U , then there exists a unique
lifting λ : w→u of h such that ψ = φλ. In this case the morphism φ is called
cartesian and u is called a pullback of v along f and is written u = f∗v.

A morphism of fibred categories p : F→C to q : G→C is a functor g :
F→G sending cartesian morphisms to cartesian morphisms such that there is
an equality of functors p = q ◦ g.

Examples 1. Let X be an object of a category C. Write C/X for the locali-
sation of C at the object X. This is the category whose objects are the pairs
(Y, f) with Y an object of C and f is a morphism Y→X, and the morphisms are
the morphisms in C making the obvious triangles commutative. The forgetful
functor C/X→C is a fibred category.

2. Let F : Cop→(Sets) be a contravariant functor from a category C to the
category of sets. Let F be the category of pairs (U, x), where U is an object of
C and x ∈ F (U). A morphism (U ′, x′)→(U, x) is a morphism g : U ′→U such
that F (g)x = x′. It is easy to check that the functor F→C sending (U, x) to U
is a fibred category. This allows one to view presheaves as categories fibred in
sets, see [Ols16, Prop. 3.2.8]. We shall return to this example in the particular
case when C is the category of schemes over a base scheme S.

Categories fibred in groupoids

The reference is [Ols16, §3.4].

A fibred category p : F→C is a category fibred in groupoids if the fibre F (U)
is a groupoid for every U in C, i.e., every morphism in F (U) is an isomorphism.
Equivalently, every morphism in F is cartesian [Ols16, Exercise 3.D, p. 85].
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Let p : F→C be a category fibred in groupoids. For X in C and for objects
x1 and x2 in F (X) define the functor

Isom(x1, x2) : (C/X)op −→ (Sets)

that associates to f : Y→X the set IsomF (Y )(f
∗x1, f

∗x2), for some chosen pull-
backs f∗x1 and f∗x2 along f . The definition of a category fibred in groupoids
then implies that a morphism g : Z→Y gives rise to a canonical map

Isom(x1, x2)(f : Y→X) −→ Isom(x1, x2)(fg : Z→X),

so this is indeed a functor. Up to canonical isomorphism it does not depend on
the choice of pullbacks.

As a particular case, for an object x of F (X) we get a functor

Autx = Isom(x, x) : (C/X)op −→ (Groups).

2.6.2 Stacks

The references for this section are [Ols16, §4.2, §4.6].
Let p : F→C be a category fibred in groupoids, where C has finite fibred

products. For a set of morphisms {Xi→X}, i ∈ I, one defines F ({Xi→X}) to
be the category of descent data, consisting of objects Ei of F (Xi), for i ∈ I,
and isomorphisms σij : pr∗1(Ei)→pr∗2(Ej) in F (Xi ×X Xj), for each i, j ∈ I,
satisfying the standard compatibility condition on triple intersections. If the
natural functor F (X)→F ({Xi→X}) is an equivalence of categories, then one
says that the set of morphisms {Xi→X}, i ∈ I, is of effective descent for F .

Now let C be a site, i.e. a category with a Grothendieck topology on it, for
example, the category Sch/S of schemes with the étale topology over a base
scheme S. A category fibred in groupoids p : F→C is a stack if for every object
X and any covering family {Xi→X}, i ∈ I, the functor F (X)→F ({Xi→X}) is
an equivalence of categories.

Equivalently [Ols16, Prop. 4.6.2], for any covering of any X in C any descent
datum with respect to this covering is effective, and Isom(x1, x2) is a sheaf, for
any x1 and x2 in F (X). In particular, Autx is also a sheaf.

Example 1 The stack associated to a sheaf on a site. A set is canonically
turned into a groupoid by defining morphisms to be the identity maps on the
elements of this set. In Example 2 of Section 2.6.1 we have seen that a functor
f : Cop→(Sets) naturally gives rise to a category fibred in sets over C, whose
fibre over X is the set f(X). This category is a stack if and only if f is a sheaf
[Vis05, Prop. 4.9].

Yoneda’s lemma

For an S-scheme X we have the functor of points hX : (Sch/S)op→(Sets)
defined by hX(Y ) = HomS(Y,X). Yoneda’s lemma says that the functor of
points is a fully faithful functor Sch/S→Hom((Sch/S)op, (Sets)), hence it gives
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an embedding of Sch/S into the category of contravariant functors from Sch/S
to (Sets). Moreover, for any functor F : (Sch/S)op→(Sets) we have a bijection

Hom(hX , F )−̃→F (X)

given by evaluating on the object id : X→X of hX(X). This allows one to
replace an S-scheme X by its functor of points hX , which is an object of a
larger category.

This operation can be refined as follows. As we have seen, for an S-scheme
X the category Sch/X of X-schemes is a fibred category over Sch/S, via the
functor that forgets X. This is a replacement for hX . The 2-Yoneda lemma
[Ols16, §3.2] says that if p : F→Sch/S is another fibred category, then the
functor

ξ : HOMSch/S(Sch/X,F ) −→ F (X)

that sends a morphism of fibred categories to the value of this morphism on the
object id : X→X of Sch/X, is an equivalence of categories.

Example 2 The stack associated to an S-scheme. This allows one to replace an
S-scheme X by the fibred category Sch/X→Sch/S. One immediately checks
that this is a category fibred in groupoids, more precisely, in sets with the
identity maps. Moreover, it is a stack since, by a theorem of Grothendieck, hX
is a sheaf in fpqc, hence also in fppf and big étale topologies [Vis05, Thm. 2.55]
(this is also trivially true for the big Zariski topology).

2.6.3 Algebraic spaces and algebraic stacks

The definition of algebraic stacks [Ols16, §8.1] uses algebraic spaces, so we need
to recall their definition too, see [Ols16, Ch. 5].

Since morphisms of schemes can be obtained by glueing morphisms on Zariski
open coverings, any S-scheme X gives rise to the big Zariski sheaf hX . Assume
that S is an affine scheme and let AffS be the category of affine schemes over
S. Let F : Affop

S →(Sets) be a functor which is a big Zariski sheaf. Then F is
representable by a separated S-scheme if and only if

(1) the diagonal morphism F→F × F is an affine closed embedding, and
(2) there is a family of affine S-schemes Xi and affine open embeddings

hXi→F such that the map of Zariski sheaves
∐
i hXi→F is surjective.

See [Ols16, Prop. 1.4.11]. (A map of Zariski sheaves A→B is surjective if for any
affine S-scheme U and for any section in B(U) there is a Zariski open covering
{Ui} of U such that the restriction of this section to each Ui is in the image of
A(Ui)→B(Ui).)

Here we use the terminology that if F and G are functors Affop
S →(Sets), then

a morphism of functors F→G has a property like “affine closed embedding” if
it is representable, i.e. for every Z ∈ AffS and any morphism hZ→G the fibred
product functor hZ ×G F is isomorphic to hY for some Y ∈ AffS , and the
resulting morphism Y→X is an affine closed embedding.
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Let S be a scheme and let F be a sheaf on (Sch/S) with the étale topology.
An important observation is that if the diagonal morphism F→F × F is repre-
sentable (by schemes), then any morphism hT→F , where T is an S-scheme, is
representable too. This follows from the isomorpism T×FZ ∼= (T×SZ)×F×F F ,
for any S-scheme Z and any morphism hZ→F .

If in the above characterisation of S-schemes as big Zariski sheaves with
certain additional properties we replace the Zariski topology with the big étale
topology, we obtain the definition of an algebraic space. Namely [Ols16, Def.
5.1.10], an algebraic space over S is a functor X from (Sch/S)op to (Sets) which
is a big étale sheaf such that

(1) the diagonal X→X ×S X is representable by schemes, and

(2) there is a surjective étale morphism U→X, where U is an S-scheme.

Condition (2) makes sense in view of the observation we made above.

Alternatively, one can define algebraic spaces as quotients of schemes by
étale equivalence relations [Ols16, §5.2]. (In particular, this leads to examples
of algebraic spaces which are quotients of schemes by free group actions, which
may not be schemes.)

Like schemes, algebraic spaces with quasi-compact diagonal are sheaves for
the fpqc and hence for fppf topology [Ols16, Thm. 5.5.2].

Consider stacks over Sch/S with étale topology. Since an algebraic space is
a big étale sheaf, it gives rise to a stack (see Example 1 in Section 2.6.2). A
morphism of stacks X→Y is called representable if for every algebraic space V
and every morphism V→Y the fibred product X ×Y V is an algebraic space.

A stack X is called algebraic (or an Artin stack) if

(1) the diagonal ∆ : X→X ×S X is representable, and

(2) there exists a smooth surjective morphism from an S-scheme to X .

Property (1) is equivalent to the following property: for every S-scheme U
and any two objets u1 and u2 in X (U) the sheaf Isom(u1, u2) is an algebraic
space [Ols16, Lemma 8.1.8].

An algebraic stack is a Deligne–Mumford stack if there is a surjective étale
morphism from an S-scheme to it.

Important examples of algebraic stacks over the category C of S-schemes are
quotient stacks [Ols16, Example 8.1.12]. If G is a smooth group S-scheme that
acts on an algebraic space X over S, then [X/G] is defined as the stack whose
objects are triples (T,P, π), where T is an S-scheme, P is a sheaf of torsors for
G×S T on the big étale site of T , and π : P→X ×S T is a G×S T -equivariant
morphism of sheaves. In the particular case when G acts trivially on S, the
quotient stack [S/G] is called the classifying stack of G and is denoted by BG.

We summarise the logical links between the concepts we discussed above in
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the following diagram:

(S-schemes)� _

��
(S-algebraic spaces)� _

��
(algebraic stacks over S)� _

��
(stacks over S)� _

��
(categories fibred in groupoids over S)

2.6.4 Gerbes and twisted sheaves

The references for this section are [Ols16, §12.2], [deJ], [Lie08].
Let G be a sheaf of abelian groups on the big étale site of Sch/S. For an

S-scheme X, by an abuse of notation, we write G for the sheaf of abelian groups
on Sch/X induced by G.

Gerbes

A G-gerbe over Sch/S is a stack p : F→C together with an isomorphism of
sheaves of groups ιx : G−̃→Autx for every object x in F such that the following
conditions hold.

(G1) Objects exist locally: every S-scheme Y has a covering {fi : Yi→Y }
such that all F (Yi) are non-empty.

(G2) Any two objects are locally isomorphic: for any objects y and y′ in F (Y )
there exists a covering {fi : Yi→Y } such that f∗i y and f∗i y

′ are isomorphic in
F (Yi) for all i.

(G3) For every S-scheme Y if σ : y→y′ is an isomorphism in F (Y ), then the
induced isomorphism σ : Auty→Auty′ is compatible with the isomorphisms ιx,
that is, ιy′ = σιy.

By (G1) and (G2) the sheaf Isom(x1, x2) is a G-torsor on Sch/X, for every
S-scheme X and every x1 and x2 in F (X), see [Ols16, Remark 12.2.3].

A morphism of gerbes is defined as a morphism of stacks f : F ′→F such

that for every object x of F ′ the composition G
ιx−→ Autx

f∗−→ Autf(x) is equal

to G
ιf(x)−→ Autf(x). Any morphism of G-gerbes is in fact an isomorphism [Ols16,

Lemma 12.2.4].
If G is a smooth group S-scheme, for example G = Gm, then any G-gerbe

on the big étale site of S is an algebraic stack [Ols16, Exercise 12.E].
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Gerbe of liftings of a torsor Let us give an example of a gerbe. Consider an
exact sequence of sheaves of groups (where G is abelian but not necessarily H
and K) on the big étale site of a given scheme S:

1 −→ G −→ H −→ K −→ 1. (2.24)

A K-torsor P over S gives rise to the G-gerbe over Sch/S whose objects are
liftings of P to an H-torsor. More precisely, consider the fibred category GP
over Sch/S whose objects are triples (X,R, ε), where X is an S-scheme, R is
an H-torsor over Sch/X, and ε is an isomorphism of the push-forward of R
along H→K (the quotient of R by G) with P . It is clear that GP is a category
fibred in groupoids over Sch/S, via the forgetful functor sending (X,R, ε) to
X, and for any object x of GP the sheaf Autx is canonically isomorphic to G
over Sch/X. Using the effectivity of descent for sheaves and for morphisms of
sheaves one shows that GP is a G-gerbe [Ols16, Prop. 12.2.6].

Gerbe associated to a cohomology class Using the previous construction,
one associates a G-gerbe to any cohomology class α ∈ H2(S,G). Namely, con-
sider an exact sequence of sheaves of abelian groups (2.24) such that H is injec-
tive. The boundary map induces an isomorphism

H1(S,K)−̃→H2(S,G),

so α gives rise to a K-torsor over Sch/S, to which we associate the gerbe of its
liftings to an H-torsor as above. The fact that morphisms of G-gerbes are iso-
morphisms implies that another injective resolution gives rise to an isomorphic
gerbe. A theorem from Giraud’s book [Gir71, Thm. IV.3.4.2 (i)] says that this
gives an isomorphism between H2(S,G) and the group of isomorphism classes
of G-gerbes over Sch/S.

In particular, the Brauer group Br(S) = H2(S,Gm) is identified with the
isomorphism classes of Gm-gerbes over Sch/S. For each α ∈ Br(S) we denote
by Sα a Gm-gerbe over Sch/S whose isomorphism class is defined by α.

Suppose that
1 −→ A −→ B −→ C −→ D −→ 1 (2.25)

is an exact sequence of sheaves of abelian groups. Consider the map that
sends a section of D to its inverse image under C→D. This inverse image
is a B/A-torsor; so we obtain a map H0(S,D)→H1(S,B/A). (According to
[Gir71, III.3.5.5.1] this map is the opposite of the map defined using injective
resolutions.) Next, associating to a B/A-torsor the gerbe of its liftings to a B-
torsor defines a map H1(S,B/A)→H2(S,A), which is in fact a homomorphism,
see [Gir71, IV.3.4.1.1]. By [Gir71, Thm. IV.3.4.2 (ii)] the above identification
of H2(S,G) with the isomorphism classes of G-gerbes over Sch/S is such that
the composition

H0(S,D) −→ H1(S,B/A) −→ H2(S,A) (2.26)

is the opposite of the map defined using injective resolutions.
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If B and C in (2.25) are injective, the first map in (2.26) is surjective with
kernel the image of H0(S,C), and the second map is an isomorphism. Lift a
cohomology class in H2(S,A) to a section in H0(S,D). The gerbe attached to a
cohomology class in H2(S,A) is isomorphic to the gerbe of liftings of this section
to a section of C.

Twisted sheaves

We refer to [Ols16, Ch. 9] for the theory of quasi-coherent sheaves on algebraic
stacks over a given scheme S. This uses the lisse-étale site of a stack.

Let π : S→S be a Gm-gerbe over Sch/S given by α ∈ H2(S,Gm). Let n
be an integer. A quasi-coherent sheaf of OS -modules E is called an n-twisted
sheaf if for any field k and any morphism x : Spec(k)→S the natural action of
Autx

∼= Gm,k on the k-vector space x∗E is via the character t 7→ tn.
It is easy to see ([Ols16, Lemma 12.3.3], [Lie08, Lemma 3.1.1.7]) that the

tensor product of an n-twisted sheaf and anm-twisted sheaf is an (n+m)-twisted
sheaf; the Hom sheaf of an n-twisted sheaf with values in an m-twisted sheaf
is an (m − n)-twisted sheaf. The functor π∗ sends quasi-coherent OS-modules
to 0-twisted sheaves on S, and induces an equivalence of these categories. In
particular, if E is an n-twisted sheaf on the gerbe S, then the sheaf End(E) is a
0-twisted sheaf and hence isomorphic to π∗A for a unique quasi-coherent sheaf
of OS-algebras.

There is a closely related notion of α-twisted sheaf. By a theorem of Artin,
if S is quasi-projective over an affine scheme, for any class α ∈ H2(S,F) where
F is a sheaf on the small étale site of S, there is an étale covering {Ui→S} of
S such that α is represented by a Čech cocycle αijk ∈ Γ(Uijk,F), see [Mil80,
Thm. III.2.17]. Here we use the standard notation Uijk = Ui ×X Uj ×X Uk.
Now let F = Gm. For α ∈ H2(S,Gm) an α-twisted sheaf (with respect to this
covering) is given by quasi-coherent sheaves of OUi

-modules Mi together with
isomorphisms ϕij :Mi|Uij

−̃→Mj |Uij
such that restricting to Uijk we have

ϕjkϕij = αijkϕik.

Note that in general an α-twisted sheaf is not a sheaf on a scheme in the usual
sense. If βijk ∈ Γ(Uijk,Gm) is another Čech cocycle, defining a class β ∈
H2(X,Gm), then the naturally defined tensor product is an (α+ β)-sheaf.

Lemma 2.6.1 Let α ∈ H2(S,Gm). The category of α-twisted sheaves on the
scheme S is equivalent to the category of 1-twisted sheaves on the Gm-gerbe S
defined by α.

Sketch of proof. See [deJ, Lemma 2.10]. To construct an α-twisted sheaf from
a 1-twisted sheaf one chooses an exact sequence (2.25) with A = Gm and B,
C injective. Choose a section in H0(S,D) that lifts α ∈ H2(S,Gm). Choose
an étale covering {Ui→S} that trivialises α. Since α restricts to 0 on each Ui,
this section lifts to a section of C over Ui. Hence the morphism Ui→S lifts
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to a morphism Ui→S. Then the pullback of our 1-twisted sheaf to Ui is a
quasi-coherent sheaf of OUi-modules. The differences of sections of C on Uij
lift to a section of A which we use to define ϕij . One then checks the formula
ϕjkϕij = αijkϕik. �
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Chapter 3

Brauer groups of schemes

There are two ways to generalise the Brauer groups of fields to schemes. The
definition of the Brauer group of a field k in terms of central simple algebras
over k readily extends to schemes as the group of equivalence classes of Azu-
maya algebras. We call it the Brauer–Azumaya group. The Brauer–Azumaya
group BrAz(X) of a quasi-compact scheme X is a torsion group. The cohomo-
logical description Br(k) = H2(k, k̄∗) also extends and gives rise to the Brauer–
Grothendieck group Br(X) = H2

ét(X,Gm,X). There is a natural inclusion of
BrAz(X) in Br(X). In Section 3.3 we reproduce de Jong’s proof of Gabber’s
theorem which says that this defines an isomorphism of BrAz(X) with the torsion
subgroup of Br(X) when X is a quasi-projective scheme. Note that there exist
integral normal noetherian schemes such that Br(X) is not a torsion group, for
example, already some normal complex surfaces are like this, see Chapter 7. In
Section 3.5 we prove a theorem of Grothendieck that the Brauer–Grothendieck
group Br(X) of a regular integral scheme X is naturally a subgroup of the
Brauer group of its field of functions F . In particular, Br(X) is then a torsion
group.

The purity theorem for the Brauer group of a regular integral scheme X is
discussed in Section 3.6 in the special case of schemes of dimension 1, and in
Section 3.7 in the general case. For torsion of order invertible on X the purity
theorem can be stated and proved in terms of residues at the generic points
of the irreducible divisors on X. We state the absolute purity theorem for the
Brauer group of a regular scheme, whose proof has been recently completed.
This leads to a description of the Brauer group of a regular integral scheme in
terms of discrete valuations of its function field.

3.1 The Brauer–Azumaya group of a scheme

The following theorem is due to Azumaya, Auslander and Goldman, and Grothen-
dieck, see [Gro68, I, Thm. 5.1] and [Mil80, Ch. IV, §2].

75
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Theorem 3.1.1 Let X be a scheme and let A be an OX-algebra which is a
locally free OX-module. The following conditions are equivalent:

(i) For each x ∈ X the fibre A ⊗ k(x) is a central simple algebra over the
residue field k(x).

(ii) The natural map A⊗OX
Aop→EndOX -mod(A) is an isomorphism.

(iii) For each x ∈ X there exist a positive integer r, a Zariski open set
U ⊂ X with x ∈ U and a finite, surjective, étale morphism U ′→U such that
AU ′ ∼= Mr(OU ′).

(iv) For each x ∈ X there exist a positive integer r, a Zariski open set U ⊂ X
with x ∈ U and a surjective étale morphism U ′→U such that AU ′ ∼= Mr(OU ′).

An algebra A satisfying these equivalent conditions is called an Azumaya
algebra. If X is connected, then the integer r in (iii) is constant on X. It is
called the degree of the algebra.

A generalisation of the Skolem–Noether theorem leads to a proof that the set
of isomorphism classes of Azumaya algebras of degree r on X is in a natural bi-
jection with the étale Čech cohomology pointed set Ȟ1

ét(X,PGLr,X), see [Mil80,
p. 122]. This pointed set classifies PGLr-torsors on X [Mil80, Cor. III.4.7].

Two Azumaya algebras A and B on X are called equivalent if there exist
locally free OX -modules P and Q locally of finite rank and an isomorphim of
OX -algebras

A⊗OX
EndOX -mod(P ) ∼= B ⊗OX

EndOX -mod(Q).

The set of equivalence classes is called the Brauer–Azumaya group BrAz(X).
Tensor product makes it into a commutative monoid such that the class of OX
is the identity element. It is actually an abelian group.

The group BrAz(X) is a torsion group when X has finitely many connected
components, which is the case when X is quasi-compact [Mil80, Prop. IV.2.7].

The equivalence of (iii) and (iv) in the above theorem is due to the following
remarkable fact: if A is a local ring, then any PGLn,A-torsor is split by a finite
étale extension of A. More generally, we have the following theorem.

Theorem 3.1.2 Let A be a semilocal ring and let G be a semisimple group
scheme over A. Then any G-torsor over A is split by a finite étale extension of
A. The same holds if G is a reductive group scheme over a normal noetherian
ring A.

Proof. See [SGA3, XXIV, Thm. 4.1.5, Cor. 4.1.6]. �

3.2 The Brauer–Grothendieck group of a scheme

Grothendieck’s definition of the (cohomological) Brauer group formally resem-
bles his formula for the Picard group (2.20).

Definition 3.2.1 The Brauer–Grothendieck group of a scheme X is

Br(X) = H2
ét(X,Gm,X).
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For an affine scheme X = Spec(A), where A is a commutative ring, one
often writes Br(A) := Br(X). In the particular case X = Spec(k), where k is
field, we obtain the classical description of the Brauer group of a field in terms
of continuous 2-cocycles of its absolute Galois group Γ = Gal(ks/k), where ks is
a separable closure of k:

Br(k) = H2(k, k∗s ) = H2(Γ, k∗s ).

One may also consider the Zariski cohomological Brauer group of a scheme X.
Let us denote it by H2

zar(X,Gm). Write π : Xét→Xzar for the morphism of sites.
Then we have Gm,zar = π∗Gm and R1π∗(Gm) = 0. From the spectral sequence
(2.4) we get an injection

H2
zar(X,Gm) ↪→ H2

ét(X,Gm).

Note, however, that this injection need not be an isomorphism. Indeed, if X is
integral and locally factorial, then H2

zar(X,Gm) = 0, see Remark 3.5.1.

A morphism of schemes f : X→Y which is locally of finite type gives rise to
a morphism (2.7). In the case of G = Gm we obtain

f∗ : Hn
ét(Y,Gm,Y ) −→ Hn

ét(X,Gm,X). (3.1)

For n = 2 this gives a natural map of Brauer groups f∗ : Br(Y )→Br(X),
which is sometimes referred to as the restriction map. If K is a field and
M : Spec(K)→X is a K-point of X, then one writes A(M) = M∗(A) ∈ Br(K)
and refers to A(M) as the value, or specialisation, of A at M .

The Brauer group and cohomology with finite coefficients

The link of the Brauer group to étale cohomology with finite coefficients is
provided by the Kummer exact sequence

1 −→ µ`n −→ Gm,X
x 7→x`n

−−−−→ Gm,X −→ 1.

Here ` is a prime invertible on X and n is a positive integer. The associated
long exact sequence of cohomology gives an exact sequence

0 −→ Pic(X)/`n −→ H2
ét(X,µ`n) −→ Br(X)[`n] −→ 0. (3.2)

At the level of H1 the Kummer sequence gives an exact sequence

0 −→ H0(X,Gm)/H0(X,Gm)`
n

−→ H1
ét(X,µ`n) −→ Pic(X)[`n] −→ 0,

where H0(X,Gm)`
n

stands for the group of `n-powers of invertible regular func-
tions on X. At the level of H3 we have another useful exact sequence

0 −→ Br(X)/`n −→ H3
ét(X,µ`n) −→ H3

ét(X,Gm)[`n] −→ 0. (3.3)
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The Mayer–Vietoris sequence

Theorem 3.2.2 Let X be a scheme and let X = U ∪ V be an open Zariski
covering. Write W = U ∩ V . Then there is an infinite exact sequence

0 −→ Γ(X,O∗X) −→ Γ(U,O∗U )⊕ Γ(V,O∗V ) −→ Γ(W,O∗W )

−→ Pic(X) −→ Pic(U)⊕ Pic(V ) −→ Pic(W )

−→ Br(X) −→ Br(U)⊕ Br(V ) −→ Br(W ) −→ H3
ét(X,Gm) −→ · · ·

Here the arrows like Pic(X)→Pic(U)⊕Pic(V ) are restriction maps, and the
arrows like Pic(U) ⊕ Pic(V )→Pic(W ) are differences of restriction maps. This
is a particular case of the Mayer–Vietoris sequence for an étale sheaf Gm,X on
X [Mil80, Ch. III, §2, Exercise 2.24].

As a consequence of Theorem 3.2.2, if the open set U is locally factorial, for
instance if U is regular, then one has a short exact sequence

0 −→ Br(X) −→ Br(U)⊕ Br(V ) −→ Br(W ).

This can be compared with Theorem 3.5.5 below.

Passing to the reduced subscheme

Proposition 3.2.3 Let X be a noetherian scheme. Let Xred ⊂ X be the reduced
subscheme.

(i) If X is affine, then the natural map Br(X)→Br(Xred) is an isomorphism.
(ii) If dim(X) ≤ 1, then Br(X)→Br(Xred) is an isomorphism.
(iii) If dim(X) ≤ 2, then the natural map Br(X)→Br(Xred) is surjective.

Proof. Cf. [De75], [CTOP02, Lemma 1.6]. There are closed immersions

Xred = X0 ⊂ X1 ⊂ . . . ⊂ Xn = X

and ideals Ij ⊂ OXj
, for j = 1, . . . , n, such that OXj−1

= OXj
/Ij and I2

j = 0.
On each Xj we have an exact sequence of sheaves for the étale topology

0 −→ Ij −→ Gm,Xj
−→ r∗Gm,Xj−1

−→ 1,

where r : Xj−1→Xj is the given closed immersion, the coherent ideal Ij is
viewed as a sheaf for the étale topology, and the map Ij→Gm,Xj

is given by
x 7→ 1 + x. For any i we have Hi

ét(Xj , Ij) = Hi
zar(Xj , Ij). If X is affine, then

all these groups vanish for i ≥ 1. If dim(X) ≤ 1, then these groups vanish for
i ≥ 2. If dim(X) ≤ 2, these groups vanish for i ≥ 3. Thus

H2
ét(Xj ,Gm) −→ H2

ét(Xj , r∗Gm,Xj−1
)

is an isomorphism if X is affine or if dim(X) ≤ 1. If dim(X) ≤ 2, then this map
is surjective. Since r is a closed immersion, we have Rir∗(F ) = 0 for i ≥ 1 and
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any sheaf F . The Leray spectral sequence for the immersion Xj−1→Xj and the
sheaf Gm gives

H2
ét(Xj , r∗Gm,Xj−1

)−̃→H2
ét(Xj−1,Gm).

Thus the natural map H2
ét(Xj ,Gm)→H2

ét(Xj−1,Gm) is an isomorphism if X is
affine or dim(X) ≤ 1; it is surjective if dim(X) ≤ 2. �

As we shall see in Section 7.1, as soon as dim(X) ≥ 2, the map Br(X)→Br(Xred)
need not be injective.

Proposition 3.2.4 Let X be a noetherian scheme. Let n be a positive integer
invertible on X. Then we have the following statements.

(a) The natural map Br(X)/n→Br(Xred)/n is injective.

(b) The natural map Br(X)[n]→Br(Xred)[n] is surjective.

(c) If X is a scheme over a field of characteristic 0, then the natural map
Br(X)tors→Br(Xred)tors is surjective.

Proof. If F is a coherent sheaf on X, then multiplication by n on Hi
zar(X,F ) =

Hi
ét(X,F ) is an isomorphism for any i ≥ 0. The arguments from the proof of

Proposition 3.2.3 then give an exact sequence

A −→ Br(X) −→ Br(Xred) −→ B

with A and B uniquely n-divisible. The three statements then follow from a
diagram chase. The second statement may also be established by using the
Kummer sequence and invariance of étale cohomology with coefficients µn for
Xred→X when n is invertible on X [SGA4, VII, §1]. �

3.3 Comparison of the two Brauer groups

Let us fix an integer n > 1. There is a natural exact sequence of group schemes
over X

1 −→ Gm,X −→ GLn,X −→ PGLn,X −→ 1, (3.4)

where Gm,X→GLn,X is the central subgroup of scalar matrices. It gives rise to
a boundary map of pointed cohomology sets

δn : Ȟ1
ét(X,PGLn,X) −→ Ȟ2

ét(X,Gm) ↪→ H2
ét(X,Gm) = Br(X).

Theorem 3.3.1 Let X be a scheme. Then we have the following statements.

(i) The set Ȟ1
ét(X,PGLn,X) can be identified with the set of isomorphism

classes of Azumaya algebras of degree n on X.

(ii) The boundary maps δn for n > 1 are compatible and induce a homomor-
phism of abelian groups BrAz(X)→Br(X).

(iii) This homomorphism BrAz(X)→Br(X) is injective.

(iv) δn(Ȟ1
ét(X,PGLn,X)) ⊂ Br(X)[n].
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Proof. See [Mil80, Thm. IV.2.5]. Milne also gives a proof of (iii) via gerbes,
which does not use the exact sequence (3.4). (See Proposition 3.3.3 below.) �

The fundamental result linking the Brauer–Azumaya group to the Brauer–
Grothendieck group is the following theorem of Gabber. Previous results in this
direction were obtained by Gabber in his thesis and also by Hoobler. A proof
in the affine case is given in [Lie08, Cor. 3.1.4.2].

Theorem 3.3.2 (Gabber) Let X be a quasi-compact separated scheme with
an ample invertible sheaf, for example, a quasi-projective scheme over an affine
scheme. Then the map

BrAz(X) −→ Br(X)tors

is an isomorphism.

By definition (see [Stacks, Def. 01PS]) X has an ample invertible sheaf means
that there exists an invertible sheaf L of OX -modules such that for any x ∈ X
there is an s ∈ H0(X,L⊗n) for some n ≥ 1 such that s(x) 6= 0 and the open
subset s 6= 0 is affine. This holds for any quasi-projective scheme over an affine
scheme.

The separateness assumption is necessary. Indeed, there exist non-separated,
normal varieties X over C with torsion elements in Br(X) that are not in the
image of BrAz(X), see [EHKV01] and [Ber05].

The remaining part of this section is a sketch of de Jong’s proof of Theo-
rem 3.3.2, see [deJ].

We begin by interpreting the map BrAz(X)→Br(X) as a map that associates
to an Azumaya algebra a certain Gm-gerbe.

To an Azumaya algebra A on X one attaches the category X (A) whose
objects are triples (T,M, j), where T is an X-scheme, M is a locally free OT -
module, and j is an isomorphism j : End(M)−̃→AT . A morphism of triples
(T,M, j)→(T ′,M′, j′) is a pair (f, i) consisting of a morphism of X-schemes
f : T→T ′ and an isomorphism i : f∗M′−̃→M compatible with j and j′. Note
that there is a natural map Gm(T )→Aut(T,M, j) sending u to (idT , u).

Proposition 3.3.3 The forgetful functor π : X (A)→Sch/X is a Gm-gerbe.

Proof. [Ols16, Prop. 12.3.6] One checks that X (A) is a stack. The verification
that X (A) is a Gm-gerbe can be done locally, so one can assume that A =
End(OnX). Furthermore, we can assume that M = OnT . After localising again,
we can assume that j comes from the conjugation by an element of Aut(OnT ).
Thus any object in X (A) is locally isomorphic to (T,OnT , id), so any two objects
are locally isomorphic. Now the automorphism sheaf of the object (T,OnT , id)
is Gm acting by scalar multiplication on OnT . �

Since the isomorphism classes of Gm-gerbes over X are classified by the el-
ements of H2(X,Gm), this gives a map BrAz(X)→Br(X). The class in Br(X)
associated to A can be described as follows. Assume that A is an Azumaya
algebra over X of dimension n2. Consider (3.4) as an exact sequence of sheaves
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of groups for the étale topology. Let P be the functor on Sch/X sending
Y→X to IsomOY

(Mn(OY ), AY ). Using essentially the Noether–Skolem the-
orem one shows that this functor is a PGLn-torsor over Sch/X. Then the
class associated to A is the image of the class of this torsor under the map
H1(X,PGLn)→H2(X,Gm) which sends a PGLn-torsor to the gerbe of its lift-
ings to a GLn-torsor as defined in Section 2.6.4, see [Ols16, Lemma 12.3.9].

To any cohomology class α ∈ Br(X) one associates a Gm-gerbe Xα (well
defined up to isomorphism) using the construction of a gerbe associated to a
cohomology class in Section 2.6.4. Namely, one takes (2.24) to be the extension
(3.4). One wants to show that Xα is isomorphic to X (A) for some A.

A sheaf F of OX -modules is called finite locally free if every point x ∈ X
has a Zariski open neighbourhood U ⊂ X such that F|U ∼= O⊕nU for some n.
We refer to [Ols16, Ch. 9] for the theory of quasi-coherent sheaves on algebraic
stacks; then one also has the notion of finite locally free sheaves in this context.

The gerbe X (A) has a tautological finite locally free 1-twisted sheaf M
together with an isomorphism End(M) ∼= π∗A of algebras over X (A). Then
A = π∗End(M).

Proposition 3.3.4 A Gm-gerbe X over Sch/X is isomorphic to the gerbe
X (A) for some Azumaya algebra A on X if and only if X has a finite locally
free 1-twisted OX -moduleM of positive rank. In this case A = π∗End(M) is an
Azumaya algebra on X, the adjunction map π∗A→End(M) is an isomorphism,
and X ∼= X (A).

Proof. See [Ols16, Prop. 12.3.11] �

The goal is thus to show that this is the case for the Gm-gerbe X = Xα,
for any α ∈ Br(X)tors, when X has an ample invertible sheaf. Recall that by
Lemma 2.6.1 the categories of 1-twisted sheaves on X and of α-twisted sheaves
on X are equivalent. So our task is to construct a finite locally free α-twisted
sheaf on X.

Let α ∈ Br(X)tors, say nα = 0 for some n ≥ 1. Let L be an ample invertible
sheaf on X. One can represent (X,L) as a filtering projective limit of pairs
(Xi,Li), where Xi is of finite type over Z and Li is an ample invertible sheaf
on Xi, with affine transition morphisms Xi→Xj . By Section 2.2.4 the group
Hn

ét(X,Gm) is naturally isomorphic to the direct limit of the groups Hn
ét(Xi,Gm).

Hence Br(X)tors is the direct limit of the groups Br(Xi)tors. Thus without loss
of generality we can assume that X is a quasi-projective scheme of finite type
over Spec(Z), so X is noetherian.

In the course of the proof X will be repeatedly replaced by XR for some
ring R which is finite and flat over Z. This is justified by a lemma of Hoobler
[Hoo82, Prop. 3] that says that if ϕ : Y→X is a finite locally free morphism
(which is the same as finite and flat as X is noetherian, see [Stacks, Lemma
02KB]), then α ∈ H2(X,Gm) comes from an Azumaya algebra on X if and
only if αY ∈ H2(Y,Gm) comes from an Azumaya algebra on Y . To prove this
lemma, de Jong argues as follows. If αY comes from an Azumaya algebra on Y ,
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then there is a finite locally free αY -twisted sheaf F on Y . Then the naturally
defined direct image ϕ∗F is a finite locally free α-twisted sheaf on X.

The proof starts with an application of a theorem of Gabber which solves the
problem in the particular case when X is affine. We do not reproduce the proof
of this result here; it can be found in [Ga81, Ch. 2, Thm. 1], see also [KO81,
Thm. 3.1] and [Lie08, Cor. 3.1.4.2]. There is a section s ∈ H0(X,L⊗m), for
some m ≥ 1, such that the open set Xs is affine. By this result, the restriction
of α to Xs is represented by an Azumaya algebra A. Hence there is a finite
locally free α-twisted sheaf Fs on Xs. By taking direct sum on the connected
components we can assume that Fs has constant rank. Let us write j : Xs→X
for the open immersion defined by Xs ↪→ X. Then j∗Fs is a quasi-coherent α-
twisted sheaf on X. Representing it as a direct limit of coherent sheaves allows
one to find a coherent α-twisted subsheaf F ⊂ j∗Fs such that j∗F = Fs.

We can ensure that Xs contains any given finite set of closed points (see
[EGA II, Cor. 4.5.4]), so our coherent α-twisted sheaf F is finite locally free at
each of these points.

A quasi-coherent sheaf of OX -modules is finite and locally free if and only if
it is flat and of finite type [Stacks, Lemma 05P2]. Thus the task is to ensure that
our α-twisted sheaf F is flat. Let Sing(F) be the set of points of X at which
F is not flat. What we have obtained now is the case c = 1 of the following
statement.

(Hc) For any finite set T of closed points of X, after a finite flat ring extension
of R, there exists an α-twisted sheaf F which is finite and locally free at T , of
constant positive rank outside of Sing(F), and such that codimXSing(F) ≥ c.

The strategy of the proof is to use ring extensions to increase c; in view of
Hoobler’s lemma, the theorem will be proved if one can make c = dim(X) + 1.

Step 1
Assume that (Hc) holds for a finite set of closed points T ⊂ X. The claim

of this step is that, after replacing R by a finite flat extension ring, there exist
n+ 1 coherent α-twisted sheaves F0, . . . ,Fn (recall that nα = 0) and finite sets
of closed points S0, . . . , Sn in X with the following properties:

(1) T is disjoint from
⋃n
i=0 Sing(Fi);

(2) each Fi has constant positive rank on X r Sing(Fi);
(3) each irreducible component of Sing(Fi) of codimension c contains a point

of Si;
(4) for any i 6= j the sheaf Fj is finite locally free at all the points of Si.

Indeed, (Hc) ensures the existence of F0 which is locally free at T . Choose a
closed point in each irreducible component of Sing(F0) of codimension c; let
S0 ⊂ X be the set of these points. Define T0 = T ∪ S0. Now (Hc) ensures
the existence of F1 which is locally free at T0. If a codimension c irreducible
component of Sing(F1) is contained in Sing(F0), then it is a codimension c
irreducible component of Sing(F0), but this is not possible because F1 is locally
free at some closed point of this component. Thus we can choose a closed
point in each codimension c irreducible component of Sing(F1) which is not
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in Sing(F0). Let S1 ⊂ X be the set of these points, and let T1 = T0 ∪ S1.
The pairs (F0, S0) and (F1, S1) satisfy properties (1) to (4) with n = 2. Next,
one constructs F2 and so on. If F0, . . . ,Fj−1 are already constructed so that
properties (1) to (4) are satisfied, one constructs Fj which is locally free at all
the points of T ∪S0∪ . . .∪Sj−1 and chooses Sj in Sing(Fj) outside of the union
of Sing(Fi) for i = 0, . . . , j − 1.

Step 2
Replacing each Fi by F⊕mi

i for appropriate positive integers mi we ensure
that there is a positive integer r such that the rank of Fi on X r Sing(Fi) is r.
Later on we shall assume that r is large. Define

G1 = (F0 ⊕ . . .⊕Fn)⊕r
n

, G2 = F0 ⊗ . . .⊗Fn.

It is clear that G1 is an α-twisted sheaf; in fact, G2 is also an α-twisted sheaf
since nα = 0. It follows that

H = Hom(G1,G2)

is a 0-twisted sheaf on X, so is a coherent OX -module. Recall that L is an
ample invertible sheaf on X. Replacing X by XR preserves the ampleness of L.

Let ψ be a section of H⊗L⊗N over X for some positive integer N , and let
F be the kernel of the map ψ : G1→G2 ⊗ L⊗N .

Let U be the complement to
⋃n
i=0 Sing(Fi) in X. The aim of Step 2 is to give

conditions for F to be finite locally free of positive rank on a larger open set than
U . More precisely, one gives conditions ensuring that codimXSing(F) ≥ c+ 1,
in terms of pullbacks at closed points of X.

To define the pullback at a geometric point x̄ = Spec(κ(x̄)) ∈ X one chooses
a lifting of the morphism x̄→X to a morphism x̄→X , which is possible as
α ∈ Br(X) is annihilated by the restriction to the algebraically closed residue
field κ(x̄). The same works for a closed point with finite residue field, by the
triviality of the Brauer group of a finite field.

Claim. Let F = Ker[ψ : G1→G2⊗L⊗N ], where ψ is a section of Hom(G1,G2⊗
L⊗N ) over X, for some positive integer N . Assume that the following conditions
are satisfied.

(a) For every geometric point x̄ = Spec(κ(x̄)) ∈ U the pullback to x̄ gives a
surjective map of κ(x̄)-vector spaces

ψx̄ : G1 ⊗ κ(x̄) −→ G2 ⊗ L⊗N ⊗ κ(x̄).

(b) For any i = 0, . . . , n and any s = Spec(κ(s)) ∈ Si the composition

F⊕r
n

i ⊗ κ(s) ↪→ G1 ⊗ κ(s) −→ G2 ⊗ L⊗N ⊗ κ(s)

is an isomorphism, whereas the following composition is zero:

(⊕j 6=iFj)⊕r
n

⊗ κ(s) ↪→ G1 ⊗ κ(s) −→ G2 ⊗ L⊗N ⊗ κ(s).
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Then F is an α-twisted sheaf on X such that Sing(F) ⊂
⋃n
i=0 Sing(Fi) and

Sing(F) is disjoint from S = ∪ni=0Si. In particular, codimXSing(F) ≥ c+ 1.

This shows that if ψ satisfying (a) and (b) exists, then (Hc) implies (Hc+1).

Proof of Claim. It is clear that F = Ker(ψ) is an α-twisted sheaf on X. The
last sentence of the statement is a consequence of the fact that each codimension
c irreducible component of Sing(Fi) contains a point of Si.

Condition (a) implies that the restriction ofH to the open subscheme U ⊂ X
is the kernel of a surjective map of finite locally free sheaves. Locally such a
map has a section, so its kernel is finite locally free.

Let us prove that condition (b) implies that F is finite locally free at each
x ∈ S. Let OX,x be the local ring at x and let Oh

X,x be the henselisation of OX,x.

The Brauer group Br(Oh
X,x) is canonically isomorphic to the Brauer group of

the residue field Br(κ(x)), see Theorem 3.4.2 (i). Since κ(x) is finite, we have
Br(κ(x)) = 0. It follows that there is a finite étale extension of local rings
OX,x ⊂ B with trivial residue field extension such that the image of α in Br(B)
is zero. Thus there is a lifting Spec(B)→X of Spec(B)→X so that each Fi pulls
back to the quasi-coherent sheaf on Spec(B) associated to a finitely generated
B-module Mi.

We have x ∈ Si for some i. Then for j 6= i the B-module Mj is free of rank
r. Let us write M = Mi. If Hx is the stalk of H at x, then

Hx ⊗B = HomB(M⊕r
n

,M⊕r
n

)⊕HomB(B⊕nr
n+1

,M⊕r
n

).

Write ψ ⊗ B = ψ1 ⊕ ψ2. Since the residue field of B is κ(x), condition (b)
gives that ψ1 is an isomorphism and ψ2 = 0. Hence F = Ker(ψ) is the direct

summand B⊕nr
n+1 ⊂ G1,B , so F is finite locally free at each point of S. This

proves the claim.

As a preparation for the last step of the proof we point out that the fibre
of H at a geometric point x̄ ∈ U is the κ(x̄)-vector space of matrices of size
(n + 1)rn+1 × rn+1. Condition (a) at x̄ is satisfied if ψx̄ avoids the subset
of matrices of rank less than rn+1. This is a closed homogeneous subset of
codimension

(n+ 1)rn+1 − rn+1 + 1 > nrn+1.

We can make r arbitrarily large and thus ensure that this codimension is greater
than dim(X) + 1.

Step 3
It remains to show that if N is sufficiently large, then there exists a section

ψ satisfying conditions (a) and (b) above. This is a purely algebraic-geometric
statement, so this part of the proof has nothing to do with either Brauer elements
or gerbes.

Let R be a ring which is finite and flat over Z, and let X be a quasi-projective
scheme over R with an invertible sheaf L. We write L for the line bundle on
X whose sheaf of sections is L. Let H be a coherent OX -module which is finite
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locally free over an open subscheme U ⊂ X. We write H for the vector bundle
on U whose sheaf of sections is the restriction of H to U . For any point x in X
fix an isomorphism L ⊗ κ(x) ∼= Lx ∼= κ(x).

Suppose that for every u ∈ U we are given a closed homogeneous subset
Cu ⊂ Hu of codimension greater than dim(X)+1. Suppose also that for a finite
set of closed points S ⊂ X r U we are given ψs ∈ H ⊗ κ(s), for each s ∈ S.
Then there exists a positive integer N , a finite flat extension of rings R ⊂ R′

and a section ψ ∈ Γ(XR′ ,H ⊗ L⊗N ) such that ψu /∈ Cu ⊗ L⊗Nu for u ∈ UR′ ,
and for each closed point s′ of XR′ over a point s ∈ S the value of ψ at s′ is a
non-zero multiple of ψs.

This isomorphism Lu ∼= κ(u) identifies Cu ⊂ Hu with Cu⊗L⊗Nu ⊂ Hu⊗L⊗Nu .

For the proof we may assume R = Z.

Let IS ⊂ OX be the sheaf of ideals defined by S. For all N sufficiently large
one can find sections Ψi ∈ Γ(X, IS ⊗ H ⊗ L⊗N ), for i in a finite set I, such
that the map of sheaves OIX→IS ⊗H⊗ L⊗N sending 1i to Ψi is surjective. In
particular, the sections Ψi generate the sheaf H⊗L⊗N over U .

Next, by increasing N further, for each s ∈ S one finds a section Ψs ∈
Γ(X, ISr{s} ⊗H⊗L⊗N ) whose value at s is ψs.

Let A = Spec(Z[xi, ys; i ∈ I, s ∈ S]) be the affine space over Z of relative
dimension |I|+ |S|. Write A×X for A×ZX and consider the universal section

Ψ =
∑
i∈I

xiΨi +
∑
s∈S

ysΨs

of the pullback of H⊗L⊗N to A×X. The value Ψa,u of Ψ at (a, u) ∈ A×U is an
element of Hu⊗L⊗N which we identified with Hu. Let Z ⊂ A×X be the closed
subset defined by the condition Ψa,u ∈ Cu. The values of the sections Ψi, for
i ∈ I, generate the κ(u)-vector space Hu, hence the dimension of each fibre of the
natural projection Z→U is at most |I|+ |S|− codimHu(Cu). By assumption we
have codimHu

(Cu) > dim(X) + 1, hence dim(Z) ≤ |I|+ |S| − 1 = dim(A)− 2.
Thus the Zariski closure Z ′ of the projection of Z to A has codimension at
least 2.

Let π : A→Z be the structure morphism. For each s ∈ S define Zs ⊂ A to be
the closed subscheme defined by the ideal (π(s), ys). To finish the proof we need
to find a point in A(R) outside of the codimension 2 closed subset Z ′∪

⋃
s∈S Zs,

for some finite flat extension Z ⊂ R. Note that π induces a surjective morphism
ArZ→Spec(Z). The result then follows from Rumely’s local-to-global principle
[Rum86] in the form of [Mor89, Thm. 1.7]: an irreducible scheme V which is
separated and of finite type over a ring of integers OK of a number field K has a
point in the ring of all algebraic integers if the structure morphism V→Spec(OK)
is surjective with geometrically irreducible generic fibre VK . It is clear that such
a point is defined over a finite extension of Z. �
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3.4 Localising elements of the Brauer group

Lemma 3.4.1 Let X be a scheme. For any element α ∈ Br(X) there exists an
étale cover f : U→X such that f∗α = 0 ∈ Br(U).

Proof. This is a special case of a general statement: for any étale sheaf F on
a scheme X, any i > 0 and any cohomology class α ∈ Hi(X,F ) there exists an
étale cover {Uj→X}j∈J such that the restriction of α to each Hi(Uj , F ) is zero
[Mil80, Prop. III.2.9, Remark III.2.11 (a)]. Take U =

∐
j∈J Uj . �

Theorem 3.4.2 (Azumaya) Let R be a henselian local ring with residue field k.
(i) The embedding of the closed point Spec(k)→Spec(R) induces an isomor-

phism Br(R)−̃→Br(k).
(ii) If R is a strictly henselian local ring, i.e. if k is separably closed, then

Br(R) = 0.

Proof. For any smooth quasi-projective commutative group R-scheme G we
have an isomorphism Hi(Spec(R), G)−̃→Hi(k,G ×R k) when i ≥ 1, see [Mil80,
Remark III.3.11 (a)]. For G = Gm we get the desired statement Br(R)−̃→Br(k).

(ii) follows from (i). Alternatively, by [Mil80, Thm. I.4.2 (d)] an étale
morphism U→Spec(R) has a section provided U contains a k-point which goes
to the closed point of Spec(R). Thus (ii) is a consequence of Lemma 3.4.1. �

The original theorem of Azumaya concerns the Brauer–Azumaya group. We
briefly outline the proof given in [Mil80, Cor. IV.2.13]. Let α ∈ Br(R). Since
R is local henselian, Lemma 3.4.1 implies that there exists a finite étale cover
R′/R of henselian local rings such that α goes to 0 under the natural map
Br(R)→Br(R′). This implies that α belongs to BrAz(R). Therefore, BrAz(R) =
Br(R). Then one applies Hensel’s lemma to suitable auxiliary smooth schemes
over R to show that BrAz(R) = Br(k).

Corollary 3.4.3 Let R be a noetherian henselian local ring with maximal ideal
m. Let R̂ be the m-adic completion of R. Then the natural map Br(R)→Br(R̂)
is an isomorphism.

Proof. Since R is noetherian, R̂ is a complete local ring with residue field R/m.

In particular, R̂ is a henselian local ring. Now Azumaya’s theorem says that
the natural map Br(R)→Br(R̂) is the identity map on Br(R/m). �

Corollary 3.4.4 Let k be a field, let X be a k-scheme and let P ∈ X(k) be a k-
point. For any α ∈ Br(X) with α(P ) = 0 ∈ Br(k) there exist an étale morphism
f : U→X and a k-point M ∈ U(k) such that f(M) = P and f∗α = 0 ∈ Br(U).

Proof. Let R be the henselisation of the local ring of X at P . By Theorem
3.4.2 (i) the image of α under the natural map Br(X)→Br(R) is zero. The ring
R is a filtering direct limit of rings Ri, each of them equipped with an étale map
fi : Spec(Ri)→X and a k-point Mi such that fi(Mi) = P . The group Br(R) is
the direct limit of the groups Br(Ri), see Section 2.2.4. Thus α goes to zero in
Br(Ri) for some i, so we can take U = Spec(Ri). �.
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Lemma 3.4.5 Let k be a field and let X be a variety over k. Let A ∈ Br(X).
There exists an integer n > 0 such that nA vanishes in each residue field of X.

Proof. Suppose this has been proved for all varieties of dimension at most d.
Let X be a variety of dimension d+1. To prove the result for X we may assume
that it is reduced and irreducible. Let k(X) be its function field. By Section
2.2.4, the torsion group Br(k(X)) is the direct limit of the groups Br(U), where
U is non-empty open in X. Thus there exists a non-empty open set U ⊂ X
such that the restriction of A to U is an element of Br(U) annihilated by some
positive integer n. Let Z = X rU . By the induction hypothesis there exists an
integer m > 0 such that the restriction of mA to residue fields of Z vanishes.
Thus the restriction of nmA to residue fields of X vanishes. �

3.5 Going over to the generic point

A noetherian scheme X is called geometrically locally factorial if for any étale
U→X each local ring of U is a unique factorisation domain. In particular, X is
normal.

The notion is local on X for the Zariski topology. A regular local ring is
geometrically locally factorial. More generally, a noetherian local ring which
is a complete intersection in a regular local ring and which is regular in codi-
mension ≤ 3 is geometrically locally factorial. For this result of Auslander and
Buchsbaum, see [SGA2, Thm. XI.3.14].

Let X be a normal integral noetherian scheme and let j : Spec(F ) ↪→ X be
its generic point. There is a natural exact sequence of sheaves in étale topology,
which describes the embedding of the group of invertible regular functions into
the group of non-zero rational functions as the kernel of the divisor map:

0 −→ Gm,X −→ j∗Gm,F −→
⊕

D∈X(1)

iD∗Zk(D), (3.5)

see [Mil80, Example II.3.9]. Here iD : Spec(k(D)) ↪→ X is the embedding of
the generic point of an irreducible divisor D ⊂ X; the direct sum ranges over
all such divisors. The map j∗Gm,F→iD∗Zk(D) can be described on an étale
open set U→X as follows. Let D′ be an irreducible divisor on U contained in
D ×X U . Since X is normal, U is also normal, hence the local ring OU,D′ is
a discrete valuation ring with valuation vD′ : OU,D′ r {0}→N. The group of
sections H0(U, j∗Gm,F ) is the group of invertible elements in the ring of rational
functions on U . The map H0(U, j∗Gm,F )→H0(U, iD∗Zk(D)) sends a function f
to the integer vD′(f).

Now assume, in addition, that X is geometrically locally factorial. Then
Weil divisors are the same as Cartier divisors, i.e. any divisor locally at each
point is given by one equation. Thus (3.5) extends to an exact sequence

0 −→ Gm,X −→ j∗Gm,F −→
⊕

D∈X(1)

iD∗Zk(D) −→ 0. (3.6)
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Remark 3.5.1 The exact sequence (3.6) restricted to the Zariski site of X
is a flasque resolution of the Zariski sheaf Gm,X . Recall that a Zariski sheaf
F on X is flasque if for any Zariski open set U ⊂ X the restriction map
H0(X,F)→H0(U,F) is surjective. As remarked by Grothendieck in [Gro57],
this implies Hi

zar(X,Gm,X) = 0 for i ≥ 2. This argument can be applied to any
X which is locally factorial (in the usual sense, i.e. for the Zariski topology)
and not necessarily regular.

Lemma 3.5.2 Let X be a geometrically locally factorial integral scheme, for
example, a regular integral noetherian scheme. Then the groups Hn

ét(X,Gm,X)
are torsion groups for n ≥ 2. In particular, the Brauer group Br(X) is a torsion
group.

Proof. This follows from Lemma 2.4.1 and the long exact sequence of cohomol-
ogy attached to (3.6). �

Lemma 3.5.3 Let X be a geometrically locally factorial (for example, regular)
integral scheme with generic point j : Spec(F ) ↪→ X. If D ⊂ X is an irreducible
divisor, we denote its generic point by Spec(k(D)). There is an exact sequence

0 −→ Br(X) −→ H2(X, j∗Gm,F ) −→
⊕

D∈X(1)

H1(k(D),Q/Z). (3.7)

Proof. By Lemma 2.4.1 the long exact sequence of cohomology groups attached
to (3.6) gives

0 −→ Br(X) −→ H2(X, j∗Gm,F ) −→
⊕

D∈X(1)

H2(X, iD∗Zk(D)).

By the same Lemma 2.4.1 the spectral sequence

Hp(X, (RqiD∗)(Zk(D)))⇒ Hp+q(k(D),Z)

gives an injective map H2(X, iD∗Zk(D))→H2(k(D),Z). Multiplication by any
non-zero integer is an automorphism of the abelian group Q; however, any
Galois cohomology group of positive degree is a torsion group [SerCG, Cor.
2.2.3], so Hn(k(D),Q) = 0 for n > 0. Thus the long exact sequence associated
to the exact sequence of trivial Galois modules

0 −→ Z −→ Q −→ Q/Z −→ 0 (3.8)

gives an isomorphism H1(k(D),Q/Z)−̃→H2(k(D),Z)). This gives (3.7). �

Theorem 3.5.4 Let X be a geometrically locally factorial (for example, regu-
lar) integral scheme with generic point Spec(F ). The natural map Br(X)→Br(F )
is injective. For any non-empty open subset U ⊂ X this map factors through
the natural map Br(X)→Br(U), which is therefore also injective.
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Proof. By Lemma 2.4.1 the spectral sequence

Hp(X, (Rqj∗)(Gm,F ))⇒ Hp+q(F,Gm,F ) (3.9)

implies that H2(X, j∗Gm,F ) is a subgroup of H2(F,Gm,F ) = Br(F ). Now (3.7)
shows that Br(X) is naturally a subgroup of Br(F ). �

Theorem 3.5.5 [Ber05] Let X be a separated noetherian scheme and let U ⊂ X
be an open subscheme. Assume that U contains every generic point and every
singular point of X. Then the restriction homomorphism Br(X)→Br(U) is
injective.

Proof. Let V be the open set of regular points. Then X = U ∪ V . Let W =
U ∩ V . Since V is regular, the restriction map Pic(V )→Pic(W ) is surjective.
By the Mayer–Vietoris sequence (Theorem 3.2.2) the diagonal restriction map
Br(X)→Br(U)⊕Br(V ) is injective. If α ∈ Br(X) has a trivial image in Br(U),
then it has a trivial image at each generic point of U , hence it has a trivial image
in Br(V ). Indeed, as V is regular, the restriction map to the generic points is
injective (Theorem 3.5.4). Thus α = 0 ∈ Br(X). �.

Remark 3.5.6 In Section 7.7 we give counter-examples to the injectivity of the
restriction map Br(R)→Br(K), where R is an integral local ring which is a local
complete intersection and K is the field of fractions of R. In the second counter-
example R is normal of dimension 2, in the third counter-example R is regular
in codimension 2, but not in codimension 3. The ring R is not geometrically
locally factorial.

3.6 Regular 1-dimensional schemes

This section follows [Gro68, III, §2] and [Mil80, III, Example 2.22]. Proposition
1.4.3, whose proof uses the Krull–Akizuki Theorem, enables one to recover all
results stated in [Gro68, III, §2], without the excellence assumption added in
[Mil80, III, Example 2.22].

Proposition 3.6.1 Let X be an integral regular scheme of dimension 1 with
generic point Spec(F ).

(i) For any prime ` invertible on X there is an infinite exact sequence

0→H2(X,Gm){`}→H2(F,Gm){`}→
⊕

x∈X(1)

H1(k(x),Q`/Z`)→H3(X,Gm){`}→ . . .

. . .→Hi(X,Gm){`}→Hi(F,Gm){`}→
⊕

x∈X(1)

Hi−1(k(x),Q`/Z`)→ . . .

where k(x) is the residue field of the point x ∈ X.
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(ii) If for each closed point x ∈ X the residue field k(x) is perfect, then there
is an infinite exact sequence

0→Br(X)→Br(F )→
⊕

x∈X(1)

H1(k(x),Q/Z)→H3(X,Gm)→H3(F,Gm)→ . . .

. . .→Hi(X,Gm)→Hi(F,Gm)→
⊕

x∈X(1)

Hi−1(k(x),Q/Z)→ . . .

For each x ∈ X(1) the map Br(F )→H1(k(x),Q/Z) is the composition of the
restriction Br(F )→Br(F h

x ), where F h
x is the field of fractions of the henselisation

of the local ring OX,x, and the Witt residue rW : Br(F h
x )→H1(k(x),Q/Z).

Proof. The exact sequence of sheaves (3.6)

0 −→ Gm,X −→ j∗Gm,F −→
⊕

D∈X(1)

iD∗Zk(D) −→ 0

gives rise to the long exact sequence of étale cohomology groups

. . .→Hi(X,Gm)→Hi(X, j∗Gm,F )→Hi(X,
⊕

x∈X(1)

ix∗Z)→Hi+1(X,Gm)→ . . .

Since dim(X) = 1, each inclusion ix : x→X is a closed immersion, hence a
finite morphism. Thus for any sheaf F on x we have Rqix∗(F) = 0 for i ≥ 1.
Therefore, we can re-write the above sequence as follows:

. . .→Hi(X,Gm)→Hi(X, j∗Gm,F )→
⊕

x∈X(1)

Hi(k(x),Z)→Hi+1(X,Gm)→ . . .

In particular, we have a long exact sequence

0→H2(X,Gm)→H2(X, j∗Gm,F )→
⊕

x∈X(1)

H1(k(x),Q/Z)→H3(X,Gm)→ . . .

By Lemma 2.4.1 we have R1j∗Gm,F = 0. For q ≥ 2 the stalk of Rqj∗Gm,F
at the generic point of X is the Galois cohomology group Hq(Fs,Gm), where Fs

is a separable closure of F , hence this stalk is zero. The stalk at a geometric
point x̄ above a closed point x ∈ X is Hq(F sh

x̄ ,Gm). By Proposition 1.4.3 (ii)
this group is px-primary, where px is the characteristic exponent of the residue
field k(x). If k(x) is perfect, then Hq(F sh

x̄ ,Gm) = 0 for all q ≥ 1, by Proposition
1.4.3 (iv). If this holds for all x, then Rqj∗Gm,F = 0 all q ≥ 1.

From the spectral sequence (3.9)

Hp(X,Rqj∗Gm,F )⇒ Hp+q(F,Gm,F )

we then deduce the following statements.

• For q ≥ 2 the natural map Hq(X, j∗Gm,F )→Hq(F,Gm) induces an isomor-
phism of the `-primary subgroups, for each prime ` invertible on X.
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• The natural map Hq(X, j∗Gm,F )→Hq(F,Gm) is an isomorphism for all
q ≥ 2 if for each closed point x ∈ X the residue field k(x) is perfect.

This gives the exact sequences in the proposition.
To identify the map Br(F )→H1(k(x),Q/Z) with the Witt residue we can

assume that X = Spec(Oh
X,x). Let K = F h

x be the field of functions of Oh
X,x.

We follow the arguments from the proof of Lemma 2.3.3 using similar notation.
Let Ks be a separable closure of K. Then F sh

x̄ coincides with the maximal
unramified extension Knr of K in Ks. Define

G = Gal(Ks/K), I = Gal(Ks/Knr), Γ = Gal(k(x)s/k(x)) = Gal(Knr/K) = G/I.

As discussed in Section 2.3.3, the category of étale sheaves on Spec(Oh
X,x) is

equivalent to the category of triples (M,N,ϕ), where M is a Γ-module, N
is a G-module, and ϕ : M→N I is a homomorphism of Γ-modules. Under
the correspondence of sheaves on Spec(Oh

X,x) and triples, the sheaf j∗Gm,K
corresponds to the triple (K∗nr,K

∗
s , id), the sheaf i∗Zk(x) corresponds to (Z, 0, 0),

and the map j∗Gm,K→i∗Zk(x) is given by the valuation K∗nr→Z, see [Mil80,
Example II.3.15]. According to (2.16) there is a canonical isomorphism

H2(Oh
X,x, j∗Gm,K) = H2(Γ,K∗nr).

Under this isomorphism, the map

H2(Oh
X,x, j∗Gm,K) −→ H2(k(x),Z) = H1(k(x),Q/Z)

becomes the Witt residue H2(Γ,K∗nr)→H2(Γ,Z) = H1(Γ,Q/Z). �

The following theorem gives a description of the Brauer group of a henselian
discrete valuation field K in the case when the residue field k is perfect. It
can be compared to a similar description (1.14), where n is coprime to the
characteristic of k but k is not necessarily perfect.

Theorem 3.6.2 (Witt) [Wit37] Let R be a henselian discrete valuation ring
with fraction field K and perfect residue field k. Then there is a split exact
sequence

0 −→ Br(k) −→ Br(K) −→ H1(k,Q/Z) −→ 0. (3.10)

Proof. By the functoriality of étale cohomology the embedding of the closed
point Spec(k)→Spec(R) gives rise to the specialisation map Br(R)→Br(k). This
map is an isomorphism by Theorem 3.4.2. Now (3.10) follows from Proposition
3.6.1 in view of the surjectivity of the Witt residue, see Section 1.4.3. �

Corollary 3.6.3 Let R be a henselian discrete valuation ring with fraction field
K and finite residue field k. Then Br(K)−̃→Q/Z.

Proof. By Theorem 1.2.11 (Wedderburn) we have Br(k) = 0. In this case the

Galois group Γ is the profinite completion Ẑ of Z generated by the Frobenius
automorphism. Hence Homcont(Γ,Q/Z) = Q/Z. �
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In particular, when K = Fv is the completion of a global field F at a non-
archimedean place v we obtain an isomorphism

invv : Br(Fv)−̃→Q/Z,

called the local invariant. For example, if Fv is the field of p-adic numbers Qp,
p 6= 2, and a ∈ Z∗p, by formula (1.16), invp(a, p) = 0 if and only if the Legendre

symbol
(
a
p

)
= 1.

There are other cases when the exact sequence of Proposition 3.6.1 can be
completed by 0 on the right.

Theorem 3.6.4 Let A be a semi-local Dedekind domain with field of fractions
K. Let ` be a prime invertible in A. Then there is an exact sequence

0 −→ Br(A){`} −→ Br(K){`} −→
⊕
p

H1(A/p,Q`/Z`) −→ 0,

where p ranges over the maximal ideals of A.

Proof. By Proposition 3.6.1 it remains to prove the surjectivity of the third map
in the sequence. Choose a maximal ideal p ⊂ A and let x ∈ H1(A/p,Q`/Z`).
The group H1(A/p,Q`/Z`) is the union of subgroups H1(A/p,Z/`m), so x is in
H1(A/p,Z/n) for some n = `m. It is enough to find an element α ∈ Br(K)[n]
such that ∂p(α) = x and ∂p′(α) = 0 for all maximal ideals p′ 6= p of A.

Let Ap be the localisation of A at p and let Ah
p be the henselisation of the

local ring Ap. Since Ah
p is a henselian local ring, the specialisation map

H1(Ah
p,Z/n)−̃→H1(A/p,Z/n)

is an isomorphism. Let x̃ ∈ H1(Ah
p,Z/n) be the inverse image of x under this

isomorphism.
Consider a finite separable field extension K ⊂ L with the following two

properties: if B is the integral closure of Ap in L, then the embedding of the
closed point Spec(A/p)→Spec(Ap) factors as

Spec(A/p) −→ Spec(B) −→ Spec(Ap)

and the morphism Spec(B)→Spec(Ap) is étale at the image of Spec(A/p) in
Spec(B). Let q ⊂ B be the prime ideal such that Spec(B/q) is this image of
Spec(A/p), and let Bq be the localisation of B at q. Then, as was recalled in
Section 2.1.3,

Ah
p = lim−→Bq.

We have an isomorphism of residue fields A/p = Ap/p ∼= Bq/q = B/q. Since L
is separable over K, the A-algebra B is a finitely generated A-module. By the
Krull–Akizuki theorem, B is a semi-local Dedekind domain, so B has finitely
many maximal ideals. (See [SerCL, Ch. I, §4].)
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Since H1(Ah
p,Z/n) is the inductive limit of H1(Bq,Z/n) (see Section 2.2.4),

our element x̃ ∈ H1(Ah
p,Z/n) comes from an element ρ ∈ H1(Bq,Z/n) for some

ring B as above. The injective map H1(Bq,Z/n)→H1(L,Z/n) allows us to
consider ρ as an element of H1(L,Z/n).

By the independence of valuations we can choose t ∈ B such that the
valuation of t at q is 1 and t ≡ 1 mod q′ for each maximal ideal q′ ⊂ B,
q′ 6= q. Let β ∈ H2(L, µn) = Br(L)[n] be the cup-product of the class of t
in L∗/L∗n = H1(L, µn) and the class ρ ∈ H1(L,Z/n). By Proposition 1.4.6,
corestriction gives rise to a commutative diagram

Br(L)[n] //

coresL/K

��

⊕
J⊂B

H1(B/J,Z/n)

cores(B/J)/(A/I)

��
Br(K)[n] // ⊕

I⊂A
H1(A/I,Z/n)

where the horizontal maps are residues, I ranges over the maximal ideals of A,
and J ranges over the maximal ideals of B. We have ∂q(β) = x and ∂q′(β) = 0
when q′ ⊂ B is a maximal ideal q′ 6= q. Now let α = coresL/K(β). From the
diagram we obtain ∂p(α) = x and ∂p′(α) = 0 when p′ ⊂ A is a maximal ideal
p′ 6= p. �

Remark 3.6.5 The same proof gives exact sequences

0 −→ Hi(A,µ⊗jn ) −→ Hi(K,µ⊗jn ) −→
⊕
p⊂A

Hi−1(A/p, µ⊗j−1
n ) −→ 0,

where n is invertible in A, for any i, j ∈ Z, i ≥ 1, see [CTKH97, Cor. B.3.3].
It works also for various other theories such as Milnor’s K-theory with torsion
coefficients (H. Gillet).

3.7 Purity for the Brauer group

The results in this section were proved by Grothendieck in the case of smooth va-
rieties over a field for the torsion prime to the characteristic of the field. Thanks
to Gabber’s absolute purity (Theorem 2.3.1) we can state Grothendieck’s purity
theorem for the Brauer group in a more general form.

Theorem 3.7.1 Let X be a regular integral scheme, let U ⊂ X be a dense open
subscheme and let ` be a prime different from the residual characteristics of X.
Let D1, . . . , Dm be the irreducible components of the regular locus 1 of X r U
that have codimension 1 in X. Then we have an exact sequence

0 −→ Br(X){`} −→ Br(U){`} −→
m⊕
i=1

H1(Di,Q`/Z`). (3.11)

1In [Gro68, Chap. III, §6 formula (6.4) and Thm. 6.1] this regularity condition should
have been added.
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We denote the image of α ∈ Br(U){`} in H1(Di,Q`/Z`) ⊂ H1(k(Di),Q`/Z`)
by ∂Di(α).

This theorem immediately implies the following

Theorem 3.7.2 Let X be a regular integral scheme, let U ⊂ X be a dense open
subscheme and let ` be a prime different from the residual characteristics of X.
Then we have an exact sequence

0 −→ Br(X){`} −→ Br(U){`} −→
⊕
D

H1(k(D),Q`/Z`), (3.12)

where D ranges over the irreducible divisors of X with support in X r U and
k(D) denotes the residue field at the generic point of D.

The residue of α ∈ Br(U){`} at the generic point of Di is defined as the
image

∂Di
(α) ∈ H1(k(Di),Q`/Z`).

Passing to the inductive limit over U one deduces the following corollary.

Corollary 3.7.3 Let X be a regular integral scheme with generic point Spec(F )
and let ` be a prime different from the residual characteristics of X. Then we
have an exact sequence

0 −→ Br(X){`} −→ Br(F ){`} −→
⊕

D∈X(1)

H1(k(D),Q`/Z`), (3.13)

where k(D) denotes the residue field at the generic point of D.

Proof of Theorem 3.7.1. Let Z = X r U . Applying the functor ExtX(·,Gm) to
the exact sequence (2.10) we obtain a long exact sequence of cohomology with
support:

. . . −→ Hn
Z(X,Gm) −→ Hn(X,Gm) −→ Hn(U,Gm) −→ Hn+1

Z (X,Gm) −→ . . .

Let us first consider the case when Z is regular of codimension c in X at each
point of Z. By the Kummer sequence the sheaf HnZ(X,Gm)[`m] is a quotient
of the sheaf HnZ(X,µ`m). The latter sheaf is 0 when n ≤ 2c − 1 by Gabber’s
absolute purity (Theorem 2.3.1). Thus for c ≥ 2 the spectral sequence (2.9)
with F = Gm,X , namely,

Hp(Z,HqZ(X,Gm,X))⇒ Hp+q
Z (X,Gm,X) (3.14)

gives H2
Z(X,Gm){`} = H3

Z(X,Gm){`} = 0. Hence in this case the above long
exact sequence gives an isomorphism

Br(X){`}−̃→Br(U){`}, (3.15)

which gives the desired statement.
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Now let c = 1. The exact sequence (3.2) based on the Kummer sequence
gives rise to the commutative diagram

0 → Pic(X)/`n → H2
ét(X,µ`n) → Br(X)[`n] → 0

↓ ↓ ↓
0 → Pic(U)/`n → H2

ét(U, µ`n) → Br(U)[`n] → 0

Since X is regular, the left hand vertical map is surjective, and the right hand
vertical map Br(X)[`n]→Br(U)[`n] is injective by Proposition 3.5.4. We have
c = 1, so Z is a divisor in X. Since Z is regular, it is a disjoint union of its
irreducible components D1, . . . , Dm. The snake lemma applied to the above
commutative diagram combined with the Gysin exact sequence (2.15) gives the
exact sequence

0→Br(X)[`n]→Br(U)[`n]→
m⊕
i=1

H1(Di,Z/`n)→H3(X,µ`n)→H3(U, µ`n).

(3.16)
Taking the limit as n→∞ we obtain (3.11).

For an arbitrary proper closed reduced subscheme Z ⊂ X we define a de-
scending chain of closed subschemes

Z = Z0 ⊃ Z1 ⊃ Z2 ⊃ . . .

as follows. For n ≥ 1 define Zn as the union of the singular locus of Zn−1 and
the union of irreducible components of Zn−1 which have codimension at least
n + 1 in X. Then Z is the disjoint union of locally closed regular subschemes
Zn−1 r Zn for n ≥ 1. We note that Zn−1 r Zn is either empty or of pure
codimension n in X r Zn.

Unless Z0 is regular and of pure codimension 1, the last non-empty comple-
ment Zn−1 r Zn, where n ≥ 2, is a closed regular subscheme of X of constant
codimension n, thus removing it from X does not affect the `-primary torsion
of the Brauer group, as we have seen in the beginning of the proof. Repeating
the operation we end up with an isomorphism Br(X){`} = Br(X r Z1){`}. If
Z = Z1, we are done. Otherwise, we can apply (3.16) to the regular subscheme
Z r Z1 of X r Z1 to obtain (3.11). �

The embedding iD : Spec(k(D))→X of the generic point of D factors as

Spec(k(D))→Spec(ÔX,D)→Spec(Oh
X,D)→Spec(OX,D)→X,

where ÔX,D is the completion and Oh
X,D is the henselisation of the discrete valu-

ation ring OX,D (the henselisation and the completion of a noetherian local ring
do not affect the residue field). Each residue map Br(F ){`}→H1(k(D),Q`/Z`)
can be computed at the level of the local ring OX,D which is a discrete valua-
tion ring with residue field k(D) and field of fractions k(X). By Lemma 2.3.3
it equals −r, where r is the residue map with finite coefficients µ`n in the exact
sequence (1.9), see Section 1.4.1.
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By Proposition 3.6.1 the residue map of Section 3.6 is the Witt residue
with coefficients in Gm. By Theorem 1.4.10 it coincides with the residue map
discussed in this section (when both maps are defined); indeed, each of these
maps is equal to −r.

It is important to understand the functorial behaviour of residues.

Theorem 3.7.4 Let X be a regular scheme and let Y ⊂ X be a regular irre-
ducible divisor. Let X ′ be a regular integral scheme and let f : X ′→X be a
morphism such that f(X ′) is not contained in Y . The divisor f−1(Y ) ⊂ X ′ can
be written as a finite sum

∑
t∈T rtZt, where Zt ⊂ X ′ is an irreducible divisor

and rt is a positive integer, for t ∈ T .
Let ` be a prime invertible on X. For any α ∈ Br(X r Y ){`} and any t ∈ T

the residue ∂Zt
(f∗(α)) is the image of rt∂Y (α) under the composite map

H1(Y,Q`/Z`) −→ H1(Zt,Q`/Z`) −→ H1(k(Zt),Q`/Z`).

Proof. Let U = XrY and let U ′ = f−1(U) = X ′rf−1(Y ). Let Z ′ be a regular
dense open subset of Zt. By removing a closed subset from X ′ we can assume
that X ′ r U ′ = Z ′.

Let m ≥ 1 be such that `mα = 0. Then α comes from some α̃ ∈ H2(U, µ`m).
We have f∗α̃ ∈ H2(U ′, µ`m). As (X,Y ) and (X ′, Z ′) are regular pairs of codi-
mension 1, we have the associated Gysin sequences. The commutative diagram
from Lemma 2.3.4 implies that ∂Z′(f

∗α̃) = rf∗∂Y (α̃). The proof is finished by
taking the restriction to the generic point Spec(k(Zt)) = Spec(k(Z ′)). �

The following general result, many special cases of which had been earlier
established, was recently proved by Česnavičius [Čes].

Theorem 3.7.5 Let X be a regular integral scheme and let U ⊂ X be an open
set whose complement is of codimension at least 2. Then the restriction map

Br(X) −→ Br(U)

is an isomorphism.

For the `-primary subgroup of the Brauer group, where ` is a prime invertible
on X, this is a special case of Theorem 3.7.2, itself a consequence of Gabber’s
purity theorem. Česnavičius’ proof uses the result in dimension ≤ 2 (Auslander–
Goldman, Grothendieck [Gro68, II, Thm. 2.1]), the result in dimension 3 (Gab-
ber [Ga81, Thm. 2’, p. 131]), Theorem 3.7.2 and other results by Gabber, as
well as Scholze’s recent theory of perfectoid spaces and tilting equivalence to
handle p-torsion in the local unequal characteristic case.

As an easy consequence, we have

Theorem 3.7.6 Let X be a noetherian, regular, integral scheme with function
field F . Then Br(X) ⊂ Br(F ) is the subgroup⋂

x∈X(1)

Br(OX,x).



3.7. PURITY FOR THE BRAUER GROUP 97

Proof. The inclusion Br(X) ⊂
⋂
x∈X(1) Br(OX,x) ⊂ Br(F ) is clear. Let α ∈

Br(F ) be in
⋂
x∈X(1) Br(OX,x). Using the fact that the Brauer group commutes

with limits (Section 2.2.4), one finds a non-empty open set U ⊂ X and an
element β ∈ Br(U) such that β maps to α ∈ Br(F ). Let U be a maximal
open subset of X with this property. Suppose that there exists a codimension 1
point x ∈ X which is not in U . Since α is in the image of Br(OX,x), there
exists an open set V ⊂ X containing x and an element γ ∈ Br(V ) that maps to
α ∈ Br(F ). Consider the Mayer–Vietoris exact sequence (Theorem 3.2.2)

Br(U ∪ V ) −→ Br(U)⊕ Br(V ) −→ Br(U ∩ V ).

Since X is regular, by Theorem 3.5.4 the map Br(U ∩ V )→Br(F ) is injective.
Thus there exists δ ∈ Br(U ∪ V ) that goes to α. Since x /∈ U , we have a
contradiction. Thus the complement to U in X has codimension at least 2. By
the purity theorem (Theorem 3.7.5) the inclusion Br(X) ⊂ Br(U) is an equality.
This completes the proof. �

This immediately implies

Proposition 3.7.7 Let X be a regular integral scheme with function field F .
Let Ai ⊂ F , for i ∈ I, be the discrete valuation rings A ⊂ F with fraction field
F which lie over X, that is, such that the map Spec(F )→X factors through
Spec(F )→Spec(A). Then Br(X) ⊂ Br(F ) is the subgroup

⋂
i∈I Br(Ai) ⊂ Br(F ).

�

Proposition 3.7.8 Let S be a scheme, let X be a regular integral scheme with
function field F and let X→S be a proper morphism. Let Ai ⊂ F , i ∈ I, be the
discrete valuation rings A ⊂ F with fraction field F which lie over S, that is,
such that the composition Spec(F )→X→S factors through Spec(F )→Spec(A).
Then Br(X) ⊂ Br(F ) is the subgroup

⋂
i∈I Br(Ai) ⊂ Br(F ). �

Proof. The morphism X→S is proper, in particular, it is separated and of finite
type. By the valuative criterion of properness [Stacks, Lemma 0BX5] there exists
a unique morphism Spec(A)→X such that the composition Spec(F )→X→S
factors as

Spec(F ) −→ Spec(A) −→ X −→ S.

It remains to apply Proposition 3.7.7. �

This proposition can be applied to a smooth, proper, integral variety X over
a field k to deduce the birational invariance of Br(X), see Proposition 5.2.2.

Proposition 3.7.9 Let S be a scheme. Let X and Y be integral, regular, proper
S-schemes, with function fields FX and FY , respectively. Suppose there exists an
isomorphism g : FX−̃→FY such that Spec(FY )−̃→Spec(FX) is an isomorphism
of S-schemes. Then the induced isomorphism Br(FX)−̃→Br(FY ) restricted to
the subgroup Br(X) is an isomorphism Br(X)−̃→Br(Y ) compatible with natural
maps Br(S)→Br(X) and Br(S)→Br(Y ).

Proof. Note that in Proposition 3.7.8 the collection of Ai, i ∈ I, is defined solely
in terms of the morphism Spec(F )→S. Therefore, an isomorphism of S-schemes
Spec(FY ) ∼= Spec(FX) gives rise to the desired isomorphisms. �
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3.8 The Brauer group and finite morphisms

Let X be a connected scheme. Let f : Y→X be a finite locally free morphism of
schemes. This means that locally for the Zariski topology on X the morphism
is of the form Spec(B)→Spec(A), where B a free A-module of finite rank. Since
X is connected, the rank is constant; let us denote it by d. If X is locally
noetherian, the hypothesis on f is equivalent to f being flat and finite.

The norm of b ∈ B is the determinant of the matrix that gives the multi-
plication by b on B with respect to some basis of B. It does not depend on
the basis. The norm is multiplicative; the norm of a ∈ A is ad. We obtain a
map of coherent sheaves f∗OY→OX . The composition of the canonical map
OX→f∗OY with f∗OY→OX sends u to ud, cf. [Mum66, Lecture 10]. The étale
sheaf Gm,X is defined by setting Gm,X(U) = Γ(U,OU )∗ for any étale morphism
U→X, and similarly for Gm,Y . We thus obtain natural morphisms of sheaves

Gm,X −→ f∗Gm,Y −→ Gm,X ,

whose composition sends u to ud. By the finiteness of f , the functor f∗ from
the category of étale sheaves on Y to the category of étale sheaves on X is
exact [Mil80, Cor. II.3.6]. Thus the Leray spectral sequence (2.4) gives an iso-
morphism Hn

ét(X, f∗Gm,Y )−̃→Hn
ét(Y,Gm,Y ) which identifies the canonical map

(3.1) with Hn
ét(X,Gm,X)→Hn

ét(X, f∗Gm,Y ). We thus obtain the restriction and
corestriction maps

Hn
ét(X,Gm,X)

resY/X−−−−−−−→ Hn
ét(Y,Gm,Y )

coresY/X−−−−−−−→ Hn
ét(X,Gm,X)

whose composition is the multiplication by d. Here the restriction resY/X is
the canonical map f∗ : Hn

ét(X,Gm,X)→Hn
ét(Y,Gm,Y ). For n = 2 we obtain the

restriction and corestriction maps of Brauer groups

resY/X : Br(X) −→ Br(Y ), coresY/X : Br(Y )→Br(X).

The following proposition, which will be used in Section 5.3, is a standard
formalism that applies to various functors.

Proposition 3.8.1 Let Y and X be schemes and let f : Y→X be a finite
locally free morphism of constant rank. Let i : V→X be a morphism and let
W = V ×XY . Let j : W→Y and g : W→V be the natural projections; here g is a
finite locally free morphism of constant rank. The following diagram commutes:

Br(Y )
j∗ //

coresY/X

��

Br(W )

coresW/V

��
Br(X)

i∗ // Br(V )
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Proof. We have fj = ig, hence f∗j∗Gm,W = i∗g∗Gm,W . There is a commutative
diagram of étale sheaves on X

f∗Gm,Y //

��

i∗g∗Gm,W

��
Gm,X // i∗Gm,V

(3.17)

where the left vertical arrow is the norm map associated to f and the right ver-
tical arrow is induced by the norm map g∗Gm,W→Gm,V . Applying cohomology
to (3.17), we see that the bottom left square of the following diagram commutes:

H2(Y,Gm,Y ) // H2(Y, j∗Gm,W ) // H2(W,Gm,W )

H2(X, f∗Gm,Y ) //

∼=

OO

��

H2(X, i∗g∗Gm,W ) //

∼=

OO

��

H2(V, g∗Gm,W )

∼=

OO

����
H2(X,Gm,X) // H2(X, i∗Gm,V ) // H2(V,Gm,V )

The right hand horizontal and the top vertical arrows are natural maps E2,0
2 →E2

in the spectral sequence attached to a morphism. In the case of top vertical maps
these are finite morphisms f and g, hence the functor f∗ from the category of
étale sheaves on Y to the category of étale sheaves on X is exact [Mil80, Cor.
II.3.6], and the same applies to g∗. Thus the top vertical maps are isomorphisms.
The bottom vertical maps are induced by the norm maps f∗Gm,Y→Gm,X and
g∗Gm,W→Gm,V . All this ensures that the whole diagram is commutative.

Retaining the four corners of the last diagram we obtain the commutative
diagram of the proposition. �

The definitions of restriction and corestriction given above can be applied to
the case when X is a scheme over a field k. A finite (not necessarily separable)
extension k ⊂ L gives rise a finite locally free morphism XL = X ×k L→X of
rank [L : k], so we obtain the restriction and corestriction maps

Br(X)
resL/k−−−−−−−→ Br(XL)

coresL/k−−−−−−−→ Br(X)

whose composition is multiplication by [L : k]. E.g., if X = Spec(k), we get the
corestiction map coresL/k : Br(L)→Br(k).

The composition coresL/k ◦ resL/k is the multiplication by [L : k] on Br(k).

One application is the following proposition.

Proposition 3.8.2 Let K be a field of transcendence degree 1 over a separably
closed field k of characteristic p > 0. Then Br(K) is a p-primary torsion group.
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Proof. There is a geometrically integral curve C over k such that K = k(C).
Let k̄ be an algebraic closure of k. Take any α ∈ Br(k(C)). By Tsen’s Theorem
1.2.12, the image of α in Br(k̄(C)) is zero. Using Theorem 1.3.5, one sees that
there is a finite extension k ⊂ E ⊂ k̄ such that resE(C)/k(C)(α) = 0. The degree
[E : k] = [E(C) : k(C)] is a power of p. By the corestriction-restriction formula,
we see that α ∈ Br(k(C)) is annihilated by a power of p. �

Proposition 3.8.3 Let X and Y be regular integral schemes and let f : Y→X
be a dominant, generically finite morphism of degree d. Then the kernel of the
natural map f∗ : Br(X)→Br(Y ) is killed by d. In particular, for any integer
n > 1 coprime to d the map f∗ : Br(X)[n]→Br(Y )[n] is injective.

Proof. By Proposition 3.5.4 the embedding of the generic point Spec(k(X)) in
X induces an injective map Br(X) ↪→ Br(k(X)), and similarly for Y . Since the
composition of restriction and corestriction

coresk(Y )/k(X) ◦ resk(Y )/k(X) : Br(k(X)) −→ Br(k(Y )) −→ Br(k(X))

is the multiplication by d, the kernel of the natural map f∗ : Br(X)→Br(Y ) is
killed by d, so our statement follows. �

Theorem 3.8.4 Let X and Y be regular integral schemes and let f : Y→X be
a finite flat morphism of degree d such that k(Y ) is a Galois extension of k(X)
with Galois group G. Then dBr(Y )G ⊂ f∗Br(X) ⊂ Br(Y ).

In particular, for any integer n > 1 coprime to d = |G| the natural map
f∗ : Br(X)[n]→Br(Y )[n]G is an isomorphism.

Proof. For Spec(A) ⊂ X an affine open set in X, the inverse image in Y is an
affine scheme Spec(B). The ring B is regular hence normal, is finite over A, and
its fraction field is k(Y ). Hence B is the integral closure of A in k(Y ). Thus the
action of G on L induces an action of G on B. Covering X by affine open sets,
we get that the action of G on k(Y ) induces an action of G on Y . This induces
an action of G on Br(Y ).

We claim that the composition

resY/X ◦ coresY/X : Br(Y ) −→ Br(X) −→ Br(Y )

is given by the formula

α 7→
∑
σ∈G

σ∗(α).

Since X and Y are regular, the embedding of the generic point into X induces
an injective map Br(X) ↪→ Br(k(X)), and there is a similar map for Y . The
claim is thus reduced to a similar claim for a finite Galois extension of fields,
which is well known, see [GS17, Ch. 3, Exercice 3].

Thus for α ∈ Br(Y )G we obtain

resY/X ◦ coresY/X(α) =
∑
σ∈G

σ∗(α) = dα ∈ Br(Y ).
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Thus dα = f∗(coresY/X(α)) belongs to f∗(Br(X)) ⊂ Br(Y ).
For the last statement of the theorem, the surjectivity is clear since we have

Br(Y )G[n] ⊂ dBr(Y )G. The injectivity follows from Proposition 3.8.3. �

The following lemma will be used in Section 5.3.

Lemma 3.8.5 Let k be a field and let A be a finite-dimensional commutative k-
algebra. Let A =

∏m
i=1Ai, where each Ai is a local k-algebra. For i = 1, . . . ,m,

let ki be the residue field of Ai, and let ni = dimk(Ai)/[ki : k]. For α ∈ Br(A)
write αi ∈ Br(ki) for the image of α under the evaluation map Br(A)→Br(ki).
Then we have

coresA/k(α) =

m∑
i=1

ni(coreski/k(αi)) ∈ Br(k).

Proof. For any x ∈ A, one has the formula [BouVIII, §12, no. 2, Prop. 6]

NA/k(x) =

m∏
i=1

Nki/k(xi)
ni ,

where xi ∈ ki is the image of x in ki, for each i = 1, . . . ,m. One needs to
prove an analogue of this formula for the Brauer group. It is clearly enough to
consider the case when A is a local k-algebra. Here some work is needed when
A is not a field. Details can be found in [ABBB, §3]. �
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Chapter 4

Smooth varieties

In this chapter we describe a general technique for computing the Brauer group
Br(X) of a smooth projective variety X over a field k. Let ks be a separable
closure of k and let Xs = X ×k ks. The Galois group Γ = Gal(ks/k) acts on
the geometric Picard group Pic(Xs) and on the geometric Brauer group Br(Xs).
One would like to understand the kernel and the cokernel of the natural map
Br(X)→Br(Xs)Γ. This can be done (with some success) using a Leray spectral
sequence which involves Galois cohomology groups with coefficients in Pic(Xs)
and Br(Xs). The structure of Pic(Xs) is discussed in the first section, and the
structure of Br(Xs) is the subject of the second section. The spectral sequence
and its differentials, with applications to the computation of Br(X), are dis-
cussed in the third section. In Section 4.4, under general geometric hypotheses
on X, one obtains more precise results about Br(X). In Section 4.5 we discuss
the Brauer groups of curves. The last section of this chapter concerns the com-
putation of the Picard and Brauer groups of a product of two smooth projective
varieties.

4.1 The Picard group of a variety over a field

In this section we recall a number of important results on the Picard group.
Basic references are the books [BLR90] by Bosch, Lütkebohmert and Raynaud,
and Kleiman’s contribution [Kle05] to [FGI+05].

Let k be a field and let X be a variety over k. Assume that X is geometrically
integral and proper. Then for any k-scheme T the canonical map OT→fT∗OXT

is an isomorphism, thus Proposition 2.5.2 tells us that the natural map between
the relative Picard functors

Pic(X/S) ét−̃→Pic(X/S) fppf

is an isomorphism. By a fundamental result of Grothendieck (Theorem 2.5.7),
this functor is representable by a commutative group scheme PicX/k which is a
disjoint union of open quasi-projective schemes.

103
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Let Pic0
X/k ⊂ PicX/k be the connected component of identity [SGA3, VIA,

2]. This is the smallest connected open subgroup of PicX/k. It is a k-group of

finite type. For any field extension K/k we have Pic0
X/k×kK ∼= Pic0

XK/K . The

Néron–Severi group is defined as the quotient NSX/k = PicX/k/Pic0
X/k. It is

étale over k [SGA3, VIA, 5.5]. In particular, we have NSX/k(ks) = NSX/k(k̄).
This is a finitely generated abelian group (Néron–Severi, [SGA6, XIII]). If K
is any field containing ks, then the natural map NSX/k(ks)→NSX/k(K) is an
isomorphism.

An invertible sheaf on X is algebraically equivalent to 0 if and only if the
corresponding point in PicX/k(k̄) belongs to Pic0

X/k [Kle05, Prop. 9.5.10].

The tangent space to PicX/k at 0 is the coherent cohomology group H1(X,OX)
[Kle05, Thm. 9.5.11]. It follows that dim PicX/k ≤ dim H1(X,OX), and the
equality holds if and only if PicX/k is smooth. If the characteristic of k is 0,
then PicX/k is smooth by Cartier’s theorem, so PicX/k has the same dimen-
sion dim H1(X,OX) at every point. As recalled in [Kle05, Rem. 9.5.15, Prop.
9.5.19], Mumford proved in [Mum66, Ch. 27] that for any field k the tangent
space to PicX/k,red at 0 is the intersection of kernels of the Bockstein homo-
morphisms H1(X,OX)→H2(X,OX). It follows that PicX/k is smooth if either
H1(X,OX) = 0 or H2(X,OX) = 0.

If X is projective, geometrically integral and geometrically normal, then
Pic0

X/k is projective [Kle05, Thm. 9.5.4]. Using properness of Pic0
X/k, Grothendieck

proved that the reduced subscheme Pic0
X/k,red is an abelian variety [FGA6,

Prop. 3.1, Cor. 3.2, p. 236]. It is called the Picard variety of X. If PicX/k is

smooth, then Pic0
X/k coincides with the Picard variety of X.

We summarise the basic properties of the Picard scheme of a normal projec-
tive variety over a field in the following theorem.

Theorem 4.1.1 Let X be a projective, geometrically integral and geometrically
normal variety over a field k.

(i) There is an exact sequence of Γ-modules

0 −→ Pic0
X/k(ks) −→ Pic(Xs) −→ NS(Xs) −→ 0,

where Pic0
X/k is a projective connected algebraic group, whose tangent space at

0 is the coherent cohomology group H1(X,OX).
(ii) If H1(X,OX) = 0 or if H2(X,OX) = 0, or if char(k) = 0, then Pic0

X/k

is smooth, hence an abelian variety of dimension dim H1(X,OX).
(iii) We have NS(Xs) = NS(X) and this group is finitely generated.
(iv) For ` 6= char(k), we have NS(X){`} ∼= H2(X,Z`(1)){`}.

Example 4.1.2 There are smooth, projective, geometrically integral surfaces
X over an algebraically closed field k such that the group k-scheme Pic0

X/k is
not reduced, hence not smooth. Such are the so called non-classical Enriques
surfaces that exist when char(k) = 2. These are minimal surfaces of Kodaira di-
mension 0 such that H1

ét(X,Q`) = 0 and dim H2
ét(X,Q`) = 10 (where ` 6= 2) and
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dim H1(X,OX) = 1. For these surfaces Pic0
X/k is α2 = Spec(k[t]/(t2)) or µ2 =

Spec(k[t]/(t2−1)), depending on whether the action of Frobenius on H1(X,OX)
is trivial or not. (The classical Enriques surfaces have dim H1(X,OX) = 0, and
hence their Picard scheme is smooth.) See [Dol16] for a detailed treatment and
explicit examples.

Corollary 4.1.3 Let X be a projective, geometrically integral and geometrically
normal variety over a field k.

(i) If H1(X,OX) = 0, then the groups Pic(Xs), Pic(X), NS(Xs) and NS(X)
are all equal. In this case this is a finitely generated abelian group.

(ii) Assume char(k) = 0. Then X has no non-trivial finite, connected,
abelian étale cover if and only if H1(X,OX) = 0 and NS(X) is torsion-free.

Proof. We only need to prove (ii). By the Kummer sequence, the variety X
has a non-trivial finite, connected, abelian étale cover if and only if Pic(X) has
non-trivial torsion, cf. [Mil80, Cor. III.4.19]. �

Albanese variety and Albanese torsor

We continue to assume that X is a projective, geometrically integral and ge-
ometrically normal variety over a field k, so that the Picard scheme PicX/k
exists (see §2.5). If, in addition, PicX/k represents the relative Picard functor
PicX/k, then it is a formal consequence of Yoneda’s lemma that X ×k PicX/k
has a universal invertible sheaf P. This is a sheaf with the following property:
for any k-scheme T and any invertible sheaf L on X ×k T there exists a unique
morphism of k-schemes h : T→PicX/k such that L = (id, h)∗P⊗p∗2N , where N
is an invertible sheaf on T and p2 : X ×k T→T is the natural projection. (See
[Kle05, Ex. 9.4.3].) The sheaf P is unique up to tensoring with a pullback of
an invertible sheaf on PicX/k. By Corollary 2.5.8, the condition that PicX/k
represents PicX/k is satisfied when X has a k-point. In this case the univer-
sal sheaf can be made unique by normalising at this point. If X is an abelian
variety, then P normalised at 0 is the usual Poincaré sheaf.

Let A = Pic0
X/k,red be the Picard variety of X; it is an abelian variety defined

over k. The dual abelian variety A∨ = Pic0
A/k is called the Albanese variety of

X and is denoted by AlbX/k. If X has a k-point x0, then the sheaf P normalised
at x0 gives rise to a morphism X→AlbX/k which sends x0 to 0. If X does not
necessarily have a k-point, we can find a K-point on X for a finite separable
extension K/k. By Galois descent, the K-morphism X ×k K→AlbX/k ×k K
descends to a k-morphism X→Alb1

X/k, where Alb1
X/k is a k-torsor of AlbX/k,

called the Albanese torsor. This morphism X→Alb1
X/k is universal among the

morphisms from X to torsors of abelian varieties over k. See [FGA6] (the
statement of Thm. 3.3 (iii), p. 237) and [Lan83]; for a more recent reference
see [Witt08].
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4.2 The geometric Brauer group

Proposition 4.2.1 Let X be a variety over a separably closed field k of char-
acteristic exponent p. Let S be a k-scheme. The kernel of the map

Br(X) −→ Br(X ×k S)

is a p-primary group. If k is algebraically closed or if S is smooth over k, then
this map is injective.

Proof. Suppose α ∈ Br(X) is in the kernel of the map. We may replace S by
an affine open set, say S = Spec(R). The k-algebra R is a direct filtering limit
of k-algebras Ai of finite type. By Section 2.2.4, Br(XR) is the direct limit of
the Brauer groups Br(XAi). Thus there exists a k-algebra of finite type A such
that α goes to zero in Br(XA). Let m be a maximal ideal of A. By Zariski’s
lemma, the quotient field K = A/m, which is a finitely generated k-algebra,
is a finite extension of k. Since k is separably closed, the degree [K : k] is
a power of p. The homomorphism A→A/m = K induces a homomorphism
Br(XA)→Br(XK). Thus α is in the kernel of the map Br(X)→Br(XK). A
corestriction argument (§3.8) gives that α is annihilated by [K : k] which is a
power of p and is 1 if k is algebraically closed.

If S is smooth over a separably closed field k, then S has a k-point, so
Br(X)→Br(X ×k S) is injective in this case. �

We shall soon see that if k is a field of characteristic p which is separably
closed, but not algebraically closed, then the kernel of the map Br(A1

k)→Br(A1
k̄
)

contains a non-trivial p-torsion subgroup.

Proposition 4.2.2 Let X be a variety over a separably closed field k. Let ` be
a prime different from char(k). Then for any separably closed field K containing
k and any n ≥ 1 the map Br(X)[`n]→Br(XK)[`n] is an isomorphism.

Proof. The smooth base change theorem in étale cohomology [Mil80, VI, Cor.
4.3] gives isomorphisms

Hi
ét(X,µ`n)−̃→Hi

ét(XK , µ`n), i ≥ 0.

Comparing the Kummer sequences (3.2) for X and XK , we deduce the sur-
jectivity of Br(X)[`n]→Br(XK)[`n]. The injectivity of this map follows from
Proposition 4.2.1. �

Theorem 4.2.3 Let X be a proper and geometrically integral variety over a
separably closed field k.

(i) There is an embedding

Ker[Br(X)→Br(X)] ↪→ H1
fppf(k,PicX/k).

(ii) If either H1(X,OX) = 0 or H2(X,OX) = 0, then the natural map
Br(X)→Br(X) is injective.
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Proof. Let p : X→Spec(k) be the structure map. The hypothesis on X implies
that for any k-scheme T the map OT→p∗OXT

is an isomorphism, see Remark
2.5.3. It follows that the natural map

Gm,k−̃→p∗Gm,X

is an isomorphism of sheaves for the fppf topology on Spec(k).
Since the group scheme Gm,k is smooth and k is separably closed, we have

Hi
fppf(k,Gm) = Hi

ét(k,Gm) = 0 for any i > 0, see (2.8). By the same result we
also have an isomorphism

Br(X) = H2
ét(X,Gm,X) ∼= H2

fppf(X,Gm,X). (4.1)

Since Hi
fppf(k, p∗Gm,X) = Hi

fppf(k,Gm) = 0 for i > 0, the Leray spectral se-
quence

Hp
fppf(k,R

qf∗Gm,X)⇒ Hp+q
fppf(X,Gm,X)

gives rise to the exact sequence

0 −→ H1
fppf(k,R

1f∗Gm,X) −→ H2
fppf(X,Gm,X) −→ H0(k,R2f∗Gm,X).

Since X is proper over a field k, the fppf sheaf R1f∗Gm,X is representable by a
k-group scheme PicX/k, see Theorem 2.5.7. Thus, using (4.1), we can rewrite
the above exact sequence as follows:

0 −→ H1
fppf(k,PicX/k) −→ Br(X) −→ H0(k,R2f∗Gm,X).

Since R2f∗Gm,X is a sheaf for the fppf topology, the last group is a subgroup
of H0(k̄, R2f∗Gm,X), so we get a natural map Br(X)→H0(k̄, R2f∗Gm,X), which
coincides with the composition

Br(X) −→ Br(X) −→ H0(k̄, R2f∗Gm,X).

This formally implies statement (i).
The k-group scheme PicX/k is an extension of the constant group of finite

type NSX/k(k) by the connected component Pic0
X/k, see Theorem 4.1.1 (i). If

either H1(X,OX) = 0 or H2(X,OX) = 0, then Pic0
X/k is a smooth k-group

scheme by Theorem 4.1.1 (ii). Using (2.8) again, we obtain Hi
fppf(k,PicX/k) ∼=

Hi(k,PicX/k) = 0 for all i > 0. �.

Let X be a variety over a field k of characteristic exponent p. Recall that
Xs = X ×k ks, where ks is a separable closure of k.

Definition 4.2.4 The group Br(Xs) is called the geometric Brauer group of
X. We denote by Br0(Xs) the divisible subgroup of Br(Xs).

Proposition 4.2.5 Let X be a variety over a field k and let n be a positive
integer coprime to char(k). Then the group Br(Xs)[n] is finite.
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Proof. The Kummer exact sequence (3.2) shows that Br(Xs)[n] is a quotient of
H2

ét(X
s, µn), which is finite by [SGA4 1

2 , Finitude, Thm. 1.1]. �

Let ` be a prime, ` 6= p. In this section we describe the `-primary subgroups
Br(Xs){`} and Br0(Xs){`}. Let us define the Tate module of Br(Xs) as

T`Br(Xs) = Hom(Q`/Z`,Br(Xs)) = lim←−Br(Xs)[`n],

when n→∞. It is clear that T`Br(Xs) is a torsion-free Z`-module. There are
natural injective maps T`Br(Xs)/`n ↪→ Br(Xs)[`n]. By Nakayama’s lemma,
T`Br(Xs) is finitely generated, so is isomorphic to Zr` for some non-negative
integer r ≤ dimF`

Br(Xs)[`]. We have an isomorphism

T`Br(Xs)⊗Z`
Q`/Z`−̃→Br0(Xs){`}. (4.2)

Let X be a smooth, proper, geometrically integral variety over k. Let bn =
dim Hn

ét(X
s,Q`) be the n-th `-adic Betti number of Xs. It is independent of `

and is equal to dim Hn(XC,Q) when ks ⊂ C. The Picard number ρ of Xs is the
rank of the Néron–Severi group NS(Xs) = NS(X).

Proposition 4.2.6 Let X be a smooth, proper, geometrically integral variety
over a field k of characteristic exponent p. Then the following statements hold.

(i) For a prime ` 6= p there is an exact sequence of Γ-modules

0 −→ Br0(Xs){`} −→ Br(Xs){`} −→ H3
ét(X

s,Z`(1))tors −→ 0, (4.3)

where

Br0(Xs){`} =
(
H2

ét(X
s,Z`(1))/(NS(Xs)⊗ Z`)

)
⊗Q`/Z` ∼= (Q`/Z`)b2−ρ.

(ii) If char(k) = 0, there is an exact sequence of Γ-modules

0 −→ Br0(X) −→ Br(X) −→
⊕
`

H3
ét(X,Z`(1))tors −→ 0, (4.4)

where Br0(X) ∼= (Q/Z)b2−ρ; the direct sum is a finite abelian group.

(iii) When k ⊂ C, the finite group
⊕

` H3
ét(X,Z`(1))tors is isomorphic to the

torsion subgroup of H3(X(C),Z).

Proof. (i) Replacing X by Xs in the exact sequence (3.2) obtained from the
Kummer sequence, gives the exact sequence

0 −→ Pic(Xs)/`n −→ H2
ét(X

s, µ`n) −→ Br(Xs)[`n] −→ 0.

By Theorem 4.1.1, the group Pic0
X/k is a connected projective algebraic group

over k, hence A = Pic0
X/k,red is an abelian variety. Since ` 6= p, the multipli-

cation by ` map A→A is finite étale, hence it is surjective on ks-points. Thus
Pic(Xs) = Pic0

X/k(ks) is divisible by `, so we can rewrite the previous exact
sequence as follows:

0 −→ NS(Xs)/`n −→ H2
ét(X

s, µ`n) −→ Br(Xs)[`n] −→ 0. (4.5)
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By the finiteness of étale cohomology with finite coefficients [SGA4 1
2 , Finitude,

Thm. 1.1], (4.5) is an exact sequence of finite abelian groups. Thus passing to
the limit for n→∞ the sequence we obtain is still exact:

0 −→ NS(Xs)⊗ Z`
cl`−→ H2

ét(X
s,Z`(1)) −→ T`Br(Xs) −→ 0, (4.6)

where the second arrow is the definition of the `-adic cycle class map cl`. Since
T`Br(Xs) is a free Z`-module, the `-primary torsion subgroup NS(Xs){`} is
canonically isomorphic to H2

ét(X
s,Z`(1))tors. We obtain an isomorphism of

abelian groups T`Br(Xs) ∼= Zb2−ρ` , which, in view of the isomorphism (4.2),
implies Br0(Xs){`} ∼= (Q`/Z`)b2−ρ.

If we repeat the same arguments at the level of H3, we see that the Kummer
sequence identifies Br(Xs){`}/Br0(Xs){`} with the kernel of the map

H3
ét(X

s,Z`(1)) −→ T`H
3
ét(X

s,Gm).

Since the Tate module is torsion-free and the Brauer group is torsion, we get an
isomorphism

Br(Xs){`}/Br0(Xs){`}−̃→H3
ét(X

s,Z`)tors.

(ii) For an arbitrary separably closed field ks a theorem of Gabber [Ga83]
says that for almost all ` the group H3

ét(X
s,Z`(1)) is torsion-free. If k has

characteristic 0, this is also a consequence of the comparison theorem between
étale cohomology and classical Betti cohomology, see [Mil80, Thm. III.3.12].

(iii) Since the étale cohomology groups of a scheme over ks with coefficients
in a torsion sheaf of order coprime to char(k) do not change under extension of
ks to a bigger separably closed field [Mil80, Cor. VI.4.3], in the case ks ⊂ C
we have H3

ét(X
s,Z`(1)) = H3

ét(X ×k C,Z`(1)). The comparison theorem [Mil80,
Thm. III.3.12] says that the latter group is isomorphic to the Betti cohomology
group H3(X ×k C,Z)⊗Z Z`(1). �

Proposition 4.2.7 Let X be a smooth, proper, geometrically integral surface
over a field k. Then for every prime ` 6= char(k) there is a natural isomorphism
of finite Γ-modules

Br(Xs){`}/Br0(Xs){`} ∼= Hom(NS(Xs){`},Q`/Z`).

Proof. In the previous proof we pointed out a natural isomorphism of finite
Γ-modules

NS(Xs){`} ∼= H2
ét(X

s,Z`(1))tors.

In view of the exact sequence (4.3), the result follows from the perfect duality
pairing for the surface Xs

H2
ét(X

s,Z`(1))tors ×H3
ét(X

s,Z`(1))tors −→ Q`/Z`,

coming from the Poincaré duality. �

After classical work of Godeaux and of Campedelli, surfaces X over C with
H1(X,OX) = 0, H2(X,OX) = 0 and NS(X)tors 6= 0 have been much discussed
in the literature, see [BPV84, Ch. VII, §11] and [BCGP12].
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Remark 4.2.8 Proposition 4.2.6 gives a precise formula for the size of the
Brauer group of a smooth projective variety X over C. In practice, it is very
hard to make these elements explicit, either as classes of Azumaya algebras over
X or even to make explicit their image in Br(C(X)) as classes of central simple
algebras, or as a sum of symbols – which they are according to the Merkurjev–
Suslin theorem.

4.3 Algebraic and transcendental Brauer groups

For a variety X over a field k there is a natural filtration on the Brauer group

Br0(X) ⊂ Br1(X) ⊂ Br(X),

which is defined as follows.

Definition 4.3.1 Let

Br0(X) = Im[Br(k)→Br(X)], Br1(X) = Ker[Br(X)→Br(Xs)].

The subgroup Br1(X) ⊂ Br(X) is called the algebraic Brauer group of X, and
the quotient Br(X)/Br1(X) is called the transcendental Brauer group of X.

A particular case of the Leray spectral sequence (2.5) for the structure mor-
phism X→Spec(k) is the spectral sequence

Epq2 = Hp(k,Hq
ét(X

s,Gm))⇒ Hp+q
ét (X,Gm). (4.7)

It gives rise to the functorial exact sequence of terms of low degree

0 −→ H1(k, ks[X]∗) −→ Pic(X) −→ Pic(Xs)Γ −→ H2(k, ks[X]∗)

−→ Br1(X) −→ H1(k,Pic(Xs)) −→ Ker[H3(k, ks[X]∗)→H3
ét(X,Gm)].

(4.8)

Proposition 4.3.2 Let X be a variety over a field k such that ks[X]∗ = k∗s .
Then there is an exact sequence

0 −→ Pic(X) −→ Pic(Xs)Γ −→ Br(k) −→ Br1(X)

−→ H1(k,Pic(Xs)) −→ Ker[H3(k, k∗s )→H3
ét(X,Gm)].

(4.9)

This sequence is contravariant functorial in X.

Proof. This follows from (4.8), since by Hilbert’s theorem 90 we have H1(k, k∗s ) =
0. �

The assumption of Proposition 4.3.2 is satisfied when X is proper and geo-
metrically integral over k. It also holds for X = Ank .
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Remark 4.3.3 1. If X has a k-point or, more generally, if X has a 0-cycle of
degree 1, then each of the maps Br(k)→Br1(X) and H3(k, k∗s )→H3

ét(X,Gm) in
(4.9) has a retraction, hence is injective. (Then Pic(X)→Pic(Xs)

Γ is an iso-
morphism.) Indeed, a k-point on X defines a section of the structure morphism
X→Spec(k). A standard restriction-corestriction argument (see Section 3.8)
reduces the case when X has a 0-cycle of degree 1 to the case when X has a
k-point.

2. The map Br1(X)→H1(k,Pic(Xs)) is surjective when there exists a vari-
ety Y over k such that ks[Y ]∗ = k∗s and H1(k,Pic(Y s)) = 0 equipped with a
morphism Y→X. This follows by comparing (4.9) for X and Y . These condi-
tions on Y are satisfied for proper and geometrically connected varieties Y such
that Pic(Y s) is a permutation Γ-module. This holds, for example, when Y is a
smooth projective quadric of dimension at least 1 or a Brauer–Severi variety.

Proposition 4.3.4 For each n ≥ 0 the differential

Hn(k,Pic(Xs)) −→ Hn+2(k, ks[X]∗) (4.10)

from the spectral sequence (4.7) coincides, up to sign, with the connecting map
defined by the 2-extension of Γ-modules

0 −→ ks[X]∗ −→ ks(X)∗ −→ Div(Xs) −→ Pic(Xs) −→ 0. (4.11)

Proof. This follows from the general description of connecting maps given in
[Sko07, Prop. 1.1], combined with [Sko01, Thm. 2.3.4 (a)]. �

Remark 4.3.5 The differential (4.10) can be seen as the map attached to the
exact triangle

p∗Gm,X −→ τ[0,1]Rp∗Gm,X −→ (R1p∗)Gm,X [−1]

in the bounded below derived category D(k) of Γ-modules. Here p : X→Spec(k)
is the structure morphism, Rp∗ : D(X)→D(k) is the derived functor from the
bounded below derived category D(X) of étale sheaves on X to D(k), and
τ[0,1] is the truncation functor. Proposition 4.3.4 then follows from the fact
that τ[0,1]Rp∗Gm,X is represented by the 2-term complex ks(X)∗→Div(Xs), as
proved in [BvH09, Lemma 2.3].

Example 4.3.6 Let k be a field of characteristic 0 which contains a primitive
cubic root of 1. Let a, b, c be independent variables and let K = k(a, b, c). Let
X ⊂ P3

K be the diagonal cubic surface

x3 + ay3 + bz3 + ct3 = 0.

By rather involved cocycle calculations, T. Uematsu [Uem14] shows that Br(X) =
Br0(X) by proving that the map H1(K,Pic(Xs))→H3(K,K∗s ) is injective. In
this case we have H1(K,Pic(Xs)) ' Z/3.
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The spectral sequence (4.7) gives rise to a complex

Br(X)
α−→ Br(Xs)Γ β−→ H2(k,Pic(Xs)).

Assume k∗s = ks[X]∗. From the general structure of spectral sequences we see
that if H3(k, k∗s ) = 0 or if X has a k-point (or a 0-cycle of degree 1), then, in
view of Remark 4.3.3 (1), the above complex becomes an exact sequence

0 −→ Br1(X) −→ Br(X)
α−→ Br(Xs)Γ β−→ H2(k,Pic(Xs)). (4.12)

Thus Br(X)/Br1(X) = Ker(β). For concrete calculations of the Brauer group
one would like to be able to compute the map β. As an approximation to this,
we now describe the following composition:

Br0(Xs)Γ ↪→ Br(Xs)Γ β−→ H2(k,Pic(Xs)) −→ H2(k,N(Xs)), (4.13)

where N(Xs) is the quotient of the Néron–Severi group NS(Xs) by its torsion
subgroup. By the results of Section 4.2, this map coincides with β when k has
characteristic 0, H1(X,O) = 0, and the groups H2

ét(X
s,Z`) and H3

ét(X
s,Z`) are

torsion-free for all primes `, so our description covers many important cases.
For the sake of simplicity we state the result in the case when X is a surface,
referring to [CTS13b, Prop. 4.1] for the general case.

Let X be a smooth, projective, geometrically integral surface over a field
k of characteristic 0. Assume that k is a finitely generated subfield of C.
We have seen that the Néron–Severi group does not change when a separa-
bly closed ground field is extended to a larger separably closed field, hence we
have an isomorphism N(Xs)−̃→N(XC). Let us write H2(XC) for the quotient
of H2(XC,Z(1)) by its torsion subgroup. For a surface X the Poincaré duality
gives rise to a perfect (unimodular) pairing

H2(XC)×H2(XC) −→ Z

given by the cup-product. By the Hodge index theorem, the restriction of this
pairing to N(XC) has a non-zero discriminant. A classical argument based on
the exponential exact sequence shows that N(XC) is a saturated subgroup of
H2(XC), in the sense that the quotient is torsion-free.

Let T (XC) be the lattice of transcendental cycles of XC defined as the orthog-
onal complement to N(XC) in H2(XC) with respect to the cup-product pairing.
Thus T (XC) is a saturated subgroup of H2(XC), and N(XC)∩T (XC) = 0. Write

N(XC)∗ = Hom(N(XC),Z), T (XC)∗ = Hom(T (XC),Z).

The cup-product gives rise to the injective maps

N(XC) ↪→ N(XC)∗, T (XC) ↪→ T (XC)∗.

By the unimodularity of the pairing on H2(XC) we have canonical isomorphisms
of finite abelian groups

N(XC)∗/N(XC) = H2(XC)/(N(XC)⊕ T (XC)) = T (XC)∗/T (XC).



4.3. ALGEBRAIC AND TRANSCENDENTAL BRAUER GROUPS 113

We deduce a natural exact sequence

0 −→ N(Xs) −→ N(Xs)∗ −→ T (XC)⊗Q/Z −→ Hom(T (XC),Q/Z) −→ 0.

By the comparison theorem between classical and étale cohomology we have an
isomorphism H2(XC,Z(1))⊗Z` ∼= H2(X,Z`(1)), compatible with the cycle class
map and the cup-product, for any prime `. Thus T (XC)⊗ Z` is the orthogonal
complement to NS(Xs) ⊗ Z` in H2(X,Z`(1)). In particular, T (XC) ⊗ Z` is
naturally a Γ-module, so that the previous 4-term exact sequence is an exact
sequence of Γ-modules.

Since N(XC) is the orthogonal complement to T (XC) in H2(XC), we obtain
T (XC)∗ = H2(XC)/N(XC). Tensoring with Q`/Z` we get

Hom(T (XC),Q`/Z`) =
(
H2(XC)/N(XC)

)
⊗Q`/Z` =

H2
ét(X

s,Z`(1))

NS(Xs)⊗ Z`
⊗Z`

Q`/Z`.

From the description of Br0(Xs) given in Proposition 4.2.6 (i) we now obtain a
canonical isomorphism of Γ-modules

Br0(Xs) = Hom(T (XC),Q/Z)

and an exact sequence of Γ-modules

0 −→ N(Xs) −→ N(Xs)∗ −→ T (XC)⊗Q/Z −→ Br0(X) −→ 0. (4.14)

The following proposition formally resembles Proposition 4.3.4.

Proposition 4.3.7 Let X be a smooth, projective, geometrically integral sur-
face over a field k of characteristic 0. The composed map (4.13) coincides, up
to sign, with the connecting map

Br0(X)Γ −→ H2(k,N(Xs))

defined by the 2-extension of Γ-modules (4.14).

Proof. See [CTS13b, Prop. 4.1]. �

Remark 4.3.8 This remark is a continuation of Remark 4.3.5 and uses the
same notation. Let X be a smooth, projective, geometrically integral surface
over a subfield of C such that Pic(Xs) is torsion-free. Then the 2-term complex

N(Xs)∗ −→ T (XC)⊗Q/Z,

which is the middle part of (4.14), represents τ[1,2]Rp∗Gm,X [1] in the bounded
below derived category of Γ-modules. This explains the previous proposition,
because the relevant differential in the spectral sequence coincides with the map
attached to the exact triangle

(R1p∗)Gm,X [−1] −→ τ[1,2]Rp∗Gm,X −→ (R2p∗)Gm,X [−2].

See [GS, Prop. 1.2] for details.
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In the rest of this section we prove that the transcendental Brauer group
Br(X)/Br1(X) has finite index in Br(Xs)Γ, at least when the characteristic of
the ground field k is 0.

Lemma 4.3.9 Let L ⊂ ks be a finite, separable extension of a field k of degree
n. Write Γk = Gal(ks/k) and ΓL = Gal(ks/L). Let X be a k-scheme and let
XL = X ×k L. The following diagram commutes:

Br(X)

α

��

resL/k // Br(XL)

αL

��

coresL/k // Br(X)

α

��
Br(Xs)Γk �

� // Br(Xs)ΓL
σ // Br(Xs)Γk

Here σ(x) =
∑
σi(x), where σi ∈ Γk are coset representatives of Γk/ΓL. The

composition of maps in each row of the diagram is the multiplication by n.

Proof. We have an isomorphism L⊗k ks−̃→k⊕ns whose components correspond
to the n distinct embeddings of L into ks. By changing the base from X to Xs

we obtain the commutative diagram

Hp
ét(X,Gm)

��

resL/k // Hp
ét(XL,Gm)

��

coresL/k // Hp
ét(X,Gm)

��
Hp

ét(X
s,Gm) �

� // Hp
ét(X

s,Gm)⊕n // Hp
ét(X

s,Gm)

where the maps in the bottom row are the diagonal embedding and the sum.
The representation of the Galois group Γk in Hp

ét(X
s,Gm)⊕n is induced from the

natural representation of ΓL in Hp
ét(X

s,Gm). Passing to Γk-invariant subgroups,
and taking p = 2, we obtain the statement of the lemma. �

Theorem 4.3.10 [CTS13b] Let X be a smooth, projective and geometrically
integral variety over a field k of characteristic 0. Then the cokernel of the
natural map α : Br(X)→Br(X)Γ is finite. In particular, the image of Br(X) in
Br(X) is finite if and only if the group Br(X)Γk is finite.

Proof. By Proposition 4.2.6 (ii) the group Br(X)[n] is finite for any positive
integer n. Hence it is enough to show that Coker(α) has finite exponent.

Suppose that k ⊂ L ⊂ k̄ is a finite extension of k such that [L : k] = n. By
Lemma 4.3.9 restriction and corestriction induce the maps

Coker(α) −→ Coker(αL) −→ Coker(α)

whose composition is the multiplication by n. Thus the kernel of the map
Coker(α)→Coker(αL) is annihilated by n, and to show that Coker(α) has finite
exponent it is enough to show that Coker(αL) has finite exponent.
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Therefore without loss of generality we can replace k by any finite extension.
In particular, we can assume that X(k) 6= ∅ and Γk acts trivially on the Néron–
Severi group NS(X). Since X(k) 6= ∅, we have the exact sequence (4.12)

0 −→ Br1(X) −→ Br(X)
α−→ Br(X)Γ β−→ H2(k,Pic(X)).

Thus it is enough to show that Im(β) has finite exponent. We do this by
considering finitely many curves on X and restricting our maps to each of these
curves. This is a meaningful strategy because Br(C) = 0 by Tsen’s theorem
(Theorem 1.2.12).

More precisely, NS(X)/tors is a finitely generated free abelian group, so
we can choose finitely many, say m, curves in X such that the intersection
pairing with the classes of these curves defines an injective group homomorphism
ι : NS(X)/tors ↪→ Zm. By taking normalisation we obtain m morphisms from
smooth projective curves defined over k to X. We replace k by a finite extension
over which all of these curves are defined.

By successively applying the Bertini theorem for hyperplane sections of
smooth projective varieties [Jou84] we find a smooth and connected curve in
X. By replacing the field k by a finite extension we can assume that we have a
smooth and geometrically connected curve C0 ⊂ X defined over k. We assume
that C0 is one of the curves from our finite family of curves equipped with finite
morphisms to X.

A morphism f : C→X, where C is a smooth, projective and geometrically
integral curve over k gives rise to the commutative diagram

Br(X)Γ βX //

f∗

��

H2(k,Pic(X))

f∗

��
0 = Br(C)Γ βC // H2(k,Pic(C))

We have thus established

Claim 1. For any morphism f : C→X the group Im(βX) is contained in the
kernel of the right vertical map in the diagram.

We have the exact sequence of Γk-modules (4.16):

0 −→ Pic0(C) −→ Pic(C) −→ NS(C) −→ 0.

Hence we obtain a commutative diagram with exact rows

H2(k,Pic0(X)) → H2(k,Pic(X)) → H2(k,NS(X))
↓ ↓ ↓

0 → H2(k,Pic0(C)) → H2(k,Pic(C)) → H2(k,NS(C))
(4.15)

The zero in the bottom row is due to the fact that H1(k,Z) = 0.
A combination of the Bertini theorem and Zariski’s connectedness theorem

(see [SGA1, Cor. 2.11, p. 210]) implies that a connected finite étale cover of
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X restricts to a connected cover of C0. In particular, the map of abelian vari-
eties Pic0

X/k→Pic0
C0/k has trivial kernel. By the Poincaré reducibility theorem

[Mum74, §19, Thm. 1] there exists an abelian subvariety A ⊂ Pic0
C0/k such that

the natural map

Pic0
X/k ×A −→ Pic0

C0/k

is an isogeny of abelian varieties over k, that is, a surjective morphism with
finite kernel. It follows that the kernel of H2(k,Pic0(X))→H2(k,Pic0(C0)) has
finite exponent. From diagram (4.15) we now obtain the following statement.

Claim 2. The kernel of the composite map

H2(k,Pic0(X)) −→ H2(k,Pic(X)) −→ H2(k,Pic(C0))

has finite exponent.

In view of (4.15), Claims 1 and 2, to complete the proof it is enough to show
that the map of Γk-modules

NS(X) −→
m⊕
i=1

NS(Ci) = Zm

induces a map ξ : H2(k,NS(X))→H2(k,Zm) whose kernel has finite exponent.
The map ξ is the composition of two maps:

H2(k,NS(X))
ξ1−→ H2(k,NS(X)/tors)

ξ2−→ H2(k,Zm).

It is enough to show that the kernel of each of these has finite exponent.

From the cohomology sequence attached to the exact sequence of Γk-modules

0 −→ NS(X)tors −→ NS(X) −→ NS(X)/tors −→ 0

we deduce that Ker(ξ1) is annihilated by the exponent of the finite group
NS(X)tors.

There exists a homomorphism of abelian groups σ : Zm→NS(X)/tors such
that the composition σ◦ι is the multiplication by a positive integer on NS(X)/tors.
This integer annihilates Ker(ξ2). �

Remark 4.3.11 This proof can be used to produce an explicit upper bound
for the size of the cokernel of α : Br(X)→Br(X)Γ, see [CTS13b, Thm. 2.2].
When H1(X,OX) = 0 or k is a number field, Proposition 4.3.7 can also be used
to give upper bounds for this cokernel, see [CTS13b, Thm. 4.2, 4.3]. In some
cases, for example in the case of diagonal quartic surfaces over Q, Proposition
4.3.7 allows one to completely determine the image of Br(X) in Br(X)Γ, see
[GS].
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4.4 Projective varieties with Hi(X,OX) = 0

Theorem 4.4.1 Let X be a smooth, projective and geometrically integral va-
riety over a field k. Assume that H1(X,OX) = 0 and NS(X) is torsion-free.
Then H1(k,Pic(X)) and Br1(X)/Br0(X) are finite groups.

Proof. From the exact sequence (4.9) we see that the quotient Br1(X)/Br0(X)
is a subgroup of H1(k,Pic(X)). The result then follows from Proposition 4.1.3
and the finiteness of H1(k,M) for any finitely generated torsion-free abelian
group M . �

Theorem 4.4.2 Let X be a smooth, projective and geometrically integral vari-
ety over a field k of characteristic 0. Assume that H1(X,OX) = 0, H2(X,OX) =
0 and the Néron–Severi group NS(X) is torsion-free. Then we have the following
properties.

(i) The groups Br(X) and Br(X)/Br0(X) are finite.
(ii) Br(X) = 0 if and only if H3

ét(X,Z`(1))tors = 0 for every prime `. In this
case Br(X) = Br1(X).

(iii) If dimX = 2, then Br(X) = 0 and Br1(X) = Br(X).

Proof. By Hodge theory the condition H2(X,OX) = 0 implies ρ = b2. Now
Proposition 4.2.6 (ii) and the comparison theorems for étale and classical coho-
mology show that Br(X) is finite and isomorphic to ⊕`H3

ét(X,Z`(1))tors. State-
ments (i) and (ii) now follow from Theorem 4.4.1. Statement (iii) follows from
(ii) and Proposition 4.2.7. �

Corollary 4.4.3 Let X be a smooth, projective, geometrically integral variety
over a field k of characteristic 0 which is either a complete intersection of di-
mension at least 2, or a K3 surface. Then H1(k,Pic(X)) and Br1(X)/Br0(X)
are finite groups.

Proof. In both cases Pic(X) is torsion free. �

A similar statement is true for rationally connected varieties (see Defini-
tion 13.1.1).

Corollary 4.4.4 Let X be a rationally connected variety over a field k of char-
acteristic 0. Then H1(k,Pic(X)) and Br(X)/Br0(X) are finite groups.

Proof. In this case Pic(X) is torsion free and Br(X) is finite. �

Corollary 4.4.5 Let X ⊂ Pnk be a smooth complete intersection of dimension
at least 3 over a field k of characteristic 0. Then the natural map Br(k)→Br(X)
is an isomorphism.

Proof. For such a variety X, by a theorem of Max Noether, the restriction map

Z = Pic(Pnk ) = Pic(Pnk̄ ) −→ Pic(X)
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is an isomorphism. The map Pic(X)→Pic(X)Γ is surjective, since the anal-
ogous statement holds for Pnk . From exact sequence (4.9) we conclude that
Br(k)→Br(X) is injective. On the other hand, H1(X,OX) = 0, H2(X,OX) = 0,
and there is no torsion in H3(X,Z`) for any prime number `. By Theorem 4.4.2,
the map Br(k)→Br(X) is surjective. �

Corollary 4.4.5 also holds over a field of characteristic p > 0, provided one
restricts attention to the prime-to-p torsion subgroup, see [PV04, Prop. A.1].

4.5 Curves

If C be a smooth, projective, geometrically integral curve over a field k, then
NS(Cs) = Z and the natural morphism PicC/k→Z is given by the degree map
on divisors. For an integer n let PicnC/k be the component of degree n. Then

the abelian variety Pic0
C/k is the Jacobian J of the curve C so that there is an

exact sequence

0 −→ J(ks) −→ Pic(Cs) −→ Z −→ 0. (4.16)

The variety PicnC/k is a k-torsor for Pic0
C/k. For g = dim H1(C,OC) ≥ 1 there

is a natural embedding C ↪→ Pic1
C/k, so Pic1

C/k is the Albanese torsor of C.
(Recall that the Jacobian is principally polarised, hence isomorphic to its dual
abelian variety.) The cohomological exact sequence attached to (4.16) gives an
exact sequence

0 −→ J(k) −→ Pic(Cs)Γ −→ Z −→ H1(k, J) −→ H1(k,Pic(Cs)) −→ 0.

The group H1(k, J) classifies k-torsors for J . The homomorphism Z→H1(k, J)
sends n ∈ Z to the class of the torsor PicnC/k.

Theorem 4.5.1 Let C be a quasi-projective curve over a field k. Then the
following statements hold.

(i) If α ∈ Br(C) vanishes at each schematic point of C, then α = 0.
(ii) If k is algebraically closed, then Br(C) = 0.
(iii) If k is separably closed of characteristic p > 0, then Br(C) is a p-primary

torsion group.
(iv) If k is separably closed and C is proper over k, then Br(C) = 0.
(v) If k is finite and C is proper over k, then Br(C) = 0.
(vi) If k is not perfect, then Br(A1

k) 6= 0. If k is separably closed, then
Br(A1

k) = 0 if and only if k is algebraically closed.
(vii) The natural map Br(k)→Br(P1

k) is an isomorphism.
(viii) If k is perfect, then the natural map Br(k)→Br(A1

k) is an isomorphism.
(ix) If the prime ` is distinct from the characteristic exponent of k, then the

map Br(k){`}→Br(A1
k){`} is an isomorphism.

Proof. (i) The normalisation C̃ of C is a finite union of regular curves. Statement
(i) follows from Theorem 3.5.4, Propositions 7.2.4 and 7.2.1.
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(ii) By Tsen’s theorem (Theorem 1.2.12) the Brauer group of a function field
in one variable over an algebraically closed field is zero. The result then follows
from (i).

(iii) By a version of Tsen’s theorem over a separably closed field (Proposition
3.8.2), the Brauer group of a function field in one variable over a separably closed
field of characteristic p > 0 is p-primary. The Brauer group of a separably closed
field is zero. The result now follows from (i).

(iv) This follows from (ii) and Theorem 4.2.3 since we have H2(C,OC) = 0
because C is curve.

(v) By (i) and the triviality of the Brauer group of a finite field Br(k) = 0, it
is enough to prove that Br(C) = 0, where C is a regular, proper, geometrically
integral curve over a finite field. The exact sequence (4.9) gives an isomorphism

Ker[Br(C) −→ Br(Cs)]−̃→H1(k,Pic(Cs)).

By (ii), we have Br(Cs) = 0. Now consider the exact sequence (4.16):

0 −→ J(ks) −→ Pic(Cs) −→ Z −→ 0,

where the Galois module J(ks) is the group of ks-points of the jacobian J of C.
By Lang’s theorem on the first cohomology group of a finite field with values
in a connected algebraic group, we have H1(k, J) = 0. But H1(k,Z) = 0, so we
deduce H1(k,Pic(Cs)) = 0. Hence Br(C) = 0.

(vi) If k is algebraically closed, then (vi) is a particular case of (ii). Suppose
k has characteristic p > 0 and is not perfect. Then there is an element c ∈ krkp.
It gives rise to a non-zero class in H1

fppf(k, µp) and hence in H1
fppf(A1

k, µp). The

étale Artin–Schreier covering of A1
k = Spec(k[x])→A1

k = Spec(k[t]) given by
xp − x = t gives a non-zero element of H1

ét(A1
k,Z/p) = H1

fppf(A1
k,Z/p). This

finite étale cover extends to a finite cover P1
k→P1

k which is totally ramified of
degree p above the point at infinity of P1

k. We claim that the cup-product of
these two classes is a non-zero element of H2

fppf(A1
k, µp) = Br(A1

k)[p]. For this it
is enough to prove that the class of the corresponding cyclic algebra is non-zero
in Br(k(t)), for which we need to show that c ∈ k ⊂ k(t) is not a norm of an
element from k(x). For this, one looks at the completion at the point at infinity.
If c were a norm, then its image in the residue field, which is just k, would be
a p-th power. [SerCL, Ch. V, §3, Prop. 5 (i)].

(vii) For C = P1
k, we have an isomorphism of Pic(Cs) with the trivial Γ-

module Z given by the degree map. The map Pic(C)→Pic(Cs) = Z is an
isomorphism. By (iv), Br(Cs) = 0. Since H1(k,Z) = 0, the exact sequence (4.9)
gives an isomorphism Br(k)−̃→Br(P1

k).
(viii) Since the affine line has a k-point, we obtain from (4.9) that the natural

map Br(k)→Br1(A1
k) is an isomorphism. Since k is perfect, ks is algebraically

closed, hence Br(A1
ks

) = 0 by (ii). Thus Br(A1
k) = Br1(A1

k).
(ix) This follows from (iii) and (4.9). �

Remark 4.5.2 If a smooth, projective, geometrically integral curve C has a
k-point or, more generally, a zero-cycle of degree 1, then (4.16) splits. In this
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case (4.9) gives an isomorphism Pic(C) = Pic(Cs)Γ and, in view of Theorem
4.5.1 (iv), a split exact sequence

0 −→ Br(k) −→ Br(C) −→ H1(k, J) −→ 0.

4.6 The Picard and Brauer groups of a product

In this section we discuss the Picard group and the Brauer group of the product
of two varieties over a field.

Theorem 4.6.1 Let X and Y be proper and geometrically integral varieties
over a separably closed field k. Write pX : X ×k Y→X and pY : X ×k Y→Y
for the natural projections. Let n be a positive integer coprime to char(k). Then
the pullback maps

p∗X : Hi
ét(X,Z/n) −→ Hi

ét(X×kY,Z/n), p∗Y : Hi
ét(Y,Z/n) −→ Hi

ét(X×kY,Z/n)

give rise to canonical isomorphism

H1
ét(X,Z/n)⊕H1

ét(Y,Z/n)−̃→H1
ét(X ×k Y,Z/n). (4.17)

The maps p∗X and p∗Y , together with the map

H1
ét(X,Z/n)⊗H1

ét(Y,Z/n) −→ H2
ét(X ×k Y,Z/n) (4.18)

that sends a⊗ b to p∗X(a) ∪ p∗Y (b), give rise to a canonical isomorphism

H2
ét(X,Z/n)⊕H2

ét(Y,Z/n)⊕
(
H1

ét(X,Z/n)⊗H1
ét(Y,Z/n)

)
−̃→H2

ét(X ×k Y,Z/n).
(4.19)

It is clear that if k is a separable closure of a subfield k0 ⊂ k, then p∗X ,
p∗Y and p∗X(x) ∪ p∗Y (y) respect the action of the Galois group Gal(k/k0). Thus
(4.17) and (4.19) are isomorphisms of Gal(k/k0)-modules.

Proof. We have an obvious commutative diagram

Y

πY

��

X ×k Y
pYoo

pX

��
Spec(k) X

πXoo

The field k is separably closed, hence Hi(k,M) = 0 for any abelian group M
and any i ≥ 1.

Let us choose base points x0 : Spec(k)→X and y0 : Spec(k)→Y . The
composition of (id, y0) : X→X ×k Y with pX is the identity on X, hence p∗X
sends Hi

ét(X,Z/n) isomorphically onto a direct summand of Hi
ét(X ×k Y,Z/n),

for any i ≥ 0.
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Since X is connected, the map π∗X : H0
ét(k,Z/n) = Z/n→H0

ét(X,Z/n) is
an isomorphism with section x∗0. The k-variety Y is geometrically connected,
hence pX has connected fibres, thus we have an isomorphism of étale X-sheaves
Z/n−̃→pX∗(Z/n). We also obtain that p∗X : H0

ét(X,Z/n)→H0(X ×k Y,Z/n) is
an isomorphism with section (id, y0)∗.

The proper base change theorem [Mil80, Cor. VI.2.3] implies that the con-
stant étale X-sheaf π∗XHi

ét(Y,Z/n) is canonically isomorphic to RipX∗(Z/n).
Thus we have the Leray spectral sequence

Ep,q2 = Hp
ét(X,H

q
ét(Y,Z/n))⇒ Hp+q

ét (X ×k Y,Z/n). (4.20)

The standard properties of spectral sequences imply that the composition

Hi
ét(X,Z/n)−̃→Hi

ét(X,H
0
ét(Y,Z/n)) = Ei,0 −→ Hi

ét(X ×k Y,Z/n)

coincides with p∗X . The functoriality of the spectral sequence (4.20) in X gives
rise to a commutative diagram

Hi
ét(X ×k Y,Z/n) //

(x0,id)∗

��

E0,i = H0
ét(X,H

i
ét(Y,Z/n))

∼=x∗0
��

Hi
ét(Y,Z/n)

= // E0,i = H0
ét(k,H

i
ét(Y,Z/n))

Hence the composition

Hi
ét(X ×k Y,Z/n) −→ E0,i = H0

ét(X,H
i
ét(Y,Z/n)) = Hi

ét(Y,Z/n)

coincides with the pullback (x0, id)∗.
For i = 1 we deduce from the spectral sequence the split exact sequence

0 −→ H1
ét(X,Z/n)

p∗X−→ H1
ét(X ×k Y,Z/n)

(x0,id)∗−→ H1
ét(Y,Z/n) −→ 0

with section p∗Y . This gives (4.17).
Let us denote by

H̃2
ét(X ×k Y,Z/n) ⊂ H2

ét(X ×k Y,Z/n)

the intersection of kernels of (x0, id)∗ and (id, y0)∗. By the same argument as
above we have a direct sum decomposition

H2
ét(X ×k Y,Z/n) = H̃2

ét(X ×k Y,Z/n)⊕H2
ét(X,Z/n)⊕H2

ét(Y,Z/n),

where the two last summands are the images of the injective maps p∗X and p∗Y ,
respectively. Moreover, the spectral sequence (4.20) also gives an exact sequence

0→H̃2
ét(X×kY,Z/n)→H1

ét(X,H
1
ét(Y,Z/n))→H3

ét(X,Z/n)
p∗X−→ H3

ét(X×kY,Z/n).

The last map here is injective, hence H̃2
ét(X ×k Y,Z/n) ∼= H1

ét(X,H
1
ét(Y,Z/n)).
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Using that H1(k,Z/n) = 0 we see that the image of the map (4.18) belongs
to the kernels of (x0, id)∗ and (id, y0)∗, so (4.18) factors through a map

H1
ét(X,Z/n)⊗H1

ét(Y,Z/n) −→ H1
ét(X,H

1
ét(Y,Z/n)). (4.21)

For the proof that this is an isomorphism, see [SZ14, Thm. 2.6]. �

Remark 4.6.2 To show that the two groups in (4.21) are isomorphic one argues
as follows. (We continue to assume that k is separably closed and X is proper
and geometrically integral.) Let G be a finite commutative group k-scheme
of order coprime to char(k). Let Ĝ be the Cartier dual of G. By definition,
Ĝ = Hom(G,Gm,k) in the category of commutative group k-schemes. The
natural pairing

H1
ét(X,G)× Ĝ −→ H1

ét(X,Gm,X) = Pic(X),

gives rise to a canonical isomorphism

H1
ét(X,G)−̃→Hom(Ĝ,Pic(X)). (4.22)

The map in (4.22) associates to a class of a G-torsor T →X its ‘type’. This
map is defined when char(k) is coprime to |G| without assuming k separably
closed (see [Sko01, Theorem 2.3.6]), but if k is separably closed, then it is an
isomorphism. (In this case, without loss of generality, we can assume G = µn
and Ĝ = Z/n. Since H0

ét(X,Gm) = k∗, an isomorphism H1
ét(X,µn)−̃→Pic(X)[n]

is provided by the Kummer sequence.) Applying (4.22) to G = H1
ét(Y,Z/n) and

taking into account that Hom(Ĝ, µn) is canonically isomorphic to G, we get a
canonical isomorphism

H1
ét(X,H

1
ét(Y,Z/n))−̃→H1

ét(X,Z/n)⊗H1
ét(Y,Z/n).

For the proof of Theorem 4.6.1 one needs to show, in addition, that this isomor-
phism is the inverse of the map defined in terms of the cup-product.

Proposition 4.6.3 Let X and Y be smooth, projective, geometrically integral
varieties over a separably closed field k. The projection maps pX and pY induce
an isomorphism

Pic0
X/k ⊕Pic0

Y/k−̃→Pic0
X×kY/k

. (4.23)

Proof. Since X and Y are smooth and k is separably closed, both X and Y have
k-points. By Corollary 2.5.8, the relative Picard functor PicX/k is represented
by a commutative group k-scheme PicX/k. By Theorem 4.1.1 the connected
component of 0 in PicX/k is a projective and connected (but not necessarily

reduced) group k-scheme Pic0
X/k. The same holds for Y and for X×k Y , which

satisfies the same assumptions as X and Y . The natural morphism

PicX/k ⊕PicY/k −→ PicX×kY/k (4.24)
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given by (a, b) 7→ p∗X(a) +p∗Y (b) has a retraction which sends a line bundle L on
X ×k Y to (id, y0)∗L ⊕ (x0, id)∗L. In particular, it identifies PicX/k ⊕ PicY/k
with a direct summand of PicX×kY/k. Restricting (4.24) to the connected

components of 0 gives an isomorphism of Pic0
X/k × Pic0

Y/k with a direct sum-

mand of Pic0
X×kY/k

. Let us denote by C the kernel of the restriction of(
(id, y0)∗, (x0, id)∗

)
to Pic0

X×kY/k
. Then we have

Pic0
X×kY/k

= C ⊕Pic0
X/k ⊕Pic0

Y/k.

As a surjective image of a connected group k-scheme, C is connected. By the
Künneth formula [Stacks, Lemma 0BED]

H1(X ×k Y,O) ∼= H1(X,O)⊕H1(Y,O)

we see that (4.24) induces an isomorphism of tangent spaces at 0. Thus the
tangent space to C at 0 is trivial, hence C = 0. �

Let A = Pic0
X/k,red and B = Pic0

Y/k,red be the Picard varieties of X and Y ,
respectively. A line bundle L on X ×k Y gives rise to a morphism Y→PicX/k.
If L restricts trivially to X × y0 and x0 × Y , then, since Y is reduced and
connected, this morphism factors through a morphism Y→A sending y0 to 0.
By the seesaw principle [Mum74, Ch. II, §5, Cor. 6], this last morphism is zero
if and only if L = 0.

The dual abelian variety B∨ is the Albanese variety of Y ; there is a canonical
Albanese morphism AlbY,y0 : Y→B∨ such that AlbY,y0(y0) = 0, see Section
4.1. By the universal property of the Albanese variety, the morphism Y→A is
uniquely written as the composition φ ◦ AlbY,y0 : Y→B∨, where φ : B∨→A is
a map of abelian varieties. We have φ = 0 if and only if L = 0. Conversely,
any φ : B∨→A gives rise to a line bundle on X ×k Y that restricts trivially to
x0 × Y and X × y0, namely, to the pullback via the morphism

(AlbX,x0
, φ ◦AlbY,y0) : X ×k Y −→ A∨ ×k A

of the Poincaré line bundle P on A∨ ×k A, see Section 4.1. Thus we obtain a
split exact sequence of abelian groups

0 −→ Pic(X)⊕ Pic(Y ) −→ Pic(X ×k Y ) −→ Hom(B∨, A) −→ 0, (4.25)

where the second map is (p∗X , p
∗
Y ). The third map does not depend on the choice

of x0 and y0. This implies that if k is a separable closure of a subfield k0, then
(4.25) is an exact sequence of Gal(k/k0)-modules. Note that this exact sequence
is split when x0 and y0 are k0-points, but in general it is not necessarily split.

Proposition 4.6.4 Let X and Y be smooth, projective and geometrically inte-
gral varieties over a field k such that H3(k, k∗s ) = 0, for example, a number field.
Then the cokernel of the natural map

Br1(X)⊕ Br1(Y ) −→ Br1(X × Y )

is finite.
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Proof. This is an immediate consequence of exact sequences (4.25) and (4.9),
and the fact that for A and B as above, the group Hom(B∨, A) is a finitely
generated free abelian group. �

Proposition 4.6.5 Let X and Y be smooth, projective and geometrically in-
tegral varieties over a field k with separable closure ks and Galois group Γ =
Gal(ks/k). Let A = Pic0

X/k,red and B = Pic0
Y/k,red be the Picard varieties of X

and Y , respectively. We have a commutative diagram of Γ-modules with exact
rows and columns, where the exact sequence in the bottom row is split:

0 0
↓ ↓

A(ks)⊕B(ks) = A(ks)⊕B(ks)
↓ ↓

0 → Pic(Xs)⊕ Pic(Y s) → Pic(Xs ×k Y s) → Hom((B∨)s, As) → 0
↓ ↓ ||

0 → NS(Xs)⊕NS(Y s) → NS(Xs ×k Y s) → Hom((B∨)s, As) → 0
↓ ↓
0 0

If (X ×k Y )(k) 6= ∅, then the exact sequence in the middle row is also split.

Proof. The upper row of the diagram comes from (4.23) and the middle row
comes from (4.25). It remains to prove that the bottom row is split as a se-
quence of Γ-modules. This follows from the fact that the class of the line bundle
(AlbX,x0

, φ ◦ AlbY,y0
)∗P in NS(Xs × Y s) does not depend on the choice of x0

and y0. The last statement of the proposition is clear: it is enough to choose
(x0, y0) ∈ (X ×k Y )(k). �

Remark 4.6.6 If A1 and A2 are abelian varieties, then Hom(As
1, A

s
2) is a free

abelian group of finite rank. Thus the bottom row of the diagram shows that

NS(Xs × Y s)tors
∼= NS(Xs)tors ⊕NS(Y s)tors.

The bottom row of the diagram gives an isomorphism of Γ-modules

NS(Xs × Y s)/n ∼= NS(Xs)/n⊕NS(Y s)/n⊕Hom((B∨)s, As)/n.

Let n be coprime to char(k). From the isomorphism (4.19) and the Kummer
exact sequences for Xs, Y s and Xs × Y s we deduce a canonical isomorphism of
Γ-modules

Br(Xs × Y s)[n] ∼= Br(Xs)[n]⊕ Br(Y s)[n]⊕B(X,Y )n,

where B(X,Y )n is the quotient of H1
ét(X

s,Z/n)⊗H1
ét(Y

s,Z/n)(1) by the image
of Hom((B∨)s, As). Indeed, Hom((B∨)s, As) is the kernel of the pullback of
NS(Xs × Y s) to x0 × Y s and Xs × y0, and so is sent by the class map to
H1

ét(X
s,Z/n)⊗H1

ét(Y
s,Z/n)(1).
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Corollary 4.6.7 Let X and Y be smooth, projective and geometrically integral
varieties over a field k of characteristic zero. Then the natural map of Γ-modules

Br(Xs)⊕ Br(Y s) −→ Br(Xs × Y s)

is split injective.

To obtain a closed formula for Br(Xs × Y s) we impose a condition on the
torsion in the Néron–Severi groups of Xs and Y s.

Corollary 4.6.8 Let X and Y be smooth, projective and geometrically integral
varieties over a field k. Let A = Pic0

X/k,red and B = Pic0
Y/k,red be the Picard

varieties of X and Y , respectively. Let n be a positive integer coprime to char(k).
If Pic(Xs)[n] 6= 0 and Pic(Y s)[n] 6= 0, then assume also that n is coprime to
|NS(Xs)tors| · |NS(Y s)tors|. Then we have a canonical isomorphism of Γ-modules

Br(Xs×Y s)[n] ∼= Br(Xs)[n]⊕Br(Y s)[n]⊕Hom(B∨[n], A[n])/
(
Hom((B∨)s, As)/n

)
.

Proof. From the isomorphism H1
ét(X

s, µn) = Pic(Xs)[n] we see that this group is
an extension of NS(Xs)[n] byA[n]. In our assumptions H1

ét(X
s, µn)⊗H1

ét(Y
s, µn) ∼=

A[n]⊗B[n]. Using the non-degeneracy of the Weil pairing B[n]×B∨[n]→µn we
identifyB[n] with Hom(B∨[n], µn), and obtain an isomorphism of H1

ét(X
s,Z/n)⊗

H1
ét(Y

s,Z/n)(1) with Hom(B∨[n], A[n]). �

Remark 4.6.9 The map Hom((B∨)s, As)→Hom(B∨[n], A[n]) in Corollary 4.6.8
comes from the first Chern class map. Assume char(k) = 0. Then this map is
the negative of the natural map defined by the action of homomorphisms on
n-torsion points. It is enough to consider the case when X and Y coincide
with their respective Albanese varieties A∨ and B∨. For the verification in this
case we refer the reader to [OSZ, Lemma 2.6] (based on the Appell–Humbert
theorem), which should be applied to the abelian variety A∨ ×B∨.

Corollary 4.6.8 can be used to compute the Brauer group of a product of two
elliptic curves and the attached Kummer variety. Here we restrict ourselves to
one example, referring to [SZ12] for general results and more explicit examples.

Example 4.6.10 [SZ12, Prop. 4.1, Example A1] Let E be an elliptic curve
over a number field k such that the representation of Γ in E[`] is a surjection
Γ→GL(E[`]) for every prime `. Let E′ be an elliptic curve with complex mul-
tiplication over k, which has a k-point of order 6. Then for A = E ×k E′ we
have Br(A)Γ = 0. For example, one can take k = Q, the elliptic curve E with
equation y2 = x3 + 6x + 2 of conductor 2633, and the elliptic curve E′ with
equation y2 = x3 + 1.
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Chapter 5

Birational invariance

For a scheme X and a positive integer n the structure morphism AnX→X induces
an injective map Br(X)→Br(AnX). Similarly, PnX→X induces an injective map
Br(X)→Br(PnX). In Section 5.1 we give conditions on X under which these
maps are isomorphisms.

In Section 5.2 we discuss the unramified Brauer group Brnr(K/k) ⊂ Br(K)
of a field K finitely generated over a subfield k. The definition of Brnr(K/k)
only uses the discrete valuations of K that are trivial on k, so this group de-
pends only on the extension of fields k ⊂ K. When K is the function field of
an integral variety over k, the group Brnr(K/k) is a birational invariant that
can be used even when one does not have an explicit smooth projective model
X/k with function field K at one’s disposal. If we have such a model X then
there is an isomorphism Br(X) ' Brnr(K/k). We also recall that the Galois
module Pic(Xs) up to addition of a permutation module is a birational invari-
ant. Another birational invariant of smooth projective varieties X is the Chow
group CH0(X) of zero-cycles. In Section 5.3 we define a natural pairing between
CH0(X) and Br(X) with values in Br(k). This is used to give a proof of Mum-
ford’s theorem that the Chow group of degree 0 of a smooth complex surface
with H2(X,OX) 6= 0 is not algebraically representable by the complex points of
an abelian variety.

5.1 Affine and projective spaces

Theorem 5.1.1 Let X be a connected regular scheme. Let K be its function
field. For any prime ` distinct from the characteristic exponent of K, and any
integer n ≥ 0, the natural map of torsion groups Br(X)→Br(AnX) induces an
isomorphism on `-torsion subgroups.

Proof. If X is regular and connected, so is A1
X . Induction thus reduces the

proof to the case n = 1. Using a section of A1
X→X, we produce a commutative

127
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diagram
Br(A1

X) ↪→ Br(A1
K)

↓↑ ↓↑
Br(X) ↪→ Br(K)

where the downwards pointing arrows are induced by the restriction to the
section and the upwards pointing arrows are induced by structure morphisms.
To prove the result, it is thus enough to prove that for a field K of characteristic
different from `, the map Br(K){`}→Br(A1

K){`} is an isomorphism: this is
Theorem 4.5.1 (ix). �

Remark 5.1.2 We have already seen in Theorem 4.5.1 (vi) that when k is sepa-
rably closed but not algebraically closed, then Br(A1

k) 6= 0 and hence Br(Ank ) 6= 0
for all n ≥ 1. Moreover, if k is an algebraically closed field of characteristic p > 0
and n ≥ 2 is an integer, then Br(Ank ) 6= 0 [KOS76, Prop. 5.3], [Hür81, Thm.
4.4, Cor. 6.5]. These papers build upon earlier work of Zelinsky and Yuan (see
[KO74b]).

The following theorem was proved by D. Saltman [Sal85] in terms of the
unramified Brauer group.

Theorem 5.1.3 For any field k the natural map Br(k)→Br(Pnk ) is an isomor-
phism.

Proof We proceed by induction in n. In the case n = 1 this is Theorem 4.5.1
(vii). Suppose that n ≥ 2 and we have the isomorphism Br(k)−̃→Br(Pn−1

k ).
Let ψ : W→Pnk be the blowing-up of Pnk in a k-point P . The projection of

Pnk r P onto Pn−1
k extends to a morphism π : W→Pn−1

k which is a P1-bundle
over Pn−1

k with a section. To see this we choose coordinates on Pnk so that
P = (1 : 0 : . . . : 0). The restriction of π : W→Pn−1

k to the open set Pnk r P
sends (x0 : . . . : xn) to (x1 : . . . : xn). Then the morphism σ : Pn−1

k →W defined
by σ(x1 : . . . : xn) = (0 : x1 : . . . : xn) is a section of π.

LetK = k(Pn−1
k ) be the field of functions on Pn−1

k . The section σ gives rise to
a K-point s of the generic fibre of π, hence this generic fibre is isomorphic to the
projective line P1

K . Proposition 3.5.4 implies that the restriction to the generic
fibre of π defines an injective map Br(W ) ↪→ Br(P1

K). The closed embedding
of the section σ(Pn−1

k ) into W defines a map Br(W )→Br(Pn−1
k ). Similarly,

we have a restriction to the generic point Br(Pn−1
k ) ↪→ Br(K) and the map

Br(P1
K)→Br(K) induced by the restriction to the K-point s of P1

K . We obtain
a commutative diagram

Br(W ) ↪→ Br(P1
K)

↓↑ ↓↑
Br(Pn−1

k ) ↪→ Br(K)

where the upwards pointing arrows are induced by π and the structure morphism
P1
K→Spec(K). By Theorem 4.5.1 (vii) we know that the vertical arrows in the

right hand part of the diagram are isomorphisms which are inverse to each other.
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The diagram shows that the map Br(Pn−1
k )→Br(W ) is an isomorphism. The

induction assumption now implies that the natural map Br(k)→Br(W ) is an
isomorphism.

The contraction ψ : W→Pnk is a birational morphism of smooth varieties.
The restriction of ψ to some non-empty open subset U ⊂W is an isomorphism.
By Proposition 3.5.4 the restriction map Br(Pnk )→Br(U) is injective. Since it
factors through ψ∗ : Br(Pnk )→Br(W ), we see that ψ∗ is injective. It is clear that
we have a commutative diagram

Br(Pnk )
ψ∗−→ Br(W )

↑ ↑
Br(k) = Br(k)

We know that the right hand vertical map is an isomorphism. This implies that
the left hand vertical map is an isomorphism too. �

Corollary 5.1.4 Let X be a regular, connected scheme. For any positive inte-
ger n the canonical projection π : PnX→X induces an isomorphism

π∗ : Br(X)−̃→Br(PnX).

Proof Fix a section of PnX→X. Let K denote the function field of X. As in the
proof of the previous theorem we have a commutative diagram

Br(PnX) ↪→ Br(Pnk(X))

↓↑ ↓↑
Br(X) ↪→ Br(k(X))

where the downwards pointing arrows are induced by the restriction to the
section and the upwards pointing arrows are induced by structure morphisms.
By Theorem 5.1.3, the vertical arrows in the right hand part of the diagram
are mutually inverse isomorphisms. The statement of the corollary now follows
from the diagram. �

5.2 The unramified Brauer group

The following definition goes back to D. Saltman.

Definition 5.2.1 Let k ⊂ K be an extension of fields such that K is finitely
generated over k. The unramified Brauer group of K over k is the subgroup

Brnr(K/k) ⊂ Br(K)

which is the intersection of images of the natural maps Br(A)→Br(K), where
A is a discrete valuation ring with field of fractions K such that k ⊂ A.

Proposition 5.2.2 Let k be a field. Let X be a regular, proper, integral variety
over k with function field k(X). The natural inclusion Br(X) ⊂ Br(k(X))
induces an isomorphism Br(X)−̃→Brnr(k(X)/k).
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Proof. This is a special case of Proposition 3.7.8. �

In spite of this proposition, there are good reasons for using the unramified
Brauer group of function fields. Since its definition only involves discrete valu-
ation rings, usually one can easily check that some specific elements of Br(K)
belong to Brnr(K/k). The group is visibly a birational invariant of algebraic
varieties over k. One may use it when no smooth projective model is available
– or even known to exist (positive characteristic).

The unramified Brauer group is functorial in the following sense.

Proposition 5.2.3 Let K ⊂ L be finitely generated fields over k. The restric-
tion map Br(K)→Br(L) induces a map Brnr(K/k)→Brnr(L/k).

Proof. Let v : L→Z be a discrete valuation with valuation ring B such that k ⊂
B. The restriction of v toK can be trivial or non-trivial. In the first caseK ⊂ B,
hence Br(K)→Br(L) factors through Br(B). In the second case, A = B ∩K is
a discrete valuation ring with field of fractions K. The restriction to Br(L) of
an element in the image of Br(A)→Br(K) is in the image of Br(B)→Br(L). �

Proposition 5.2.4 Let k be a field and let K and L be finitely generated field
extensions of k. If L is a purely transcendental extension of K, then the natural
map Br(K)→Br(L) induces an isomorphism Brnr(K/k)→Brnr(L/k).

Proof. It is enough to consider the case L = K(P1
K) = K(t), where t is an

independent variable. Let β ∈ Brnr(L/k). Then β ∈ Brnr(L/K), but this group
is equal to Br(P1

K) by Proposition 5.2.2. The natural map Br(K)→Br(P1
K)

is an isomorphism; in positive characteristic, this is not obvious, see Theorem
4.5.1. Thus β comes from a unique α ∈ Br(K), so it is enough to show that
α ∈ Brnr(K/k).

Let us check that α belongs to the image of Br(A)→Br(K), where A ⊂ K
is a discrete valuation ring with fraction field K such that k ⊂ A. Let π be a
uniformising parameter of A. Let B ⊂ L be the 2-dimension local ring at the
closed point of Spec(A[t]) defined be the ideal (π, t). By purity of the Brauer
group for 2-dimensional regular rings (which is a classical result), β ∈ Brnr(L/k)
is the image of an element γ ∈ Br(B) ⊂ Br(L). The value of γ at t = 0 is an
element of Br(A) whose image in Br(K) is α. Since this holds for any such A,
we conclude that α ∈ Brnr(K/k). �

Corollary 5.2.5 Let k be a field and let X and Y be integral varieties over k.
If X and Y are stably k-birationally equivalent over k, then

Brnr(k(X)/k) ' Brnr(k(Y )/k).

In particular, if X is stably k-rational, then Br(k) ∼= Brnr(k(X)/k). �

Proposition 5.2.2 then gives

Corollary 5.2.6 Let k be a field, and let X and Y be smooth, proper, integral
varieties over k. If there exist integers n and m such that X×kPnk is birationally
equivalent to Y ×k Pmk , then Br(X) ' Br(Y ). �
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A characterisation of unramified classes by evaluation at points

We start with the following useful lemma from [Duc98]. Such constructions
were previously used by Merkurjev and Suslin.

Lemma 5.2.7 (Ducros) For any field k of characteristic 0 there exists a field
extension L of cohomological dimension at most 1 such that k is algebraically
closed in L.

Proof. Recall that cd(k) ≤ 1 if and only if Br(k′) = 0 for every finite extension
k ⊂ k′.

If cd(k) ≤ 1, we take L = k. Otherwise there exist non-trivial Severi–Brauer
varieties W over some finite extensions k′/k. Choose one Severi–Brauer variety
W in each k′-isomorphism class and consider the Weil restriction of scalars
Rki/k(W ×k ki). The finite products of these varieties form a filtering inductive
system of geometrically integral varieties over k; their fields of functions are
extensions k ⊂ K such that k is algebraically closed in K. Passing to the
inductive limit we obtain a field extension k ⊂ k1 such that k is algebraically
closed in k1. Define kn = (kn−1)1 for n ≥ 2. Let L be the inductive limit of kn
as n→∞. On the one hand, k is algebraically closed in L. On the other hand,
any variety RL′/L(V ×L L′), where V is a Severi–Brauer variety over a finite
extension L′ of L, is defined already over some kn. Any integral variety has a
rational point over its field of functions, so RL′/L(V ×L L′) has a kn+1-point
which is also an L-point. Then V has an L′-point, and so is trivial over L′. This
proves that cd(L) ≤ 1. �

The following lemma and theorem are due to O. Wittenberg (private com-
munication). A partial earlier result in this direction is [Mer02, Prop. 3.4].

Lemma 5.2.8 Let X be a smooth geometrically integral variety over a field k.
For any α ∈ Br(X) and any point P : Spec(k((t)))→X there exists a point
P ′ : Spec(k((t)))→X such that the last map is dominant and α(P ) = α(P ′).

Proof. A k-morphism P ′ : Spec(k((t)))→X is dominant if it induces an inclusion
of the fields of functions k(X) ⊂ k((t)).

Let x ∈ X be the image of the k-morphism P : Spec(k((t)))→X. Since
X is smooth over k, there exist an open subset U ⊂ X containing x and an
étale morphism f : U→Adk. Let Q = f(P ) ∈ Adk(k((t))). The field k((t)) is
of infinite transcendence degree over k. One can choose a k((t))-point Q′ in
Adk as close as we wish to Q in the topology of the field k((t)) such that the d
coordinates ofQ′ are algebraically independent over k. Moreover, by the implicit
function theorem (Theorem 9.5.1) over the field k((t)), we can chooseQ′ with the
additional property that Q′ lifts to a k((t))-point P ′ in U which is as close as we
wish to P . Corollary 3.4.4 applied over k((t)) (see the proof of Proposition 9.5.2)
then ensures the equality α(P ′) = α(P ) in Br(k((t))). Since the coordinates of
Q′ are algebraically independent over k, the morphism Q′ : Spec(k((t)))→Adk
induces a k-embedding of the fields of functions k(x1, . . . , xd) ⊂ k((t)). But
Q′ = f(P ′) and f is dominant, hence this embedding factors as k(x1, . . . , xd) ⊂
k(X) ⊂ k((t)), which shows that P ′ : Spec(k((t)))→X is dominant. �
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Theorem 5.2.9 (Wittenberg) Let k be a field of characteristic zero and let
X be a smooth geometrically integral variety over k. Let α ∈ Br(X) ⊂ Br(k(X)).
The following conditions are equivalent.

(i) α ∈ Brnr(k(X)/k).

(ii) For any field extension L/k and any P ∈ X(L((t))), the value α(P ) is
in the image of Br(L)→Br(L((t))).

(iii) For any field extension L/k with cd(L) ≤ 1 and any P ∈ X(L((t))) we
have α(P ) = 0 in Br(L((t))).

Proof. It is clear that (ii) implies (iii). Let us prove that (iii) implies (ii). Choose
an embedding L ⊂ L′ as in Lemma 5.2.7. We have a commutattive diagram
with exact rows (3.10)

0 // Br(L′) // Br(L′((t))) // H1(L′,Q/Z) // 0

0 // Br(L)

OO

// Br(L((t)))

OO

// H1(L,Q/Z)
?�

OO

// 0

Here the vertical arrows are restriction maps; the right hand map is injective
because L is algebraically closed in L′. This diagram implies the statement
of (ii).

Let us prove that (ii) implies (i). Let A ⊂ k(X) be a discrete valuation
ring which contains k. Let κ be the residue field of A. By Cohen’s theorem,
the completion of A is isomorphic to κ[[t]]. We have k ⊂ κ, hence we have a k-
embedding k(X) ⊂ κ((t)) such that A = k(X)∩κ[[t]]. This gives a commutattive
diagram with exact rows

0 // Br(κ[[t]]) // Br(κ((t))) // H1(κ,Q/Z) // 0

0 // Br(A)

OO

// Br(k(X))

OO

// H1(κ,Q/Z)

=

OO

// 0

Here the top row is (3.10), and the bottom row comes from Proposition 3.6.4.
The assumption of (ii) applied to L = κ implies that the image of α in Br(κ((t)))
goes to zero in H1(κ,Q/Z). By the diagram this implies α ∈ Br(A). Thus (ii)
implies (i).

Let us prove that (i) implies (ii). If X is projective, by the valuative criterion
of properness we have X(L((t))) = X(L[[t]]). Hence P ∈ X(L[[t]]), and thus
α(P ) ∈ Br(L[[t]]) = Br(L), proving (ii).

Let us now drop the assumption that X is projective (and avoid the res-
olution of singularities). By Lemma 5.2.8 we may assume that the morphism
P : Spec(L((t)))→X is dominant while keeping the value of α(P ) ∈ Br((L((t))).
Then we have a k-embedding k(X) ⊂ L((t)). By the functoriality of the un-
ramified Brauer group we have α(P ) ∈ Br(L[[t]]) = Br(L). �
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Examples of unramified classes

Here are three types of unramified Brauer classes which will be used to construct
counter-examples to the Hasse principle in Section 12.5.

Example 5.2.10 Let k be a field of characteristic not equal to 2, and let a ∈ k∗.
Let P (x) ∈ k[x] be a separable polynomial such that P (x) = Q(x)R(x), where
Q(x) is a polynomial of even degree. Let X be a smooth projective variety
birationally equivalent to the smooth, affine, geometrically integral surface with
equation

y2 − az2 = P (x).

Let us show that the class of the quaternion algebra α = (a,Q(x)) ∈ Br(k(X))
is unramified. Proposition 5.2.2 then implies that α ∈ Br(X).

Let R ⊂ k(X) be a discrete valuation ring such that k ⊂ R. Let κ be the
residue field of R and let v : k(X)∗→Z be the valuation. By formula (1.16), the
residue ∂v(α) ∈ κ∗/κ∗2 is the class of av(Q(x)) in κ∗/κ∗2.

If a is a square in κ, then ∂v(α) = 1. If v(x) < 0, then v(Q(x)) is even,
hence ∂v(α) = 1. If a is a not a square in κ and v(x) ≥ 0, then the equality
y2 − az2 = Q(x)R(x) ∈ k(X)∗ implies that v(y2 − az2) is even, thus v(Q(x)) +
v(R(x)) is even. The polynomials Q(x) and R(x) are coprime, hence there
exist polynomials a(x) and b(x) such that a(x)Q(x) + b(x)R(x) = 1. Since
v(x) ≥ 0, if v(Q(x)) was odd hence positive we would have v(R(x)) = 0, but
then v(Q(x)) + v(R(x)) would be odd. This proves that α is unramified.

Suppose that a is not a square in k and that neither Q(x) nor R(x) is of the
form c(S(x)2−aT (x)2) with c ∈ k∗ and S(x), T (x) ∈ k[x]. Then α is not in the
image of the map Br(k)→Br(k(X)).

Indeed, the assumption is equivalent to: neither (a,Q(x)) nor (a,R(x)) be-
longs to Br(k) ⊂ Br(k(x)). By Proposition 6.2.1, the kernel of the restriction
map Br(k(x))→Br(k(X)) is generated by the quaternion algebra (a, P (x)). This
implies that if α = (a,Q(x)) ∈ Br(k(X)) is in the image of Br(k), then in
Br(k(x)) either (a,Q(x)) or (a,R(x)) is in Br(k) ⊂ Br(k(x)).

Note that the assumption that a separable polynomial M(x) ∈ k[x] is not of
the form c(S(x)2 − aT (x)2) is equivalent to the existence of a root x0 of M(x)
such that a is not a square in the field k(x0).

Example 5.2.11 (Reichardt–Lind) Let k be a field, char(k) 6= 2, let a, b ∈
k∗. Let X be a smooth projective curve birationally equivalent to the affine
curve

ay2 = x4 − b.

The class of the quaternion algebra (y, b) ∈ Br(k(X)) is unramified, hence by
Proposition 5.2.2 belongs to Br(X).

Let R ⊂ k(X) be a discrete valuation ring such that k ⊂ R. Let κ be the
residue field of R and let v : k(X)∗→Z be the valuation. By (1.16), the residue
∂v(α) is the class of bv(y) in κ∗/κ∗2. If b is a square in κ or of v(y) is even, the
residue is 1. Assume b is not a square in κ. If v(x) < 0 then v(x4 − b) is a
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multiple of 4, hence so is v(ay2), hence v(y) is even. Assume v(x) ≥ 0. Since b
is not a square in κ, we have v(x4 − b) = 0. Thus v(ay2) = 0 hence v(y) = 0.

When b is not a square in k, there does not seem to exist a simple criterion
for (y, b) to be in the image of Br(k).

Exercise 5.2.12 [CT14] Let k be a field, char(k) 6= 2, let a, b, c ∈ k∗. Let X
be a smooth projective variety birationally equivalent to the affine variety with
equation

(x2 − ay2)(z2 − bt2)(u2 − abw2) = c.

Computing residues for any valuation of K(X) trivial on k, one checks that the
quaternion algebra (x2 − ay2, b) is unramified, hence is an element of Br(X).

Projecting to affine space A4
k with coordinates (z, t, u, w), we represent k(X)

as the function field of a conic over k(A4). Using this and Witt’s theorem, one
shows that if none of a, b, ab is a square in k, then α = (x2− ay2, b) ∈ Br(k(X))
is not in the image of Br(k). See [CT14, Thm. 4.1] for details.

Explicit examples of unramified classes in the Brauer group of the function
field of a variety over the complex field will be given in Section 10.6 (the Artin–
Mumford example). See also Sections 11.1.2 and 11.2.1.

Galois action on the Picard group

Proposition 5.2.13 Let X and Y be smooth, projective, geometrically integral
varieties over a field k. If X and Y are stably k-birationally equivalent, then
there exist finitely generated permutation Γ-modules P1 and P2 and an isomor-
phism of Γ-modules

Pic(Xs)⊕ P1
∼= Pic(Y s)⊕ P2.

This gives an isomorphism H1(k,Pic(Xs)) ∼= H1(k,Pic(Y s)).
If X is stably k-rational, then the Γ-module Pic(Xs) is stably a permutation

Γ-module: there are finitely generated permutation Γ-modules P1 and P2 such
that Pic(Xs)⊕ P1

∼= P2.
If there exists a smooth, projective, geometrically integral variety Z over k

such that X ×k Z is k-rational, then the Γ-module Pic(Xs) is a direct summand
of a permutation module.

For an elegant proof due to Moret-Bailly, see [CTS87a, Prop. 2.A.1].
Suppose X(k) 6= ∅. In this case, in view of Br1(X)/Br(k) = H1(k,Pic(Xs)),

this proposition gives another proof of the birational invariance of Br1(X). But
in special cases the birational invariant given by the Γ-module Pic(Xs) up to
addition of a permutation module is finer than Br1(X), see [CTS77, §8].

Proposition 5.2.14 Let k be a field. Let C be a class of smooth, projective,
geometrically integral varieties X over K, where K varies over arbitrary field
extensions of k. Suppose that C is stable under field extensions, and that for
each variety X in C one has H1(X,OX) = 0. If one of the following statements
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holds for all varieties X/K in C which have the additional property X(K) 6= ∅,
then it holds for all X/K in C:

(i) the Gal(Ks/K)-module Pic(XKs
) is a permutation module;

(ii) the Gal(Ks/K)-module Pic(XKs
) is a direct summand of a permutation

module;
(iii) H1(K,Pic(XKs)) = 0.

Proof. (Sketch) Let F = K(X). The F -variety XF = X ×K F has an F -point.
The hypothesis H1(X,OX) = 0 implies that Pic0

X/k = 0, so PicX/k is a twisted
constant group k-scheme split by a separable closure ks of k, see Theorem 4.1.1.
This implies that the natural maps

Pic(Xks)−̃→Pic(Xks(X))−̃→Pic(XFs
)

are isomorphisms. For more details, see [CTS87a, Thm. 2.B.1]. �

5.3 Zero-cycles and the Brauer group

In this section we collect some results about the relations between the Brauer
group Br(X) of a variety X over a field k and another birational invariant of
smooth and proper varieties, the Chow group of zero-cycles CH0(X). The basic
reference for the Chow group is the first chapter of Fulton’s book [Ful98].

Let Z0(X) be the free abelian group whose generators are the closed points
of X. The elements of Z0(X) are called 0-cycles. In other words, a 0-cycle is a
finite sum

∑
P nPP , where P is a closed point and nP ∈ Z. A 0-cycle is called

effective if nP ≥ 0 for all P . The degree map

degk : Z0(X) −→ Z

sends a 0-cycle
∑
i niPi to

∑
i ni[k(Pi) : k].

A morphism of varieties f : X→Y gives rise to a natural homomorphism

f∗ : Z0(X) −→ Z0(Y )

sending the closed point P ∈ X to [k(P ) : k(f(P ))]f(P ). The degree map is
compatible with morphisms of varieties over k.

A 0-cycle on a normal integral curve C is called rationally equivalent to
zero if it is the divisor divC(g) of a non-zero rational function g ∈ k(C)∗. The
Chow group of 0-cycles on X is defined as the quotient of Z0(X) by the group
generated by the elements φ∗(divC(g)), for all proper morphisms φ : C→X
where C is a normal integral curve over k and all g ∈ k(C)∗.

Let k be a field, let X a variety over k and let Y ⊂ X be a finite subscheme.
Then Y = Spec(A), where A =

∏m
i=1Ai, each Ai being a local k-algebra. For

i = 1, . . . ,m, let ki be the residue field of Ai and let ni = dimk(Ai)/[ki : k].
For each i, the composition Spec(ki)→Spec(Ai)→Spec(A)→X defines a closed
point Pi ∈ Y with residue field ki. The zero-cycle associated to Y ⊂ X is by
definition the formal sum

∑m
i=1 niPi.
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If f : X→Y is a proper morphism, then f∗ : Z0(X)→Z0(Y ) induces a map

f∗ : CH0(X) −→ CH0(Y ).

In particular, if X is a proper variety over k, then the structure morphism
X→Spec(k) induces a degree map degk : CH0(X)→Z. Define

A0(X) = Ker[degk : CH0(X) −→ Z].

By the functoriality of the Brauer group, an element α ∈ Br(X) can be
evaluated at a closed point P : Spec(k(P ))→X. We denote this value by α(P ) ∈
Br(k(P )). Define

〈α, P 〉 = coresk(P )/k(α(P )) ∈ Br(k).

By linearity this extends to a pairing

Br(X)× Z0(X) −→ Br(k). (5.1)

This pairing is functorial in X. Namely, let f : X→Y be a morphism of
varieties over k, let α ∈ Br(Y ) and let z ∈ Z0(X). Using that the compo-
sition of restriction resk(P )/k(f(P )) : Br(k(f(P ))→Br(k(P )) with corestriction
coresk(P )/k(f(P )) : Br(k(P ))→Br(k(f(P ))) is multiplication by [k(P ) : k(f(P ))],
we obtain

〈f∗(α), z〉 = 〈α, f∗(z)〉.

Lemma 5.3.1 Let k be a field, X a k-variety and Y = Spec(A) ⊂ X a finite
subscheme. Let [Y ] ∈ Z0(X) be the associated zero-cycle. For any α ∈ Br(X),
one has

〈α, [Y ]〉 = coresA/k(αY ) ∈ Br(k).

Proof. For the identity map Y = X, this is Lemma 3.8.5. The general case
follows from the functoriality of the pairing. �

Proposition 5.3.2 Let X be a proper variety over a field k. Then the pairing
(5.1) induces a bilinear pairing

Br(X)× CH0(X) −→ Br(k). (5.2)

This pairing is functorial with respect to proper morphisms.

Proof. Let C→X be a morphism from a proper normal integral curve C over k.
Let f : C→P1

k be a dominant morphism. This is a finite locally free morphism
of constant rank. Let z0 ∈ Z0(C), respectively z1 ∈ Z0(C), be the 0-cycle on C
associated to the finite scheme Spec(A0) = f−1(p0), respectively to Spec(A1) =
f−1(p1), where p0 and p1 are distinct k-points in P1

k. Let α ∈ Br(X). By
Lemma 5.3.1 we have

〈α, zi〉 = coresAi/k(αY ) ∈ Br(k)
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for i = 0, 1. By Proposition 3.8.1, coresAi/k(αY ) = 〈coresC/P1(α), pi〉. The map
Br(k)→Br(P1

k) is an isomorphism (Theorem 5.1.3). Thus coresC/P1(α) ∈ Br(P1
k)

is a constant class, hence 〈α, z0〉 = 〈α, z1〉. �

The following definition was given in [ACTP17].

Definition 5.3.3 A projective variety X over a field k is called universally
CH0-trivial if for any field extension k ⊂ K the degree map degK : CH0(XK)→Z
is an isomorphism.

For example, if X is smooth, projective and rational over k, then X is
universally CH0-trivial.

Theorem 5.3.4 Let X be a smooth, projective, geometrically integral variety
over a field k.

(i) Assume that X is universally CH0-trivial. Then for every field extension
K of k the natural map Br(K)→Br(XK) is an isomorphism.

(ii) Assume that for every field extension k ⊂ K, the group A0(XK) is a
torsion group. Then there exists a positive integer N such that for every field
extension k ⊂ K the quotient Br(XK)/Br(K) is annihilated by N .

(iii) Let k = C. Suppose that there exist a smooth, projective, integral curve
Y over C and a morphism f : Y→X such that f∗ : CH0(Y )→CH0(X) is sur-
jective. Then Br(X) is a finite group.

Proof. (i) It is enough to prove the statement over k. Since X is universally
CH0-trivial, it has a zero-cycle z of degree 1. The map Br(k)→Br(X) is injective
because evaluating at z gives a section. Now let α ∈ Br(X). Take F = k(X) to
be the function field of X. The pairing (5.2)

Br(XF )× CH0(XF ) −→ Br(F )

gives rise to the pairing

Br(X)× CH0(XF ) −→ Br(F ).

Let η be the generic point of X. It is clear that 〈α, η〉F is the image of α under
the natural map Br(X)→Br(F ). Since X is smooth, this map is injective. By
hypothesis zF−η = 0 in CH0(XF ), hence 〈α, z〉F = 〈α, η〉F ∈ Br(F ). Therefore,
〈α, η〉F is the image of 〈α, z〉 ∈ Br(k) under the restriction map Br(k)→Br(F ),
hence α ∈ Br(X) is the image of 〈α, z〉 ∈ Br(k) under the map Br(k)→Br(X).

(ii) Let P be a closed point of X. Let η be the generic point of X and let
F = k(X) be the field of fractions. By assumption there is a positive integer N
such that N(degk(P )η−PF ) = 0 ∈ CH0(XF ). Arguing as above, we see that for
any α ∈ Br(X) we have N(degk(P )α−〈α, P 〉) = 0 ∈ Br(X), hence Br(X)/Br(k)
is annihilated by Ndegk(P ). The proof shows that the same statement, with
the same factor Ndegk(P ), holds for XK over any field extension K of k.

(iii) As C is an algebraically closed field of infinite transcendance degree
over Q, there exists an algebraically closed field F ⊂ C of finite transcendence
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degree over Q such that Y and X descend to varieties Y0 and X0 over F , that
is, X ∼= X0 ⊗F C and Y ∼= Y0 ⊗F C, and f : Y→X descends to an F -morphism
f0 : Y0→X0.

We first claim that for any such field F , the map CH0(Y0)→CH0(X0) is
surjective. Let z0 be a zero-cycle on X0. By assumption, over C there ex-
ists a zero-cycle

∑
i niwi on Y , finitely many smooth projective integral curves

Cj , morphisms θj : Cj→X, and rational functions gj ∈ C(Cj)
∗ such that the

equality

z0,C = f∗(
∑
i

niwi) +
∑
j

θj,∗(divCj
(gj))

holds in the group of zero-cycles Z0(X). This equality involves only finitely
many terms. One may thus realise all its constituents over a field L ⊂ C which
is of finite type over F . This field L itself is the field of fractions of a regular
F -algebra A of finite type. After suitable localisation, the displayed equality
holds over such an A. Since F is algebraically closed, the F -rational points
are Zariski dense on Spec(A), thus we can specialise the above equality to an
equality over F . We obtain an equality of cycles on X0. In this specialisation
process, the zero-cycle z ∈ Z0(X0) specialises to itself. This proves the claim.

Let us now consider K = F (X0), which we may embed into C, and let η be
the generic point of X0 over F . By the previous claim applied to the algebraic
closure of K in C, there exists a finite extension L/K such that ηL is in the
image of CH0(Y0,L)→CH0(X0,L). A restriction-corestriction argument implies
that there exists a positive integer N such that Nη ∈ CH0(X0,K) is in the image
of CH0(Y0,K), that is, we have an equality

Nη = f0,∗(z)

for some z ∈ CH0(Y0,K). By functoriality of the pairing between Chow groups
of 0-cycles and Brauer groups (Proposition 5.3.2), for any α ∈ Br(X0) we get

〈α,Nη〉 = 〈α, f0,∗(z)〉 = 〈f∗0 (α), z〉 ∈ Br(K).

But f∗0 (α) ∈ Br(Y0) and Br(Y0) = 0 since Y0 is a curve over the algebraically
closed field F (Theorem 4.5.1). Thus N〈α, η〉 = 0 ∈ Br(K). But

〈α, η〉 ∈ Br(K) = Br(F (X0))

is the image of α ∈ Br(X0) under the injective map Br(X0)→Br(F (X0)). We
thus have N Br(X0) = 0.

The map Br(X0)→Br(X0×F C) is an isomorphism by Proposition 4.2.2. We
thus conclude that N Br(X) = 0 for the original X over C. Proposition 4.2.6
now gives that Br(X) is the finite group H3(X,Z)tors. �

Remark 5.3.5 Under the assumptions of Theorem 5.3.4 (iii), using Theorem
4.2.6, one gets b2 = ρ, which by Hodge theory is equivalent to H2(X,OX) = 0.
Under the same hypotheses, one can actually show that Hi(X,OX) = 0 for all
i ≥ 2. The proof of Theorem 5.3.4 (iii) given above is due to Salberger. It is a
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Brauer theoretic version of a theorem of Bloch, itself inspired by a theorem of
Mumford: the Chow group of 0-cycles of a smooth, complex, projective surface
X with pg(X) 6= 0 is not representable. Bloch’s argument was much developed
by Bloch and Srinivas, and then by many other authors.
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Chapter 6

Severi–Brauer varieties and
hypersurfaces

Isomorphism classes of Severi–Brauer varieties are in bijection with isomorphism
classes of central simple algebras. This leads to many intricate relations. In Sec-
tion 6.1 we briefly recall the basic properties of Severi–Brauer varieties. Any
such variety is birationally equivalent to a principal homogeneous space of a
torus. We give a precise version of this statement. We then discuss morphisms
from an arbitrary variety to a Severi–Brauer variety. In Section 6.2 we deal with
another simple class of projective homogenous varieties, namely smooth projec-
tive quadrics. For a variety X of either type, the restriction map Br(k)→Br(X)
is surjective and the kernel is a finite cyclic group with a natural generator. The
knowledge of this kernel will be used to establish the non-vanishing of specific
Brauer classes of the function field of certain conic bundles over P2

C (see Section
10.5). Recently, in connection with arithmetic investigations of integral points,
the computation of the Brauer group of open algebraic varieties has become of
interest. In Section 6.3 we give a few examples of such computations.

6.1 Severi–Brauer varieties

Definition and basic properties

The following definition is due to F. Châtelet.

Definition 6.1.1 Let n be a positive integer. A Severi–Brauer variety of di-
mension n−1 over k is a twisted form of the projective space Pn−1

k . Equivalently,
this is a k-variety X such that there exist a field extension k ⊂ K and an iso-
morphism of K-varieties X ×k K ' Pn−1

K .

The automorphism group of the projective space Pn−1
k is the algebraic group

PGLn,k. By the Skolem–Noether theorem, it coincides with the automorphism
group of the matrix algebra Mn,k. Galois descent (see Section 1.3.2) then gives

141
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a bijection between the isomorphism classes of twisted forms of Pn−1
k and the

isomorphism classes of twisted forms of Mn,k, which are precisely the central
simple algebras of degree n over k. Thus we obtain canonical bijections of
pointed sets

SBn−1,k
∼= H1(k,PGLn,k) ∼= Azn,k

and a map of pointed sets H1(k,PGLn,k)→Br(k). For a Severi–Brauer variety
X of dimension n− 1 we denote by [X] ∈ Br(k) the image of the isomorphism
class of X under the composite map

SBn−1,k
∼= H1(k,PGLn,k) −→ Br(k).

Recall that the map Azn,k ∼= H1(k,PGLn,k)→Br(k) associates to a central sim-
ple algebra A of degree n its class [A] ∈ Br(k), as discussed in Section 1.3.3.

For a central simple k-algebra A of degree n define X(A) to be the k-scheme
of right ideals of A of rank n. More precisely, for any commutative k-algebra
R, the set X(A)(R) is the set of right ideals of the matrix algebra A ⊗k R
which are projective R-modules of rank n and are direct summands of the R-
module A ⊗k R, see [KMRT, Ch. I, §1.C]. This is a closed subscheme of the
Grassmannian variety of n-dimensional subspaces of the k-vector space A.

Theorem 6.1.2 Let X be a variety over k. The following properties are equiv-
alent.

(i) X is a Severi–Brauer variety of dimension n− 1.
(ii) There is an isomorphism X ' Pn−1

k̄
.

(iii) There is an isomorphism Xs ' Pn−1
ks

.
(iv) There is a central simple k-algebra A of degree n such that X ' X(A).
The central simple algebra A in (iv) is well defined up to isomorphism. If

X = X(A), then [X] = [A] ∈ Br(k).

For the proof of this theorem see [Lic68], [Art82], [KMRT, Ch. I, §1.C],
[GS17, Ch. 5], [Kol], [Po18, §4.5.1].

Given a variety X as in (i), one recovers the central simple k-algebra A in
(iv) in the following direct manner (Quillen, Szabó, Kollár, see [Kol]). Let TX
be the tangent bundle of X and let Ω1

X be the cotangent bundle. It is known
that the coherent cohomology group H1(X,Ω1

X) is a 1-dimensional vector space
over k. (This can be computed over k̄, where X ' Pn

k̄
.) We have

H1(X,Ω1
X) = H1(X,Hom(TX ,OX)) = Ext1

X(TX ,OX).

Up to multiplying the maps by non-zero scalars in k∗, this defines a unique
non-split extension of vector bundles

0 −→ OX −→ F(X) −→ TX −→ 0.

This is a twisted version of the classical exact sequence on Pn−1
k

0 −→ OPn−1 −→ O(1)⊕nPn−1 −→ TPn−1 −→ 0.
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Then A = EndX(F(X)) is a central simple k-algebra such that X = X(A).
Let X be a Severi–Brauer variety. The Picard group

Pic(Xs) ' Pic(Pn−1
ks

) = Z

is generated by the class LX of an ample line bundle of degree 1. The class of the
canonical bundle ωX ∈ Pic(X) is −nLX . The action of Γ on Pic(Xs) is trivial,
so LX ∈ Pic(Xs)Γ and H1(k,Pic(Xs)) = 0. Next, Br(Xs) = Br(Pn−1

ks
) = 0.

Thus the exact sequence (4.9)

0 −→ Pic(X) −→ Pic(Xs)Γ −→ Br(k) −→ Br1(X) −→ H1(k,Pic(Xs))

takes the following form:

0 −→ Pic(X) −→ Pic(Xs)Γ ∂X−→ Br(k) −→ Br(X) −→ 0, (6.1)

where Pic(Xs) = Z. The kernel of Br(k)→Br(X), which coincides with the
kernel of Br(k)→Br(k(X)), is a finite cyclic group annihilated by n. Let αX =
∂X(LX) be the image of LX in Br(k).

If X = X(A), then αX equals the class [A] ∈ Br(k) of the central simple
algebra A. For a proof, see [Lic68, p. 1217] and [GS17, Thm. 5.4.11]. This is
a refinement of an earlier result of Amitsur that the kernel of Br(k)→Br(k(X))
is the finite cyclic group generated by [X].

Proposition 6.1.3 (F. Châtelet) Let X = X(A) be a Severi–Brauer variety.
The following properties are equivalent:

(i) X(k) 6= ∅;
(ii) αX = 0;
(iii) X ' Pn−1

k ;
(iv) there is a k-algebra isomorphism A 'Mn(k).

Proof. Condition (i) implies that the map Br(k)→Br(X) is injective, thus the
map Pic(X)→Pic(Xs)Γ is surjective. This implies (ii), which itself implies that
there is a well-defined line bundle L ∈ Pic(X) which over ks is isomorphic to
LX . The line bundle L on X defines a k-morphism to the projective space Pnk
which becomes an isomorphism over ks, hence is an isomorphism over k. This
gives (iii), which trivially gives (i). The equivalence of (ii) and (iv) follows from
the equality αX = [A] mentioned above. �

This proposition is a particular case of the following more general statement.

Proposition 6.1.4 Severi–Brauer varieties X1 and X2 over k of the same di-
mension are isomorphic over k if and only if αX1

= αX2
∈ Br(k).

Proof. For an even more general result of M. Artin see [GS17, Prop. 5.3.2]. �

Proposition 6.1.5 Let X1 and X2 be Severi–Brauer varieties over k. The
following properties are equivalent.

(i) αX1
and αX2

generate the same cyclic subgroup of Br(k);
(ii) X1 and X2 are stably birationally equivalent, i.e., there exist projective

spaces Prk and Psk such that X1 ×k Prk is birationally equivalent to X2 ×k Psk.
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Proof. See [GS17, Cor. 5.4.2, Remark 5.4.3]. �

It is an open question whether stably birationally equivalent Severi–Brauer
varieties of the same dimension are birationally equivalent.

Torsors under tori as birational models of Severi–Brauer varieties

The following statement does not seem to be in the literature.

Proposition 6.1.6 Let A be a central simple algebra of degree n over a field k
and let X = X(A) be the associated (n− 1)-dimensional Severi–Brauer variety.
Let K be a maximal commutative étale k-subalgebra of A. The action of K on
A by left multiplication defines a maximal k-torus T ⊂ PGLA which is (n− 1)-
dimensional and fits into the exact sequence

1 −→ Gm,k −→ RK/k(Gm,K) −→ T −→ 1. (6.2)

The natural action of PGLA on X restricts to an action of T on X, which has
a dense open orbit E ⊂ X consisting of the points of X with trivial stabilisers
in T . Then E is a k-torsor for T . Moreover, the connecting map defined by the
exact sequence (6.2) sends the class [E] ∈ H1(k, T ) to the class [A] ∈ Br(k).

Proof. Let c : Γ→PGLn,k(ks) be a 1-cocycle such that A is the twisted form of
the matrix algebra Mn(k) by c. Twisting by c we obtain X = (Pnk )c and the
inner form PGLA = (PGLn,k)c. After twisting, the left action of PGLn,k on
Pn−1
k becomes a left action of PGLA on X.

For a maximal commutative étale k-subalgebra K ⊂ A and the associated
maximal k-torus T ⊂ PGLA, the open subset E ⊂ X consists of ks-points
with trivial stabilisers in T (ks). Since K ⊗k ks is conjugate in Mn(ks) to the
subalgebra of diagonal matrices, Es is the open subset of Xs ∼= Pn−1

ks
whose

complement is the union of coordinate hyperplanes. Hence Es is a torsor for
T s. This implies that E is a k-torsor for T .

By a corollary of Steinberg’s theorem [PR91, Prop. 6.19], there is an em-
bedding φ : T ↪→ PGLn,k for which there is a 1-cocycle c̃ : Γ→T (ks) such that
c = φ∗(c̃). This implies that (6.2) sends the class [c̃] ∈ H1(k, T ) to [A] ∈ Br(k).
On the other hand, the action of T ⊂ PGLA on X is obtained by twisting the
action of φ(T ) ⊂ PGLn,k on Pn−1

k by c̃. (Conjugation of PGLn,k(ks) by an
element of φ(T )(ks) induces the trivial action on φ(T )(ks) ⊂ PGLn,k(ks).) The
open orbit of φ(T ) in Pn−1

k is a trivial k-torsor for φ(T ). Hence E is the twisted
form of a trivial torsor by c̃, thus [E] = [c̃] ∈ H1(k, T ). �

The following special case is better known, though it is sometimes stated in
the weaker form of a stable birational equivalence.

Proposition 6.1.7 Let X be the Severi–Brauer variety attached to a cyclic
algebra Dk(χ, a). Let K ⊂ ks be the invariant subfield of Ker(χ) ⊂ Γ. Then X
contains a dense open subset isomorphic to the k-torsor for the norm 1 torus
R1
K/k(Gm,K) given by NK/k(x) = a.
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Proof. Write A = Dk(χ, a). We note that K ⊂ A is a maximal commutative
étale k-subalgebra and T = RK/k(Gm,K)/Gm,k ⊂ PGLA is the associated maxi-
mal k-torus. By Proposition 6.1.6, the Severi–Brauer variety X contains a dense
open subset isomorphic to a k-torsor E for T such that the class [E] ∈ H1(k, T )
goes to

[A] = (χ, a) ∈ Br(K/k) = H2(G,K∗)

under the isomorphism H1(k, T )−̃→Br(K/k) provided by the connecting map
of (6.2).

Having fixed a generator σ of Gal(K/k) ' Z/n, we construct an isomor-
phism of k-tori T −̃→R1

K/k(Gm,K) as follows. The map K∗→K∗ sending x to

σ(x)/x commutes with Gal(K/k) and hence induces an automorphism φ of the
k-torus RK/k(Gm,K). It is clear that Ker(φ) is Gm,k naturally embedded in
RK/k(Gm,K). By Hilbert’s theorem 90 for a cyclic extension, Coker(φ) = Gm,k
and the surjective map RK/k(Gm,K)→Gm,k is induced by the norm NK/k. We
obtain an exact sequence of k-tori

1 −→ Gm,k −→ RK/k(Gm,K)
φ−→ RK/k(Gm,K) −→ Gm,k −→ 1. (6.3)

Hence φ induces an isomorphism ϕ : T −̃→R1
K/k(Gm,K), which thus depends on

the choice of the generator σ.
Recall that every k-torsor of R1

K/k(Gm,K) is isomorphic to the closed sub-

set Zc ⊂ RK/k(Gm,K) given by NK/k(x) = c for some c ∈ k∗. Indeed,
Shapiro’s lemma and Hilbert’s theorem 90 imply that H1(k,RK/k(Gm,K)) =
H1(K,Gm,K) = 0. The exact sequence of tori

1 −→ R1
K/k(Gm,K) −→ RK/k(Gm,K) −→ Gm,k −→ 1 (6.4)

gives an isomorphism

k∗/NK/k(K∗) = Ĥ0(G,K∗)−̃→H1(k,R1
K/k(Gm,K)).

Every element of this group is represented by some c ∈ k∗. The exact sequence
(6.4) shows that the inverse image of c in RK/k(Gm,K), which we called Zc, is
a k-torsor for R1

K/k(Gm,K) whose class is represented by c.
We want to show that the isomorphism ϕ induces an isomorphism E−̃→Za,

which is equivalent to ϕ∗[E] = [Za]. We have (χ, a) = a∪ ∂(χ), see (1.5). Thus
it remains to show that the following diagram of isomorphisms commutes:

[E] ∈ H1(k, T )
ϕ∗

∼=
//

∼=
��

H1(k,R1
K/k(Gm,K)) 3 [Za]

(χ, a) ∈ H2(G,K∗) Ĥ0(G,K∗)∼=

∪∂(χ)oo

∼=

OO

3 a

It suffices to show that the connecting map attached to (6.3) is the cup-product
with the generator ∂(χ) of H2(G,Z) ' Z/n. For this it is enough to show that
the connecting map associated to the exact sequence

0 −→ Z −→ Z[G]
σ−1−→ Z[G] −→ Z −→ 0
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sends 1 ∈ Z to ∂(χ). This sequence is (and also is dual to) a truncated piece
of the standard free resolution of the trivial Z[G]-module Z, thus the induced
map ZG→H2(G,Z) is the canonical surjection Z→Z/n sending 1 to ∂(χ). De-
composing this 2-extension into a Yoneda product of two short exact sequences,
one shows that this map coincides with the connecting map ZG→H2(G,Z). �

Morphisms to Severi–Brauer varieties

Let k be a field. Let Y be a Severi–Brauer variety and let X be an arbi-
trary k-scheme. A morphism f : X→Y gives rise to a map of Γ-modules
f∗ : Pic(Y s)→Pic(Xs) and a distinguished class f∗(LY ) ∈ Pic(Xs)Γ. More-
over, we have a map of Γ-modules

H0(Y s, LY ) −→ H0(Xs, f∗(LY )).

The image of this map is a finite dimensional, Γ-invariant, ks-vector subspace V
of H0(Xs, f∗(LY )). Since f is a morphism, the natural map V ⊗ksOXs→f∗(LY )
is surjective: the line bundle f∗(LY ) ∈ Pic(Y s) is generated by the vector
subspace of sections V ⊂ H0(Xs, f∗(LY )).

There is a converse to this observation.

Proposition 6.1.8 Let k be a field. Let X be a k-scheme and let L ∈ Pic(Xs)Γ.
Let V ⊂ H0(Xs, L) be a finite dimensional, Γ-invariant, non-zero ks-vector
subspace such that the map V ⊗ks OXs→L is surjective. Let n = dim(V ).
Then there is an (n − 1)-dimensional Severi–Brauer variety Y over k and a
k-morphism f : X→Y such that f∗(LY ) = L ∈ Pic(Xs) and the map f∗ :
H0(Y s, LY )→H0(Xs, L) is injective with image V .

Proof. Under the assumption that X is proper over k, and V = H0(Xs, L), the
above proposition is established in [Lie17, Thm. 3.4]. The proof by descent
extends to the above more general statement. �

Let X be a smooth, quasi-projective, geometrically integral variety over a
field k, such that ks[X

s]∗ = k∗s . By Proposition 4.3.2, we have an exact sequence

0 −→ Pic(X) −→ Pic(Xs)Γ −→ Br(k) −→ Br1(X),

and this exact sequence is functorial contravariant with respect to such k-
varieties. Let ∂X denote the map Pic(Xs)Γ −→ Br(k). If X(k) 6= ∅, then
Br(k)→Br1(X) has a retraction, hence ∂X = 0. More generally, if X has index
d, i.e. has a zero-cycle of degree d, then d ∂X(L) = 0 for all L ∈ Pic(Xs)Γ.

We want to understand restrictions on the order of ∂X(L) in the general
case. By abuse of notation, let us use the same notation for a line bundle L on
Xs and its class in Pic(Xs).

If Y is a Severi–Brauer variety of dimension n−1, then the image in Pic(Y s)
of the canonical bundle ωY ∈ Pic(Y ) is the opposite of L⊗nY . This implies

n∂Y (LY ) = 0.

Part (i) of the following proposition is stated in various degrees of generality by
S. Lichtenbaum [Lic68, Lic69]. Part (ii) was recently suggested by A. Kuznetsov.
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Proposition 6.1.9 Let X be a smooth, projective, geometrically integral variety
over a field k and let L ∈ Pic(Xs)Γ.

(i) If there exists a Γ-equivariant vector subspace V ⊂ H0(Xs, L) of dimen-
sion n ≥ 1, then n∂X(L) = 0.

(ii) Let χ(L) be the coherent Euler–Poincaré characteristic of L on Xs. Then

χ(L) ∂X(L) = 0.

Proof. Let us prove (i). Suppose first that n = 1. Then there exists a unique
effective Cartier divisor D on Xs with OXs(D) ' L which is the zero set of a
generator of the one-dimensional vector space V . This divisor is Γ-invariant.
Hence it comes from Div(X), hence L comes from Pic(X), hence ∂X(L) = 0.

Suppose n ≥ 1. The linear system V ⊂ H0(Xs, L) may have a fixed com-
ponent. As above, it corresponds to a fixed effective divisor D in Div(X). One
then considers M := L ⊗ OXs(−D) ∈ Pic(Xs). We may identify V with a Γ-
invariant vector subspace of H0(Xs,M). Since there is now no fixed component,
this defines a k-morphism g : U→Y , where U ⊂ X is an open set which contains
all codimension 1 points of the smooth variety X, so that ks[U

s]∗ = k∗s , and Y
is a Severi–Brauer variety of dimension n − 1, equipped with its natural line
bundle LY ∈ Pic(Y s). We have n∂Y (LY ) = 0.

The inverse image g∗(LY ) ∈ Pic(U s) coincides with the restriction of the line
bundle M s ∈ Pic(U s). By functoriality we conclude n∂U (M) = 0. Since U con-
tains all the codimension 1 points of X, the restriction map Pic(Xs)→Pic(U s)
is an isomorphism. By functoriality again we have n∂X(M) = 0. Now we have
∂(OXs(D)) = 0 since D is defined over k. Since ∂ is additive, and we have
L = M ⊗OXs(D), we conclude n∂X(L) = 0. This proves (i).

Let us prove (ii). Let O(1) ∈ Pic(X) be a very ample sheaf. By the
Riemann–Roch theorem, there exists a polynomial P (t) ∈ Q[t], depending only
on X, such that for any line bundle L ∈ Pic(Xs) we have χ(L(m)) = P (m).
Let s be a positive integer such that s P (t) ∈ Z[t].

Let L ∈ Pic(Xs)Γ. By a result of Serre, there exists an integer m0 = m0(L)
such that for any integer m ≥ m0, the line bundle L(m) is very ample and
satisfies Hi(Xs, L(m)) = 0 for i > 0. For any such m, we have χ(L(m)) =
h0(Xs, L(m)). By (i), we deduce χ(L(m)) ∂X(L(m)) = 0. Since ∂ is additive
and O(1) ∈ Pic(X), this gives χ(L(m)) ∂X(L) = 0. We have χ(L(m))−χ(L) =
R(m)/s with R(t) ∈ Z[t] a polynomial with no constant term and depending
only on X. Let r be an integer such that r ∂X(L) = 0. Let n ≥ m0 be a
multiple of rs. Then χ(L(n)) − χ(L) is an integer and a multiple of r. Thus
(χ(L(n))− χ(L)) ∂X(L) = 0. We now get χ(L) ∂X(L) = 0. �

As an application of Severi–Brauer varieties we now justify the claim of
Remark 1.2.15.

Proposition 6.1.10 Let K be a henselian discretely valued field. Let K̂ be the
completion of K. Then the natural map Br(K)→Br(K̂) is an isomorphism.

Proof. By [BLR90, III, §6, Cor. 10, p. 82], if X is a smooth variety over K,

then X(K) is a dense subset of X(K̂). Let α be an element of the kernel of
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Br(K)→Br(K̂). Choose a Severi–Brauer variety X over K such that the class

of X in Br(K) is α. Then X(K̂) 6= ∅, hence X(K) 6= ∅ and this implies α = 0.

Conversely, let β ∈ Br(K̂). There is a positive integer n such that β is

the image of β1 under the map H1(K̂,PGLn)→H2(K̂,Gm). Choose a closed
embedding of algebraic K-groups PGLn ↪→ GLN . Then X = GLN/PGLn is
a smooth variety over K. Applying [SerCG, Ch. I, §5.4, Prop. 36] and using
Hilbert’s Theorem 90, we obtain the following commutative diagram of pointed
sets with exact rows:

GLN (K) //

��

X(K) //

��

H1(K,PGLn) //

��

0

GLN (K̂) // X(K̂) // H1(K̂,PGLn) // 0

Choose a lifting β2 ∈ X(K̂) of β1. By the implicit function theorem (Theorem

9.5.1), GLN (K̂)β2 is an open subset of X(K̂) in the topology induced by the

topology of K̂. Since X(K) is dense in X(K̂), we can find an α2 ∈ X(K) and

a g ∈ GLN (K̂) such that gβ2 = α2. Since gβ2 goes to β1 ∈ H1(K̂,PGLn) (see
[SerCG, Ch. I, p. 55]), the image α1 ∈ H1(K,PGLn) of α2 goes to β1. This

implies that the image α ∈ Br(K) of α1 goes to β ∈ Br(K̂). �

6.2 Projective quadrics

Let C be a smooth, projective, geometrically integral curve of genus 0 over a
field k. Since C is smooth, it has a ks-point and hence Cs ∼= P1

ks
, cf. Remark

1.1.11 (3). The anticanonical line bundle of C is very ample of degree 2, so it
gives an embedding of C into P2

k as a smooth conic. From the isomorphism
Cs ∼= P1

ks
we also see that the degree map gives an isomorphism of Pic(Cs)

with the trivial Γ-module Z, hence H1(k,Pic(Cs)) = 0. Since Br(Cs) = 0 by
Theorem 4.5.1 (iv), the exact sequence (4.9) can be written as

0 −→ Pic(C) −→ Pic(Cs)Γ −→ Br(k) −→ Br(C) −→ 0. (6.5)

Proposition 6.2.1 Let k be a field, char(k) 6= 2. Let C be a smooth conic over
k. Let Q be the quaternion algebra over k associated to C. Then the image of
a generator of Pic(Cs)Γ ∼= Z in Br(k) is the class of Q, so that the natural map
Br(k)→Br(C) is surjective with the kernel generated by the class of Q.

Proof. By Remark 1.1.11 (3) or by the Riemann–Roch theorem, a smooth
conic C has a k-point if and only if C ∼= P1

k. In this case the natural map
Pic(C)→Pic(Cs) is visibly an isomorphism. The natural map Br(k)→Br(P1

k) is
an isomorphism by Theorem 4.5.1 (vii). On the other hand, Q is split over k
by Proposition 1.1.7, so the class of Q in Br(k) is zero.

If C has no k-point, then Q is a division algebra by Proposition 1.1.7, so the
class [Q] ∈ Br(k) is non-zero. By Exercise 1.1.12 (4), the class [Q] lies in the
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kernel of the natural map Br(k)→Br(k(C)). This map factors through the natu-
ral map Br(C)→Br(k(C)), which is injective by Proposition 3.5.4. We conclude
that [Q] is a non-zero element in the kernel of the natural map Br(k)→Br(C).
To finish the proof it remains to show that the cokernel of Pic(C)→Pic(Cs)
is annihilated by 2. This follows from the fact that the degree map identifies
Pic(Cs) with Z and the canonical class of C is an element of Pic(C) of degree
−2. �

There is a version of this proposition over a field of characteristic 2.

Remark 6.2.2 Since Br(Cs) = 0 and H1(k,Pic(Cs)) = 0, the Leray spectral
sequence (4.7) shows that the homomorphism H3(k, k∗s )→H3(C,Gm) is injective.

Proposition 6.2.3 Let k be a field, char(k) 6= 2. Let X ⊂ Pnk , n ≥ 2, be a
smooth projective quadric.

(a) The map Br(k)→Br(X) is surjective.
(b) For n = 2, let X be given by

x2 − ay2 − bt2 = 0,

where a, b ∈ k∗. The map Br(k)→Br(X) is an isomorphism if and only if
X(k) 6= ∅. If X(k) = ∅, then Ker[Br(k)→Br(X)] = Z/2 is generated by the
class of the quaternion algebra (a, b).

(c) For n = 3, let X be given by

x2 − ay2 − bz2 + dabt2 = 0,

where a, b, d ∈ k∗. The class of d in k∗/k∗2 is uniquely determined by X. If d
is not a square, then Br(k)→Br(X) is an isomorphism. If d is a square, then
X is birationally equivalent to P1

k ×C, where C is the conic x2 − ay2 − bt2 = 0.
In this case, the map Br(k)→Br(X) is an isomorphism if and only if X(k) 6= ∅.
If X(k) = ∅, then

Ker[Br(k)→Br(X)] = Ker[Br(k)→Br(C)] = Z/2

is generated by the class of the quaternion algebra (a, b).
(d) For n ≥ 4, the map Br(k)→Br(X) is an isomorphism.

Proof. Statement (b) was proved in Proposition 6.2.1.
A smooth quadric of dimension at least 1 with a rational point is birationally

equivalent to the projective space. By Theorem 5.2.6 we have Br(Xs) = 0,
hence Br1(X) = Br(X). Thus statement (a) will follow once we prove that
H1(k,Pic(Xs)) = 0 for all n ≥ 2.

Let us prove (d). For n ≥ 4 an easy direct proof shows that the restriction
map Pic(Pnks)→Pic(Xs) is an isomorphism. Indeed, the homogeneous equation
of Xs can be written as x0x1 + q(x2, . . . , xn) = 0, where q is a non-degenerate
quadratic form in n − 1 ≥ 3 variables. The hyperpane x0 = 0 cuts out the
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integral divisor D given by x0 = q(x2, . . . , xn) = 0 in Pnks . The complement

Xs rD is isomorphic to the affine space An−1
ks

. From the exact sequence

0 = ks[An−1
ks

]∗/k∗s −→ Z[D] −→ Pic(Xs) −→ Pic(An−1
ks

) = 0

we conclude that Z = Pic(Pnks)→Pic(Xs) is an isomorphism. Now a commuta-
tive diagram

Pic(Pnks)
∼= // Pic(Xs)

Pic(Pn)

∼=

OO

// Pic(X)
?�

OO

implies that Pic(X)→Pic(Xs) is an isomorphism. In particular, in this case
we have H1(k,Pic(Xs)) = 0. Now the statement of (d) follows from the exact
sequence (4.9).

Let us prove (c). (Quadric surfaces were already discussed by F. Châtelet
in the 1940s, see [CTS93, Thm. 2.5].) In this case Xs ∼= P1

ks
× P1

ks
, hence

Pic(Xs) = Ze1 ⊕ Ze2, where ei is the inverse image of a ks-point under the
projection to the i-th factor, for i = 1, 2. These are the two rulings on the
quadric surface Xs. The Galois group Γ preserves the integral basis {e1, e2}.
The class of the hyperplane section is e1 + e2, which is thus in the image of
Pic(X). The Galois action on {e1, e2} is trivial if d is a square. If d is not a
square, the action of Γ factors through its image Gal(k(

√
d)/k); the generator of

this group permutes e1 and e2. Using Shapiro’s lemma we see that in all cases
we have H1(k,Pic(Xs)) = 0. The basic exact sequence (4.9) then becomes

0 −→ Pic(X) −→ Pic(Xs)Γ −→ Br(k) −→ Br(X) −→ 0.

If d is not a square, then Pic(Xs)Γ is generated by e1 + e2, hence the map
Pic(X)→Pic(Xs)Γ is surjective in this case and thus the map Br(k)→Br(X) is
an isomorphism. If d is a square, it is easy to see that X is isomorphic to C×C.
The diagonal C ↪→ C×C is a section of the projection C×C→C, whose generic
fibre is thus isomorphic to P1

k(C). It follows that X is birationally equivalent to

the product of P1
k × C. By Theorem 5.2.6 the kernel of Br(k)→Br(X) is the

same as the kernel of Br(k)→Br(C) described in (b).
Finally, statement (a) is now established for all n ≥ 2. �

6.3 Some affine hypersurfaces

Proposition 6.3.1 Let k be a field of characteristic 0. Let X ⊂ Pnk be a smooth
hypersurface and let Z ⊂ X be a smooth hyperplane section. If n ≥ 4, then the
natural map Br(k)→Br(X r Z) is an isomorphism.

Proof. As usual we write X = X ×k k̄ and Z = Z ×k k̄, where k̄ is an algebraic
closure of k. Since n ≥ 4 the restriction map Pic(Pn

k̄
)→Pic(X) is an isomorphism
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by a theorem of Lefschetz, so Pic(X) = Z[Z]. Thus every divisor class on X is
a multiple of [Z], which implies that Z is integral. Let U = XrZ. If a rational
function f ∈ k̄(X)∗ is regular and invertible on U , then div(f) is a multiple of
an ample divisor Z, hence div(f) = 0. This shows that k̄[U ]∗ = k̄∗.

The natural restriction map Pic(X)→Pic(U) is surjective becauseX is smooth.
The kernel of this map is the cyclic subgroup generated by [Z], hence the exact
sequence

0 −→ Z[Z] −→ Pic(X) −→ Pic(U) −→ 0

shows that Pic(U) = 0.
Since n ≥ 4, we have H1(Z,Q/Z) = 0.
Since n ≥ 4, we have Br(X) = 0. From the exact sequence

0 −→ Br(X) −→ Br(U) −→ H1(Z,Q/Z)

we conclude that Br(U) = 0. Now the exact sequence (4.9) gives the required
statement. �

The following proposition is taken from [CTX09, §5.8].

Proposition 6.3.2 Let k be a field, char(k) 6= 2. Let f(x, y, z) be a non-
degenerate quadratic form and let a ∈ k∗. Let X be the affine quadric defined
by the equation f(x, y, z) = a. Assume that X(k) 6= ∅ and −a · discr(f) /∈ k∗2.
Then Br(X)/Br(k) = Z/2.

In [CTX09, §5.8] there is an explicit algorithm to compute a generator of
Br(X)/Br(k) = Z/2 from a k-point on X. There is a misprint in loc. cit.,
so we give a corrected description here. The algorithm generates a function ρ
whose divisor div(ρ) is a norm for the extension K/k and such that the class
of the quaternion algebra (ρ, d) ∈ Br(k(X)) belongs to Br(X) and generates
Br(X)/Br(k). Let Y ⊂ P3

k be the smooth projective quadric given by the ho-
mogeneous equation

f(x, y, z) = at2.

Let M ∈ Y (k). Let l1(x, y, z, t) be a linear form with coefficients in k defining
the tangent plane to Y at M . There then exist linear forms l2, l3, l4 and a
constant c ∈ k∗ such that

f(x, y, z)− at2 = l1l2 + c(l23 − dl24).

The linear forms li for i = 1, 2, 3, 4 are linearly independent. Conversely, if
we have such an identity, then l1 = 0 is an equation for the tangent plane
at the k-point l1 = l3 = l4 = 0. Define ρ = l1(x, y, z, t)/t ∈ k(X) and let
α = (ρ, d) ∈ Br(k(X)). We have

(l1(x, y, z, t)/t, d) = (−cl2(x, y, z, t)/t, d) ∈ Br(k(X)).

Thus α is unramified on X away from the plane at infinity t = 0, and the
finitely many closed points given by l1 = l2 = 0. By the purity theorem for
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the Brauer group of smooth varieties we see that this class is unramified on the
affine quadric X, i.e. belongs to Br(X) ⊂ Br(k(X)). The complement of X in Y
is the smooth projective conic C given by f(x, y, z) = 0. An easy computation
shows that the residue of α at the generic point of this conic is the class of d in

k∗/k∗2 = H1(k,Z/2) ⊂ H1(k(C),Z/2) ⊂ H1(k(C),Q/Z)

(note that k is algebraically closed in k(C)). Since d is not a square in k, this
class is not trivial. Thus α ∈ Br(X) does not lie in the image of Br(k), and hence
generates Br(X)/Br(k). Note that at any k-point of X, either l1 or l2 is not
zero. The map X(k)→Br(k) associated to α can thus be computed by means
of the map X(k)→k∗/NK/k(K∗) given by either the function ρ = l1(x, y, z, t)/t
or the function −cl2(x, y, z, t)/t.

The following result was established by T. Uematsu [Uem16] via an explicit
cocycle computation.

Proposition 6.3.3 Let a, b, c be independent variables over C. Let K = C(a, b, c).
Let X ⊂ A3

K be the affine quadric

x2 + ay2 + bz2 + c = 0.

Then Br(X)/Br(K) = 0.

Exercise 6.3.4 Prove Proposition 6.3.3 without cocycle computations. Hint:
Go over to the quadratic extension K(

√
b)/K where the quadric acquires a

rational point. Then use [CTX09, §5.8].

The following propositions are left as exercises for the reader. They extend
some of the computations in [Gun13].

Proposition 6.3.5 Let k be a field. Let Q(x) ∈ k[x] be a separable polynomial
with Q(0) 6= 0. Let X ⊂ A3

k be the affine surface yz = xQ(x). Let F ⊂ X be
the closed subset defined by y = Q(x) = 0, and let V = X r F . Then

(i) V ∼= A2
k, hence Pic(V ) = 0.

(ii) k[X]∗ = k[V ]∗ = k∗.
(iii) Pic(X) is a finitely generated torsion-free abelian group.
(iv) Assume char(k) = 0. Then Br(k)−̃→Br(V ) and Br(k)−̃→Br(X).

Let us give the proof of (i). The function f(x, y, z) = x/y = z/Q(x) is
defined everywhere on V . We have a morphism V→A2 given by (u, v) =
(f(x, y, z), y). The image of the morphism A2→A3 given by (u, v) 7→ (x, y, z) =
(uv, v, uQ(u, v)) is in V . The two morphisms are the inverses of each other.

Proposition 6.3.6 Let k be a field of characteristic 0. Let a ∈ k∗ and let
P (x) ∈ k[x] be a separable polynomial. Let X ⊂ A3

k be the affine surface with
equation y2−az2 = P (x). Then the quotient Br(X)/Im(Br(k)) is a finite group.



6.3. SOME AFFINE HYPERSURFACES 153

Remark 6.3.7 Note that the finiteness of Br(X)/Im(Br(k)) for X as above is a
general algebraic result. By contrast, the finiteness of Br(Y )/Im(Br(Q)), where
Y ⊂ A3

Q is given by x3 + y3 + z3 = a with a ∈ Q∗, uses arithmetic arguments
[CTW12]. The point here is that the ‘curve at infinity’ in this case is a curve of
genus one.

Given a k-point of X, can one compute explicit elements of Br(X) which
generate the quotient of Br(X) modulo the image of Br(k)?

Proposition 6.3.8 Let k be a field of characteristic 0. Let P (x) ∈ k[x] be a
separable irreducible polynomial of degree d such that K = k[x]/P (x) is a cyclic
extension of k. Let X ⊂ A3

k be the affine surface with equation yz = P (x). Then
Br(X)/Br(k) ∼= Z/d. The cyclic algebra over k(X) defined by A = (K/k, σ, y)
lies in Br(X) and generates Br(X)/Br(k).

Proposition 6.3.9 Let k be a field of characteristic 0. Let P (x) ∈ k[x] be
a separable polynomial. Write P (x) =

∏n
i=1 Pi(x) as a product of irreducible

polynomials. Let X ⊂ A3
k be the affine surface with equation y2 − az2 = P (x),

where a ∈ k∗. For each i = 1, . . . , n the quaternion algebra Ai = (a, Pi(x)) ∈
Br(k(X)) lies in Br(X).

In connection with applications to the integral Brauer–Manin obstruction,
the Brauer groups of many quasi-projective varieties has been computed in
recent years. See [CTX09], [CTW12], [CTHa12], [JaSc17], [BrKo], [BrLy],
[Harp1], [Harp2], [Mit18], [Berg], [LM18], [CTWX18].
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Chapter 7

Singular schemes and
varieties

This chapter collects and in some cases rectifies a number of results in the
literature on the Brauer groups of singular schemes.

The Brauer group of a field is a torsion group, but this is not always so for
schemes. Let X be an integral variety over a field k of characteristic zero and
let k(X) be the function field of X. If X is geometrically locally factorial, for
example smooth, Theorem 3.5.4 says that the restriction map Br(X)→Br(k(X))
is injective, in particular Br(X) is a torsion group. If, moreover, X is smooth
over k, then, by Corollary 3.7.3, there is an exact sequence

0 −→ Br(X) −→ Br(k(X)) −→ ⊕x∈X(1)H1(k(x),Q/Z).

Thus there is a purity theorem for Br(k(X)): unramified classes in Br(k(X)) lie
in the subgroup Br(X) ⊂ Br(k(X)). It is natural to ask whether and to what
extent the above results fail for a singular variety over k.

In Section 7.1 we give examples of non-reduced or reducible varieties X such
that the Brauer group Br(X) is not a torsion group. Sections 7.2 and 7.3 treat
schemes of dimension 1, and Section 7.4 integral normal schemes with isolated
singular points. Here the reader will find an example of an integral normal sur-
face X over C such that Br(X) contains an element of infinite order which lies
in the kernel of Br(X)→Br(C(X)). Brauer groups of singular complete inter-
sections and projective cones are subjects of Sections 7.5 and 7.6, respectively.
The last section contains some more examples.

These examples leave the following question open: if X is an integral normal
variety over a field k of positive characteristic, is Br(X) a torsion group?

For some singular varieties X, the exact computation of Br(X), for example
by comparison with the Brauer group of a desingularisation, turns out to be of
interest in connection with arithmetic investigations [HS14], [BrLo].

155
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7.1 The Brauer–Grothendieck group is not al-
ways a torsion group

In this section we give elementary examples of schemes X for which Br(X) is
not a torsion group. In some of these examples the scheme is non-reduced, and
in some others it is reduced, but not irreducible.

A non-reduced scheme

Let Y be a variety over a field k. Let X = Y ×k k[ε] where ε2 = 0. Let
i : Y = Xred→X be the closed immersion. Since the k-algebra homomorphism
k[ε]→k has a section, there is a morphism s : X→Y such that s ◦ i = id. In
particular, the map i∗ : Pic(X)→Pic(Y ) is surjective.

We have an exact sequence of sheaves for the étale topology on X

0 −→ i∗OY −→ Gm,X −→ i∗Gm,Y −→ 0,

where the first map sends x to 1 + εx. Since the functor i∗ is exact for the étale
topology [Mil80, Cor. II.3.6], we obtain a long exact sequence of abelian groups

Pic(X) −→ Pic(Y ) −→ H2(Y,OY ) −→ Br(X) −→ Br(Y ) −→ H3(Y,OY )

We thus obtain an exact sequence

0 −→ H2(Y,OY ) −→ Br(X) −→ Br(Y ) −→ H3(Y,OY ).

If H2(Y,OY ) 6= 0, then the kernel of the reduction map Br(X)→Br(Xred) is a
non-zero finite dimensional vector space over k.

If H2(Y,OY ) 6= 0 and char(k) = 0, then the kernel of the reduction map
Br(X)→Br(Xred) is a positive-dimensional vector space over a field of char-
acteristic zero, in particular Br(X) is not a torsion group. From the above
exact sequence we also deduce Br(X)tors

∼= Br(Xred)tors. As we shall see later
(Theorem 3.3.2), this translates as an isomorphism Br(X)Az

∼= Br(Xred)Az.
In characteristic p > 0, the kernel and the cokernel of Br(X)→Br(Xred) are

p-torsion groups.

Remark 7.1.1 The study of the kernel of Br(Y ×k A)→Br(Y ), where A is a
local artinian k-algebra, led Artin and Mazur to define the formal Brauer group
of the k-variety Y , see [AM77, Ch. II, §4]. The group H2(Y,OY ) is the tangent
space to the formal Brauer group of Y (when the latter exists). This group is
of importance in studying varieties over fields of positive characteristic. It is of
particular interest in the case of K3 surfaces (e.g. smooth quartics in P3

k) over
a finite field.

A reduced, reducible scheme

Here is another type of example of non-torsion elements in the Brauer group,
which works over fields of arbitrary characteristic.
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Lemma 7.1.2 Let k be a field. Let U be a non-empty open subset of a smooth
projective curve C of genus at least 1 over k. For any integer r there exists
a field K finitely generated over k such that the dimension of the Q-vector
space Pic(UK) ⊗Z Q is at least r. There exists a field extension L/k such that
Pic(UL)⊗Z Q is an infinite-dimensional Q-vector space.

Proof. One may assume C(k) 6= ∅. It is enough to prove that if A is an abelian
variety over k, then dimQ(A(K)⊗ZQ), where K is finitely generated over k, can
be made arbitrarily large, while dimQ(A(L)⊗ZQ) can be made infinite for even
larger field extension L/k. Indeed, the generic point of A is a point of A(k(A))
no multiple of which belongs to A(k). Now extend the ground field from k to
k(A) and iterate the process. �

Let k be a prime field. Let S ⊂ P3
k be a smooth cubic surface. Up to

replacing k by a finite extension, we can find a plane H ⊂ P3
k which intersects S

transversally along a smooth cubic E with a rational point. Write Y = S∪H ⊂
P3
k and X = S tH. Let p : X→Y be the natural morphism and let i : E ↪→ Y

be the natural inclusion. Both these morphisms are finite, thus i∗ and π∗ are
exact functors for the étale topology [Mil80, Cor. II.3.6]. Hence Rjp∗ = 0 and
Rji∗ = 0 for any j > 0. We have an exact sequence of sheaves for the étale
topology on Y

1 −→ Gm,Y −→ p∗Gm,X −→ i∗Gm,E −→ 1.

The associated long exact cohomology sequence gives an exact sequence

Pic(S)⊕ Pic(H) −→ Pic(E) −→ Br(Y )

Now Pic(S)⊕ Pic(H) is a finitely generated free abelian group of rank at most
8. The group Pic(E) contains E(k) as a subgroup. The same statements hold
after replacing k by any field extension K. Using Lemma 7.1.2 one finds a field
K finitely generated over its prime subfield k such that Br(YK) contains non-
torsion elements and dimQ(Br(YK)⊗Z Q) is arbitrarily large. One can also find
a field extension L/k such that dimQ(Br(YL)⊗Z Q) =∞.

One may replace H and S by any two smooth surfaces in P3 transversally
intersecting in a smooth curve of genus at least 1. The same argument also
works for the Zariski topology, thus producing examples with non-torsion groups
H2

zar(XL,Gm).
Replacing S,H,E ⊂ P3

k by their respective intersections with any Zariski
open set W ⊂ P3

k such that W ∩ E 6= ∅ produces examples where Y is affine
and Br(YK) is non-torsion of rank as big as one wishes.

The above example implies the existence of an affine variety X over a finite
field such that Br(X) is not a torsion group. Indeed, let us start with a field
L of positive characteristic p and an affine variety Y over L with a non-torsion
element β ∈ Br(Y ). The field L is a filtered union of Fp-algebras of finite type
Ai, i ∈ I. There exists an i ∈ I such that Y comes from an affine Ai-scheme of
finite type Yi, and β is the image of some βi ∈ Br(Yi). The element βi in the
Brauer group of the affine Fp-variety Yi is not torsion.
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7.2 Schemes of dimension 1

The following proposition clarifies some points in [Gro68, II, §1].

Proposition 7.2.1 Let X be a reduced, noetherian, 1-dimensional scheme.
The Brauer group Br(X) is a torsion group. If α ∈ Br(X) vanishes when
evaluated at each generic point of X and also at each singular point of X, then
α = 0.

Proof. Let us write x = Spec(k(x)) for a closed point of X, and y = Spec(k(y))
for any of the finitely many points of X of dimension 1. Let ix : x→X and
iy : y→X be the natural morphisms. Then we have an exact sequence of étale
sheaves

0 −→ Gm,X −→
∏
y

iy∗Gm,k(y) −→
⊕
x

ix∗Fx −→ 0, (7.1)

where Fx is an étale sheaf on x which is the constant sheaf Z, except possibly
when x is one of the finitely many singular points of X. Using Hilbert’s Theorem
90 for the fields k(y), we deduce from (7.1) an exact sequence

0 −→
⊕
x

H1(k(x), Fx) −→ Br(X) −→
∏
y

Br(k(y)). (7.2)

Note that H1(x, Fx) = 0 if x is a regular point, since H1(k(x),Z) = 0. From
this exact sequence we conclude that Br(X) is a torsion group.

Let Xx = Spec(Oh
X,x) be the henselisation of X at a singular point x. Then

we have a similar exact sequence

0 −→ H1(k(x), Fx) −→ Br(Xx) −→
∏
yx

Br(k(yx)),

where the product is over the generic points yx of Xx. The two sequences are
compatible via the maps induced by the natural morphism Xx→X.

If α ∈ Br(X) vanishes at each generic point of X, then α is the image of a
well-defined element {ζx} ∈ ⊕xH1(k(x), Fx), where the sum is over the singular
points of X. By Theorem 3.4.2 the evaluation map Br(Xx)→Br(k(x)) is an
isomorphism. Thus if α also vanishes when evaluated at the closed point x, then
the image of α in Br(Xx) is zero, hence ζx = 0. This proves the proposition. �.

Remark 7.2.2 If the 1-dimensional scheme X is affine, one may give a proof of
Proposition 7.2.1 in terms of Azumaya algebras, using conductors and patching
diagrams [CTOP02, Prop. 1.12]. See also [Chi74] and [KO74a]. For X arbitrary,
the result then follows from the fact that the set of singular points of X is
contained in an affine open subset and from Theorem 3.5.5.

Lemma 7.2.3 Let X be a noetherian separated scheme of dimension 1. Then
X has an ample invertible sheaf.

Proof. See [Stacks, Prop. 09NZ]. �
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Proposition 7.2.4 Let X be a noetherian separated scheme of dimension ≤ 1.
The natural inclusion BrAz(X) ↪→ Br(X) is an equality.

Proof. By Theorem 7.2.1, Br(X) is a torsion group. Now Lemma 7.2.3 and
Gabber’s theorem 3.3.2 give the result. �

Remark 7.2.5 As we saw in Section 7.1, there exists 2-dimensional schemes
X such that Br(X) is not a torsion group.

Let X be as in Proposition 7.2.1, and let X̃→X be the normalisation of X.
If one lets x̃ run through the closed points of X̃ above the singular points x ∈ X,
one obtains an obvious complex

Br(X) −→ Br(X̃)⊕
⊕
x

Br(k(x)) −→
⊕
x̃

Br(k(x̃)),

where x runs through the closed points of X. The proposition implies that the
first map here is injective. One may wonder whether the complex is exact. This
has been studied from the Azumaya point of view in [Chi74] and [KO74a]. In
the case of a curve over a field k of characteristic zero, this will be established
in Section 7.3. The proof there relies on a closer knowledge of the sheaves Fx.

7.3 Singular curves and their desingularisation

Let k be a field of characteristic 0 with an algebraic closure k̄ and Galois group
Γ = Gal(k̄/k). In this section we give a complement to Proposition 7.2.1.

Let C be a reduced, separated curve over k. We define the normalisation C̃
as the disjoint union of normalisations of the irreducible components of C. The
normalisation morphism ν : C̃→C factors as

C̃
ν′−→ C ′

ν′′−→ C,

where C ′ is a maximal intermediate curve universally homeomorphic to C, see
[BLR90, Section 9.2, p. 247] or [Liu10, Section 7.5, p. 308]. The curve C ′ is

obtained from C̃ by identifying the points which have the same image in C.
In particular, there is a canonical bijection ν′′ : C ′(K)−̃→C(K) for any field
extension K/k. The curve C ′ has relatively mild singularities: for each singular

point s ∈ C ′(k̄) the branches of C
′

through s intersect like n coordinate axes at
0 ∈ Ank .

We define three reduced 0-dimensional schemes naturally arising in this sit-
uation. Let Λ be the k-scheme of geometric irreducible components of C (or the

geometric connected components of C̃); it is the disjoint union of finite integral
k-schemes λ = Spec(k(λ)) such that k(λ) is the algebraic closure of k in the

function field of the corresponding irreducible component k(Cλ) = k(C̃λ). Let

Π = Csing, Ψ =
(
Π×C C̃

)
red
. (7.3)
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Thus Ψ is the union of fibres of ν : C̃→C over the singular points of C with their
reduced subscheme structure. The morphism ν′′ induces an isomorphism

(
Π×C

C ′
)

red
−̃→Π, so we can identify these schemes. Let i : Π→C, i′ : Π→C ′ and

j : Ψ→C̃ be the natural closed immersions. We have a commutative diagram

C̃
ν′ // C ′

ν′′ // C

Ψ

j

OO

ν′ // Π

i′

OO

i

??

The restriction of ν to the smooth locus of C induces isomorphisms

C̃ r j(Ψ)−̃→C ′ r i′(Π)−̃→C r i(Π).

An algebraic group over Π is a product G =
∏
π iπ∗(Gπ), where π ranges

over the irreducible components of Π, iπ : Spec(k(π))→Π is the natural closed
immersion, and Gπ is an algebraic group over the field k(π).

Lemma 7.3.1 (i) The canonical maps Gm,C′→ν′∗Gm,C̃ and Gm,C′→i′∗Gm,Π
give rise to the exact sequence of étale sheaves on C ′

0 −→ Gm,C′ −→ ν′∗Gm,C̃ ⊕ i
′
∗Gm,Π −→ i′∗ν

′
∗Gm,Ψ −→ 0, (7.4)

where ν′∗Gm,Ψ is an algebraic torus over Π.
(ii) The canonical map Gm,C→ν′′∗Gm,C′ gives rise to the exact sequence of

étale sheaves on C:

0 −→ Gm,C −→ ν′′∗Gm,C′ −→ i∗U −→ 0, (7.5)

where U is a commutative unipotent group over Π.

Proof. See [BLR90], the proofs of Propositions 9.2.9 and 9.2.10, or [Liu10,
Lemma 7.5.12]. By [Mil80, Thm. II.2.15 (b), (c)] it is enough to check the
exactness of (7.4) at each geometric point x̄ of C ′. If x̄ /∈ i′(Π), this is obvious
since locally at x̄ the morphism ν′ is an isomorphism, and the stalks (i′∗Gm,Π)x̄
and (i′∗ν

′
∗Gm,Ψ)x̄ are zero. Now let x̄ ∈ i′(Π), and let Osh

C′,x̄ be the strict

henselisation of the local ring of x̄ in C ′. Each geometric point ȳ of C̃ belongs
to exactly one geometric connected component of C̃. Let Osh

C̃,ȳ
be the strict

henselisation of the local ring of ȳ in its geometric connected component. By
the construction of C ′ we have an exact sequence

0 −→ Osh
C′,x̄ −→ k(x̄)×

∏
ν′(ȳ)=x̄

Osh
C̃,ȳ
−→

∏
ν′(ȳ)=x̄

k(ȳ) −→ 0,

where Osh
C̃,ȳ
→k(ȳ) is the reduction modulo the maximal ideal of Osh

C̃,ȳ
, and

k(x̄)→k(ȳ) is the multiplication by −1. We obtain an exact sequence of abelian
groups

1 −→ (Osh
C′,x̄)∗ −→ k(x̄)∗ ×

∏
ν′(ȳ)=x̄

(Osh
C̃,ȳ

)∗ −→
∏

ν′(ȳ)=x̄

k(ȳ)∗ −→ 1.
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Using [Mil80, Cor. II.3.5 (a), (c)] one sees that this is the sequence of stalks of
(7.4) at x̄, so that (i) is proved.

To prove (ii) consider the exact sequence

0 −→ Gm,C −→ ν′′∗Gm,C′ −→ ν′′∗Gm,C′/Gm,C −→ 0.

The morphism ν′′ is an isomorphism away from i(Π), so the restriction of the
sheaf ν′′∗Gm,C′/Gm,C to Cr i(Π) is zero. Hence ν′′∗Gm,C′/Gm,C = i∗U for some
sheaf U on Π. To see that U is a unipotent group scheme it is enough to check
the stalks at geometric points. Let x̄ be a geometric point of i(Π), and let ȳ be
the unique geometric point of C ′ such that ν′′(ȳ) = x̄. Let Osh

C,x̄ and Osh
C′,ȳ be

the corresponding strictly henselian local rings. The stalk (ν′′∗Gm,C′/Gm,C)x̄ is
(Osh

C′,ȳ)∗/(Osh
C,x̄)∗, and by [Liu10, Lemma 7.5.12 (c)], this is a unipotent group

over the field k(x̄). �

For fields k1, . . . , kn, we have Br
(∐n

i=1 Spec(ki)
)

= ⊕ni=1Br(ki).

Proposition 7.3.2 Let k be a field of characteristic 0. Let C be a reduced
curve over k, and let Λ, Π and Ψ be the schemes defined in (7.3). Let Λ =∐
λ Spec(k(λ)) be the decomposition into the disjoint union of connected com-

ponents, so that C̃ =
∐
λ C̃λ, where C̃λ is a smooth geometrically integral curve

over the field k(λ). Then there is an exact sequence

0 −→ Br(C) −→ Br(Π)⊕
⊕
λ∈Λ

Br(C̃λ) −→ Br(Ψ), (7.6)

where the maps are the composition of canonical maps

Br(C̃λ) −→ Br(C̃λ ∩Ψ) −→ Br(Ψ),

and the opposite of the restriction map Br(Π)→Br(Ψ).

Proof. Let π range over the irreducible components of Π, so that U =
∏
π iπ∗(Uπ),

where Uπ is a commutative unipotent group over the field k(π). Since i∗
is an exact functor [Mil80, Cor. II.3.6], we have Hn(C, i∗U) = Hn(Π,U) =∏
π Hn(k(π), Uπ). The field k has characteristic 0, and it is well known that

this implies that any commutative unipotent group has zero cohomology in
degree n > 0. (Such a group has a composition series with factors Ga, and
Hn(k,Ga) = 0 for any n > 0, see [SerCL, Ch. X, Prop. 1].) Thus the
long exact sequence of cohomology groups associated to (7.5) gives rise to
an isomorphism Br(C) = H2(C,Gm,C)−̃→H2(C, ν′′∗Gm,C′). Since ν′′ is finite,
the functor ν′′∗ is exact [Mil80, Cor. II.3.6], so we obtain an isomorphism
Br(C)−̃→Br(C ′). We now apply similar arguments to (7.4). Hilbert’s theorem
90 gives H1(Π, ν′∗Gm,Ψ) = H1(Ψ,Gm,Ψ) = 0, so we obtain the exact sequence
(7.6). �
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7.4 Isolated singularities

This section elaborates on [Gro68, Ch. II, §1, Rem. 11 (b)] and on further
literature [D68, D72, Oja74], [Chi76, Thm. 1.1], [DF92, Ber05, Kol16].

Let X be a normal integral noetherian scheme with function field K. As-
sume that the singular locus Xsing is the union of finitely many closed points
P1, . . . , Pn. Let ki denote the residue field at Pi, let ki,s be a separable closure
of ki and let Gi = Gal(ki,s/ki), for i = 1, . . . , n. We write Ri for the local ring
OX,Pi and Rsh

i for the strict henselisation of Ri. Let Cl(X) be the class group
of X, defined as the cokernel of the divisor map

div : K∗ −→
⊕

x∈X(1)

Z.

We define the étale sheaf DivX by the condition that the following sequence is
exact:

0 −→ Gm,X −→ j∗Gm,K −→ DivX −→ 0. (7.7)

Taking étale cohomology of (7.7) and using Lemma 2.4.1, we get an isomorphism

H1
ét(X,DivX)−̃→Ker[Br(X)→Br(K)]. (7.8)

Sending a Cartier divisor to the associated Weil divisor defines a natural injective
map DivX→⊕x∈X(1) ix∗Zk(x). This is an isomorphism when X is regular. Let
us define PX as the cokernel of this map. This gives an exact sequence

0 −→ DivX −→
⊕

x∈X(1)

ix∗Zk(x) −→ PX −→ 0. (7.9)

It is clear that PX is supported on Xsing, hence PX = ⊕ni=1 PX(Rsh
i ). Looking at

the stalks of the terms of (7.7) and (7.9) at the points Pi we see that PX(Rsh
i ) =

Cl(Rsh
i ) for each i. Thus

PX =

n⊕
i=1

iPi∗(Cl(Rsh
i )).

Taking étale cohomology of (7.9) and using Lemma 2.4.1 together with (7.8),
we then get an exact sequence

0→H0(X,DivX)→
⊕

x∈X(1)

Z→
n⊕
i=1

Cl(Rsh
i )Gi→Br(X)→Br(K).

Using the definition of Cl(X), we deduce the exact sequence

0 −→ Pic(X) −→ Cl(X) −→
n⊕
i=1

Cl(Rsh
i )Gi −→ Br(X) −→ Br(K).
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If X is the spectrum of a semi-local ring, one obtains the exact sequence

0 −→ Cl(X) −→
n⊕
i=1

Cl(Rsh
i )Gi −→ Br(X) −→ Br(K).

If X = Spec(R) is the spectrum of a local ring R with field of fractions K.
In this case the exact sequence takes the form

0 −→ Cl(R) −→ Cl(Rsh)G −→ Br(R) −→ Br(K).

Let U = X r {x} and U sh = Spec(Rsh) r {x}. Since U is regular, we have
Pic(U) = Cl(R) and Pic(U sh) = Cl(Rsh). The last displayed sequence then
becomes the formula (7) in [Gro68, Ch. II, §1].

Remark 7.4.1 [Ber05] Grothendieck claims that for any normal schemeX with
isolated singular points {Pi} the above computations give the general formula
[Gro68, §1, (7)]:

H1
ét(X,DivX) ∼=

n⊕
i=1

[Pic(Spec(Rsh
i ) r Pi)

Gi/Im
(
Pic(Spec(Ri) r Pi)

)
]. (7.10)

This is not correct. Given the above computations, this would imply
n⊕
i=1

[Cl(Rsh
i )Gi/Im(Cl(Ri))]−̃→Ker[Br(X)→Br(K)].

There is a natural surjective map

[

n⊕
i=1

Cl(Rsh
i )Gi ]/Im(Cl(X)) −→

n⊕
i=1

[Cl(Rsh
i )Gi/Im(Cl(Ri))].

Formula (7.10) holds if and only if the map Cl(X)→⊕ni=1 Cl(Ri) is surjective.
Ojanguren’s Example (4) in Section 7.7 is precisely built on an example where
this map is not surjective [Oja74, §2, p. 511].

Example 7.4.2 Let R be the local ring of the vertex of the cone over a smooth
projective plane curve X ⊂ P2

C of degree d. This is a 2-dimensional local normal
domain. As explained in Childs [Chi76, Thm. 6.1], work of Danilov [D68, D72]
gives that Cl(Rh)/Cl(R) = Cl(R̂)/Cl(R). Moreover, this quotient is the finite
dimensional complex vector space ⊕i≥1H1(X,OX(i)), which has positive dimen-
sion if d ≥ 4. Hence for these values of d the kernel of the map Br(R)→Br(K) is
a non-zero vector space over C. In particular, there are non-torsion elements in
this kernel. Note that this implies that the kernel of BrAz(R)→Br(K) is zero,
because BrAz(R) is always a torsion group.

Let Ui = Spec(Ri) be the affine Zariski open neighbourhoods of the vertex of
the cone. We have R = lim−→Ri, in fact, R is the union of the rings Ri. By Section
2.2.4 we have Br(R) = lim−→Br(Ui). Let α ∈ Br(R) be a non-torsion element in
the kernel of the map Br(R)→Br(K). There exist an i and αi ∈ Br(Ri) such
that the image of αi in R is α. Thus αi is a non-torsion element in the kernel
of Br(Ri)→Br(K). Now Y = Spec(Ri) is an affine normal integral surface such
that Br(Y ) contains an element of infinite order which goes to zero in Br(K).
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7.5 Intersections of hypersurfaces

Proposition 7.5.1 Let k be an algebraically closed field of characteristic p ≥ 0.
Let X ⊂ PNk be a closed subscheme.

(i) If X is defined by the vanishing of at most N − 3 homogeneous forms,
then Br(X) has no prime-to-p torsion. This holds for any hypersurface X ⊂ PNk
where N ≥ 4.

(ii) If X is defined by the vanishing of at most N − 4 homogeneous forms,
then Br(X) is uniquely `-divisible for any prime ` 6= p. This holds for any
hypersurface X ⊂ PNk where N ≥ 5.

Proof. Let ` 6= p be a prime. The more general result [Kat04, Cor. B.6]
gives that the restriction map H2(PNk ,Z/`)→H2(X,Z/`) is an isomorphism un-
der hypothesis (i) and that H3(PNk ,Z/`)→H3(X,Z/`) is an isomorphism under
hypothesis (iii). The Kummer sequence then gives that Br(PNk )[`]→Br(X)[`] is
surjective. Since Br(PNk ) = 0, this concludes the proof in case (i). In case (i)
from H3(PNk ,Z/`) = 0 we deduce H3(X,Z/`) = 0, and the Kummer sequence
gives Br(X)/` ↪→ H3(X,Z/`) = 0. �

Purity on some singular varieties

Corollary 4.4.5 can be extended to some singular complete intersections. K. Čes-
navičius showed us that the following theorem is essentially a special case of
results of Michèle Raynaud [MR62], a text which contains many more purity
theorems in a possibly singular context. Recent work of Česnavičius and Scholze
vastly extend these results.

Theorem 7.5.2 Let k be a separably closed field of characteristic zero. Let
X ⊂ PNk be a complete intersection of dimension d ≥ 3. Assume that the
codimension in X of the singular locus Xsing is at least 4. Let U = X rXsing.
Then Br(U) = 0, hence Brnr(k(X)) = 0.

Proof. The assumption on X and on the codimension of the singular locus im-
plies [SGA2, XI, Cor. 3.14] that X is geometrically locally factorial. Theorem
3.5.4 then gives that the restriction map Br(X)→Br(U) is injective. The restric-
tion map Pic(X)→Pic(U) is surjective since X is locally factorial and is injective
since the codimension of Xsing in X is at least 2, so it is an isomorphism. Quite
generally, for any complete intersection X ⊂ PNk of dimension d and any i < d,
the restriction map Hi(PNk , µn)→Hi(X,µn) is an isomorphism, see [Kat04]. In
particular, Z/n = H2(PNk , µn) = H2(X,µn). Now, from the Kummer sequence,
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we obtain a commutative diagram with exact rows

Pic(PNk )/n
∼= //

∼=
��

H2(PNk , µn)

∼=
��

0 // Pic(X)/n
∼= //

∼=
��

H2(X,µn) //

��

Br(X)[n] //

��

0

0 // Pic(U)/n // H2(U, µn) // Br(U)[n] // 0

To complete the proof it is enough to show that the restriction map

H2(X,µn) −→ H2(U, µn)

is an isomorphism.
Let us describe the relevant results from [MR62]. Let X be a noetherian

scheme, let Y ⊂ X be a closed subscheme, and let U = X r Y . The étale depth
depthY (X)(Z/`) of X along Y is defined in [MR62, Déf. 1.2], which refers to
[MR62, Prop. 1.1 (iii)]. If n = depthY (X)(Z/`), then for any X ′ étale over
X, the restriction map Hi(X ′,Z/`)→Hi(X ′ ×X U,Z/`) is an isomorphism for
i < n− 1 and an injection for i = n− 1.

One defines a similar notion locally at any point x of X, as follows. Let
X x̄ = Spec(Osh

x̄ ) be the strict henselisation of X at a geometric point x̄ above
x. Define depthx(X)(Z/`) = depthx̄(X x̄)(Z/`), that is, the étale depth of the
local scheme X x̄ at its closed point x̄. By [MR62, Thm. 1.8], depthY (X)(Z/`)
can be computed locally:

depthY (X)(Z/`) = inf
y∈Y

depthy(X)(Z/`),

where y ranges through the points of the scheme Y .
The geometric depth of an excellent local ring A is defined in [MR62, Déf.

5.3]. If A is a complete intersection, then the geometric depth of A coincides
with the dimension of A [MR62, Prop. 5.4]. For an excellent local ring A of
characteristic zero, the étale depth is greater than or equal to the geometric
depth [MR62, Thm. 5.6].

We now resume the proof of the theorem. So let X be as in the statement
of the theorem, let Y = Xsing, and let U = X r Y . Since X is a complete
intersection, so is X ȳ, where y is a point of Y and ȳ is a geometric point over
y. Since codimX(Y ) ≥ 4, we have dim(X ȳ) ≥ 4. We conclude that the étale
depth at the local ring of X at y is at least 4. Thus depthY (X)(Z/`) ≥ 4 for
any prime number `, hence the restriction map H2(X,Z/`)→H2(U,Z/`) is an
isomorphism. Thus H2(X,µn) ∼= H2(U, µn) for any n > 0. �

Corollary 7.5.3 Let k be a field of characteristic zero. Let X ⊂ PNk be a
complete intersection of dimension at least 3. Assume that the singular locus of
X is of codimension at least 4 in X. Then the natural map Br(k)→Brnr(k(X)/k)
is an isomorphism.
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Proof. Let k̄ be an algebraic closure of k. Let U = X r Xsing. We have
k̄∗ = k̄[U ]∗ = k̄[X]∗. The assumptions on X and on codimX(Xsing) imply
[SGA2, XI, Cor. 3.14] that X is geometrically locally factorial. It follows that
the restriction map Pic(X)→Pic(U) is an isomorphism. By a generalisation of
the Lefschetz theorem, for a complete intersection X of dimension at least 3 in
PN
k̄

, the restriction map Z = Pic(PN
k̄

)→Pic(X) is an isomorphism [SGA2, XII,
Cor. 3.7], and both groups are generated by the hyperplane section class, which
is defined over k. By the above theorem Br(X) = Br(U) = 0. From the exact
sequence (4.9) we then get isomorphisms

Br(k) = Br(X) = Br(U).

Let f : Z→X be a proper desingularisation of X which induces an isomorphism
V = f−1(U) ∼= U . The composition Br(k)→Br(Z)→Br(U) is an isomorphism,
and Br(Z)→Br(U) is injective since Z is smooth. Thus Br(k)→Br(Z) is an
isomorphism, hence Br(k)→Brnr(k(X)/k) is an isomorphism. �

7.6 Projective cones

Proposition 7.6.1 Let k be a field of characteristic zero. Let Y ⊂ Pnk , n ≥ 2,
be an integral closed subvariety. Let X ⊂ Pn+1

k be the projective cone over Y .
Write U = Xsmooth.

(i) The restriction map Br(X)→Br(U) is the composition of the by evaluation
at P map Br(X)→Br(k) and the map Br(k)→Br(U) induced by the structure
morphism U→Spec(k).

(ii) If Y is smooth, then U is the complement to the vertex of the cone X
and Br(U) ∼= Brnr(k(X)/k).

Proof. Let α ∈ Br(X). Let K = k(X) be the function field of X. The K-
variety XK = X ×k K has two obvious K-points: the point PK given by the
vertex P ∈ X(k) and the point given by the generic point η ∈ X. Any point
M ∈ XK(K) distinct from PK lies on the projective line P1

K ⊂ XK through
M and PK . Since Br(K)→Br(P1

K) is an isomorphism (Theorem 4.5.1 (vii)) we
have

α(η) = α(PK) = resK/k(α(P )) ∈ Br(K).

But α(η) is just the image of α under the restriction map Br(X)→Br(k(X)).
The latter map is the composition Br(X)→Br(U)→Br(k(X)), where the map
Br(U)→Br(k(X)) is injective since U is smooth over k (Theorem 3.5.4). Hence
Br(X)→Br(U) factors as

Br(X) −→ Br(k) −→ Br(U),

where the first arrow is evaluation at P and the second arrow is induced by the
structure map U→Spec(k).

Assume that Y is smooth. Then U = X r {P} is a smooth integral variety.
The projection map p : U→Y makes U an A1-bundle over Y , thus the induced
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map p∗ : Br(Y )→Br(U) is an isomorphism. Note that X is birationally equiv-
alent to Y ×k P1

k, hence Brnr(k(X)/k) ∼= Brnr(k(Y )/k). Since Y is smooth,
Br(Y ) = Brnr(k(Y )/k) ⊂ Br(k(Y )) (Proposition 5.2.2). �

Let us discuss the case where Y ⊂ PN−1
C , N ≥ 3, is a smooth projective

hypersurface. Let X ⊂ PNC be the projective cone over Y . The vertex is the only
singularity of X; it has codimension N−1 in X. Let U ⊂ X be the complement
to the vertex of X. By Proposition 7.6.1, the restriction map Br(X)→Br(U) is
zero. On the other hand, Proposition 7.5.1 says that Br(X) is torsion-free for
N ≥ 4 and Br(X) is uniquely divisible for N ≥ 5.

For N ≥ 5, we actually have Br(X) = Br(U) = 0. Indeed, X is geometrically
locally factorial, hence Br(X)→Br(U) is injective. As U is an A1-bundle over
a smooth hypersurface Y ⊂ PN−1 with N − 1 ≥ 4, we have Br(Y ) = 0 and
Br(U) = 0.

It remains to investigate the case where Y is a smooth curve in P2
C or a

smooth surface in P3
C. In the first case Br(U) = Br(Y ) = 0. In the second case

we know that Br(X) is torsion-free. We also know that if the surface is of degree
at least 4 then Br(U) ∼= Br(Y ) 6= 0.

Example 7.6.2 Let us show that the condition on the codimension of the sin-
gular locus in Theorem 7.5.2 and Corollary 7.5.3 is necessary. Let k = C and
let Y ⊂ P3

C be a smooth surface of degree d ≥ 4. Then NS(Y ) is torsion-
free and we have b2 > ρ since H2(Y,OY ) 6= 0, by Hodge theory. Proposition
4.2.6 implies that Br(Y ) = (Q/Z)b2−ρ 6= 0. Thus in the above notation we
have Br(U) = Br(Y ) 6= 0, while the map Br(X)→Br(U) is zero. This gives an
example of a hypersurface of dimension 3 with an isolated singularity of codi-
mension 3 for which the map Br(X)→Br(U) is not an isomorphism. Note that
Brnr(C(X)) = Brnr(Y ) = Brnr(U) 6= 0 in this case.

7.7 Some examples

(1) Let k be a field of characteristic different from 2 with a, b ∈ k∗ such that the
quaternion algebra class (a, b) ∈ Br(k) is non-zero. (For example, k = R and
a = b = −1.) Consider the singular affine curve over k defined by the equation

y2 = x2(x+ b).

Let X be the open set given by x 6= −b. Consider the quaternion algebra

A = (a, x+ b) ∈ BrAz(X).

Over the function field k(X) of X, we have

(a, x+ b) = (a, (y/x)2) = 0 ∈ Br(k(X)).

But the evaluation of A at the singular point (x, y) = (0, 0) is the non-zero
element (a, b) ∈ Br(k), thus A 6= 0 lies in the kernel of BrAz(X)→Br(k(X)).
Compare with Proposition 7.2.1.
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(2) Let k and a, b ∈ k∗ be the same as in (1). Consider the normal affine surface
over k defined by the equation

y2 − az2 = x2(x+ b).

Let X be the open set given by x 6= −b. Consider the quaternion algebra

A = (a, x+ b) ∈ BrAz(X).

Over the function field k(X) of X, we have

(a, x+ b) = (a, (y2 − az2)/x2) = 0 ∈ Br(k(X)).

The evaluation of A at the singular point (x, y, z) = (0, 0, 0) is the non-zero
element (a, b) ∈ Br(k). Thus A 6= 0 lies in the kernel of Br(X)→Br(k(X)).

(3) Let k and a, b ∈ k∗ be the same as in (1). Consider the quadratic cone
X ⊂ A4

R defined by
x2 − ay2 − bz2 + abt2 = 0.

Its singular locus is the point P = (0, 0, 0, 0), which has codimension 3 in X.
The class (a, b) ∈ Br(k) gives rise to α = (a, b)X ∈ BrAz(X). This class is
non-zero, because its evaluation at P is (a, b) ∈ Br(k). But the image of α in
Br(k(X)) is zero, since

(a, b)k(X) = (a, (x2 − ay2)/(z2 − at2)) = 0 ∈ Br(k(X)).

This example shows that in Theorem 3.5.4 of Auslander and Buchsbaum one
cannot remove the assumption that the codimension of the singular locus is at
least 4.

(4) If X is a noetherian integral scheme with an isolated singularity P ∈ X, and
RP is the local ring of X at P , then the restriction map

Br(X) −→ Br(RP )

is injective. Indeed one may write X = U ∪V where U is regular and V contains
P . By Theorem 3.5.5 this implies that the restriction map Br(X)→Br(V ) is
injective. Passing over to the limit over all V containing P gives the result.

The affine surface X over C given by z3 = (1 − x − y)xy is normal with
exactly three singular points Pi, i = 1, 2, 3. Let Ri be the local ring of X at Pi.
Ojanguren shows in [Oja74] that the natural map

BrAz(X) −→
3∏
i=1

BrAz(Ri)

has a non-trivial kernel.



Chapter 8

Varieties with a group
action

One often needs to study the Brauer group of a variety equipped with an action
of an algebraic group. The Brauer groups of connected algebraic groups them-
selves as well as the Brauer groups of their homogeneous spaces can be explicitly
computed in many cases. In Section 8.1 we deal with tori and in Section 8.2
with simply connected semisimple groups. We then turn our attention to the un-
ramified Brauer group of homogeneous spaces; the challenge here is to compute
these groups without having to construct an explicit smooth projective model.
In Section 8.3 we discuss Bogomolov’s theorems which compute the unramified
Brauer group of the invariant field of a linear action of a finite group over an
algebraically closed field, and a related theorem of Saltman. Finally, in Section
8.4 we give an overview of the unramified Brauer groups of homogeneous spaces
over an arbitrary field (mostly without proofs).

8.1 Tori

The étale cohomology of split tori has been studied by many authors, e.g.
[Mag78, GiPi08, GiSe14].

Lemma 8.1.1 Let X be a smooth, geometrically integral variety over a field k
of characteristic 0. Let Γ = Gal(ks/k). There are split exact sequences

0 −→ H1
ét(X,Q/Z) −→ H1(Gm,X ,Q/Z) −→ (Q/Z(−1))Γ −→ 0,

where Q/Z(−1) is the direct limit of Z/n(−1) for n→∞, and

0 −→ Br(X) −→ Br(Gm,X) −→ H1
ét(X,Q/Z) −→ 0.

Proof. Let Y be the closed subset of A1
X which is the zero section of the structure

morphism A1
X→X. Then X ∼= Y . The open subset A1

X r Y is isomorphic to

169
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Gm,X . The unit section of the structure morphism Gm,X→X is an embedding
X ↪→ Gm,X such that the composition X ↪→ Gm,X→A1

X→X is an isomorphism.
For any integer n > 0 we have the Gysin exact sequence (2.15)

. . .→Hi
ét(A1

X ,Z/n)→Hi
ét(Gm,X ,Z/n)→Hi−1

ét (X,Z/n(−1))→Hi+1
ét (A1

X ,Z/n)→ . . .

As n > 0 is invertible in X, the natural maps Hi
ét(X,Z/n)→Hi

ét(A1
X ,Z/n) are

isomorphisms. Specialisation at the unit section of Gm,X→X shows that all
maps Hi

ét(A1
X ,Z/n)→Hi

ét(Gm,X ,Z/n) are split injective. Putting everything
together, we get split short exact sequences

0 −→ Hi
ét(X,Z/n) −→ Hi

ét(Gm,X ,Z/n) −→ Hi−1
ét (X,Z/n(−1)) −→ 0.

For i = 1, this gives the first exact sequence. For i = 2, this gives the exact
sequence

0 −→ H2
ét(X,µn) −→ H2

ét(Gm,X , µn) −→ H1
ét(X,Z/n) −→ 0.

One then uses the compatible exact sequences

0 −→ Pic(X)/n −→ H2
ét(X,µn) −→ Br(X)[n] −→ 0

and
0 −→ Pic(Gm,X)/n −→ H2

ét(Gm,X , µn) −→ Br(Gm,X)[n] −→ 0

given by the Kummer sequence. The map Pic(X)→Pic(Gm,X) is the composi-
tion Pic(X)→Pic(A1

X)→Pic(Gm,X). The first map is an isomorphism since X
is regular and the second map is surjective since A1

X is regular. Since Gm,X/X
has the unit section, we conclude that the map Pic(X)→Pic(Gm,X) is an iso-
morphism. We now get the exact sequence

0 −→ Br(X)[n] −→ Br(Gm,X)[n] −→ H1
ét(X,Z/n) −→ 0.

Since X and Gm,X are regular, both Br(X) and Br(Gm,X) are torsion groups,
so we obtain the second exact sequence of the lemma. �

Let k be a field with separable closure ks. Let T be an algebraic torus. Then
T s = T×kks

∼= Gdm,ks for some positive integer d. By an easy case of Rosenlicht’s
lemma, the group ks[T ]∗ of invertible functions on T s is the direct sum of k∗s and
the character group T̂ = Homks−groups(T

s,Gm,ks). In particular, for any integer

n invertible in k, there is a natural isomorphism H0(T s,Gm,ks)/n = T̂ /n.

Proposition 8.1.2 Let k be a field of characteristic 0. Let T be an algebraic
torus of dimension d ≥ 1 over k with character group T̂ .

(a) There is a Γ-equivariant isomorphism

H1
ét(T

s,Q/Z)−̃→T̂ ⊗Q/Z(−1)

and a non-canonical isomorphism H1
ét(T

s,Q/Z) ' (Q/Z)d.
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(b) There is a Γ-equivariant isomorphism

∧2(T̂ )⊗Q/Z(−1)−̃→Br(T s)

and a non-canonical isomorphism Br(T s) ' (Q/Z)d(d−1)/2. If k is algebraically
closed, T = Spec(k[x1, x

−1
1 , . . . , xd, x

−1
d ]) and ζ is a primitive n-th root of unity,

the composite map

∧2(T̂ )⊗ Z/n−̃→Br(T )[n]⊗ µn −→ Br(k(T ))[n]⊗ µn

sends xi∧xj to (xi, xj)ζ⊗ζ, where (xi, xj)ζ is defined at the end of Section 1.3.4.
(c) There is a split exact sequence of abelian groups

0 −→ Br(k) −→ Br1(T ) −→ H2(k, T̂ ) −→ 0.

Proof. (a) Since Pic(T s) = 0, for any integer n, the Kummer sequence gives a
natural isomorphism

H0
ét(T

s,Gm)/n−̃→H1
ét(T

s, µn),

hence T̂ /n−̃→H1
ét(T

s, µn). We thus obtain an isomorphism

H1
ét(T

s,Q/Z)−̃→T̂ ⊗Q/Z(−1).

(b) Using this isomorphism and the second (split) exact sequence of Lemma 8.1.1
for X = Gd−1

m , we obtain by induction a non-canonical isomorphism Br(T s) '
(Q/Z)d(d−1)/2. In particular, for each n ≥ 1, the order of Br(T s)[n] is nd(d−1)/2.

Consider the cup-product pairing of étale cohomology groups

H1
ét(T

s, µn)×H1
ét(T

s, µn) −→ H2
ét(T

s, µ⊗2
n ) = Br(T s)[n]⊗ µn, (8.1)

where the last equality follows from the Kummer sequence and the vanishing
of Pic(T s). This pairing is compatible with the cup-product pairing of Galois
cohomology groups

H1(ks(T ), µn)×H1(ks(T ), µn) −→ H2(ks(T ), µ⊗2
n ) (8.2)

via the injective map H1
ét(T

s, µn) ↪→ H1(ks(T ), µn) induced by the inclusion
of the generic point Spec(ks(T ))→T s. Since char(k) = 0, the field ks is alge-
braically closed. Thus (a, a) = (a,−a) = 0 for any a ∈ H1(ks(T ), µn), so the
pairings (8.2) and (8.1), are alternating. We thus have a Galois equivariant map

ξ : ∧2(T̂ )⊗ Z/n −→ Br(T s)[n]⊗ µn.

It is enough to prove that ξ is an isomorphism of abelian groups. We already
know that the two groups have the same cardinality, so it remains to show that
ξ is injective.

Let us fix an isomorphism of ks-tori

T s ' Gdm,ks = Spec(ks[x1, x
−1
1 , . . . , xd, x

−1
d ]) ⊂ Adm,ks = Spec(ks[x1, . . . , xd]).
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The free Z/n-module ∧2(T̂ ) ⊗ Z/n is generated by the elements xi ∧ xj for

1 ≤ i < j ≤ d. Let α =
∑
i<j ai,jxi ∧ xj be a non-zero element of ∧2(T̂ )⊗ Z/n,

where each ai,j is a non-negative integer less than n. Write β for the image of
α in Br(ks(T ))[n]⊗ µn. Let r be the smallest value such that ar,t 6= 0 for some
t. Let Kr be the field ks(x1, . . . , xr−1, xr+1, . . . , xd). The residue of β at the
divisor xr = 0 of Adm,ks is the class

∏
t>r x

ar,t
t in K∗r /K

∗n
r . This class is not

trivial, hence β 6= 0. This shows that the composition of ξ with the natural map
Br(T s)[n]⊗µn→Br(ks(T ))[n]⊗µn is injective, so ξ is injective. This proves (b).

(c) In view of Pic(T s) = 0, the spectral sequence

Ep,q2 = Hp(k,Hq
ét(T

s,Gm)) =⇒ Hp+q
ét (T,Gm)

gives rise to an isomorphism H2(k, ks[T ]∗)−̃→Br1(T ), hence to an isomorphism
H2(k, k∗s )⊕H2(k, T̂ )−̃→Br1(T ) which gives (c). �

Proposition 8.1.3 Let k be a perfect field, let n ≥ 1 be an integer and let
T = Gnm,k be a split torus. The natural map Br(T )→Br(T s)Γ is surjective.

Proof. For any k-variety X we have the spectral sequence

Epq2 = Hp(k,Hq(X,Gm))⇒ Hp+q(X,Gm).

It is functorial contravariant in the k-variety X.
If X = T is a k-torus, then H0(Xs,Gm) = k∗s ⊕ T̂ and H1(Xs,Gm) =

Pic(T s) = 0. The spectral sequence thus gives rise to an exact sequence

0→H2(Γ, k∗s ⊕ T̂ )→Br(T )→Br(T s)Γ→H3(Γ, k∗s ⊕ T̂ )→H3(T,Gm).

Write

Bre(T ) = Ker[Br(T )→Br(k)], H3
e(T,Gm) = Ker[H3(T,Gm)→H3(k,Gm)]

for the kernels of the evaluation maps at the neutral element e ∈ T (k). Then
we get an exact sequence

0 −→ H2(Γ, T̂ ) −→ Bre(T ) −→ Br(T s)Γ −→ H3(Γ, T̂ ) −→ H3
e(T,Gm).

Since the spectral sequence is functorial in X, for any k-homomorphism of tori
R→T , we get a commutative diagram of exact sequences

Bre(T ) //

��

Br(T s)Γ //

��

H3(Γ, T̂ )

��
Bre(R) // Br(Rs)Γ // H3(Γ, R̂)

If R is of dimension 1, then Br(Rs) = 0 (here we use the hypothesis that k is
perfect; for k arbitrary, we would only get a result up to the characteristic of
k). This implies that the composition of maps

Br(T s)Γ −→ H3(Γ, T̂ ) −→ H3(Γ, R̂)
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is zero.
If T is split, then T = Gnm,k, T̂ = Zn, and we have H3(Γ,Zn) = H3(Γ,Z)⊕n.

Thus the map Br(T s)Γ→H3(Γ, T̂ ) is zero, hence the map Br(T )→Br(T s)Γ is
surjective. �

In the case when the field k is algebraically closed, Harari and Skorobogatov
[HS03, Thm. 1.6] computed the Brauer group of a torsor for a k-torus.

Theorem 8.1.4 Let k be an algebraically closed field of characteristic 0. Let
X be an integral smooth variety over k such that k∗ = k[X]∗ and Pic(X) is a
finitely generated free abelian group. Let f : Y→X be an X-torsor for a torus
such that k∗ = k[Y ]∗ and Pic(Y ) is a finitely generated free abelian group. Then
the map f∗ : Br(X)→Br(Y ) is an isomorphism.

8.2 Simply connected semisimple groups

Proposition 8.2.1 Let k be a field of characteristic 0. Let G be a simply
connected semisimple group over k. Let E be a k-torsor for G and let X be a
smooth, projective, geometrically integral variety over k birationally equivalent
to E. Then the following natural maps are isomorphisms:

(i) Br(k)−̃→Br(E);
(ii) Br(k)−̃→Br(X).

Proof. For a semisimple and simply connected group G we have k∗s = ks[E]∗,
Pic(Es) = 0, and Br(k)−̃→Br(G), see [San81, §6], [Gi09].

The exact sequence (4.8) then gives an isomorphism Br(k)−̃→Br(E) in (i).
For X as in the proposition, there exists a non-empty open set U ⊂ E and a
birational morphism U→X. Since X is projective and E is smooth, we may
assume that U contains all codimension 1 points of E. By purity for the Brauer
group, the restriction map Br(E)→Br(U) is an isomorphism. Since X is smooth,
the map Br(X)→Br(U) is injective. Now we obtain (ii) from (i). �

If G is not simply connected, then Br(k)→Br(G) is not necessarily an iso-
morphism even when k is algebraically closed of characteristic zero, see [Ive76].

Let us state an important theorem of Bruhat and Tits, see [BT87].

Theorem 8.2.2 (Bruhat–Tits) Let K be a complete local field with perfect
residue field of cohomological dimension 1. Let X be a K-torsor for a simply
connected semisimple group over K. Then X has a K-point.

One application of this theorem is Theorem 10.1.10 below, which says the
following. If f : X→Y is a dominant morphism of smooth, projective, geo-
metrically integral varieties over a field k of characteristic zero such that the
generic fibre is birationally equivalent to a k(Y )-torsor for a simply connected
semisimple group over k(Y ), then the induced map f∗ : Br(Y )→Br(X) is an
isomorphism. This result has the following corollary.
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Corollary 8.2.3 Let k be a field of characteristic 0. Let H ↪→ GLn be an
arbitrary linear group over k. Let H ↪→ G be an embedding into a simply
connected semisimple group G. Then Brnr(k(GLn/H)) ∼= Brnr(k(G/H)).

Proof. (cf. [LA15, Prop. 26]) Let P = G ×k GLn. Consider the quotient P/H
with respect to the diagonal action of H on the right. The projection of P→G
induces a morphism P/H→G/H which is a left GLn-torsor. Similarly, the mor-
phism P/H→GLn/H induced by the projection P→GLn is a left G-torsor. Any
GLn-torsor is locally trivial for the Zariski topology, thus P/H is birationally
equivalent to G/H ×k GLk, hence P/H and G/H have isomorphic unramified
Brauer groups (Corollary 5.2.5). Since G is simply connected and semisimple,
Theorem 10.1.10 implies that the map Brnr(k(GLn/H))→Brnr(k(P/H)) is an
isomorphism. �

8.3 Theorems of Bogomolov and Saltman

In this section we discuss theorems of Bogomolov and Saltman. We refer to
[CTS07, §6] and to [GS17, Ch. 6, §6] for most proofs and for history of the
subject. An abelian group generated by at most two elements will be called
bicyclic.

Theorem 8.3.1 [CTS07, Thm. 6.1] Let L be a field finitely generated over
an algebraically closed field k of characteristic zero. Let G be a finite group of
automorphisms of L over k, and let BG be the set of bicyclic subgroups of G.
Then

Brnr(L
G) = {α ∈ Br(LG) | αH ∈ Brnr(L

H) for all H ∈ BG},

where αH is the restriction of α ∈ Br(LG) to Br(LH).

Proof. [CTS07, loc.cit.] Let K = LG and let α ∈ Br(K) be such that ∂A(α) 6= 0
for some discrete valuation ring A ⊂ K with fraction field K. We must show
that there exists a subgroup H ∈ BG such that

αH /∈ Brnr(L
H).

The following facts can be found in [SerCL, I, §7]. Let p be a prime ideal
in the semi-local Dedekind ring Ã which is the integral closure of A in L, let
D ⊂ G be the associated decomposition group, and let I ⊂ D be the inertia
group, which is a normal subgroup of G. The localisation B = Ãp ⊂ L is a
discrete valuation ring. There is a tower of fields: K ⊂ LD ⊂ LI ⊂ L and a
corresponding tower of discrete valuation rings obtained by taking the traces
A = BG ⊂ BD ⊂ BI of B on the subfields. The corresponding residue field
extensions are F = F ⊂ E = E, and we have D/I = Gal(E/F ) = Gal(LI/LD).
The Galois extension LI/K is unramified, i.e. a uniformising parameter of A is
still a uniformising parameter in BI .
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Moreover, since the residue characteristic is zero, the inertia group I can be
identified with a cyclic group, namely, the group µ of roots of unity in F [SerCL,
IV, §2, Cor. 1 et 2]. Furthermore, the conjugacy action of D on the normal
subgroup I is then trivial, since this action can be identified with the action of
D/I = Gal(E/F ) on µ ⊂ F , and all the roots of unity are in k ⊂ F . Thus I is
central in D.

If αI /∈ Brnr(L
I), we are done, since I is a cyclic subgroup of G. We may

thus assume that αI ∈ Brnr(L
I). Since BD/A is an unramified extension of

discrete valuation rings which induces an isomorphism on the residue fields,
the assumption ∂A(α) 6= 0 implies ∂BD (α) 6= 0 ∈ H1(F,Q/Z). On the other
hand, ∂BI (a) = 0 ∈ H1(E,Q/Z). Since BI/BD is unramified, the commutative
diagram:

Br(KI)
∂B−−−−→ H1(E,Q/Z)x xResF/E

Br(KD)
∂BD−−−−→ H1(F,Q/Z)

implies that ∂BD (α) may be identified with a non-trivial character of D/I =
Gal(E/F ). Let g ∈ D be an element of D whose class ḡ in D/I satisfies
∂BD (α)(ḡ) 6= 0 ∈ Q/Z, let H = 〈I, g〉 ⊂ D be the subgroup spanned by I and
g, and let F1 be the residue class field of BH . Inserting Br(KH)→H1(F1,Q/Z)
in the above diagram, one immediately sees that ∂(αH) 6= 0, since ∂(αH) may
be identified with a character of Gal(E/F1) = D/H which does not vanish on
ḡ. This is enough to conclude, since H is an extension of the cyclic group 〈ḡ〉
by the central cyclic subgroup I (see above), hence is an abelian group spanned
by two elements. �

Let G be a finite group. Consider a faithful representation G→GL(V ), where
V is a finite dimensional complex vector space. Write C(V ) for the purely
transcendental extension of C, which is the field of rational functions on V
considered as an affine space over C. Then the subfield of invariants C(V )G is
the function field of the quotient V/G. Speiser’s lemma (see, e.g. [CTS07, Thm.
3.3]) states that the stably birational equivalence class of V/G does not depend
on the choice of a faithful representation G→GL(V ). By Corollary 5.2.5, this
implies that Brnr(C(V )G) does not depend on the choice of V . In particular,
considering the left action of GL(V ) on End(V ) gives a faithful representation
of G in End(V ), so we get an isomorphism Brnr(C(V )G) = Brnr(GL(V )/G).

If G is a finite abelian group, it is a consequence of a theorem of Fischer that
the field of invariants C(V )G is purely transcendental, hence Brnr(C(V )G) = 0.
Combining this with Theorem 8.3.1, one gets the following result.

Theorem 8.3.2 (Bogomolov) Let G ⊂ GL(V ) be a finite group. Then the
unramified Brauer group of the field C(V )G is given by the formula

Brnr(C(V )G) = Ker[H2(G,C∗) −→
∏
A∈B

H2(A,C∗)],
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where B is the set of bicyclic subgroups A ⊂ G and H2(G,C∗)→H2(A,C∗) is the
restriction map.

See [Bog87], [CTS07, Thm. 7.1], [GS17, Thm. 6.6.12]. Fischer’s theorem
implies that the set B of bicyclic subgroups can be replaced by the larger set of
all abelian subgroups. One may also write H2(G,C∗) ∼= H3(G,Z) and similarly
for each A. The same formula gives the value of Brnr(H/G), where G is a finite
subgroup of H = SLn,C or any simply connected semisimple group over C (see
[CT12b] and [LA17] ).

This theorem has led to numerous examples of finite p-groups G such that
the quotient GLn,C/G is not rational (E. Noether’s problem). D. Saltman (1984)
was the first to use the unramified Brauer group to disprove the rationality of
GLn,C/G for some finite groupsG. Bogomolov [Bog87] developed a technique for
computing Brnr(GLn,C/G) when G is a central extension of abelian groups. See
[CTS07, §7] and the references therein. Since [CTS07] was written, many papers
have been devoted to the computation of the group Brnr(GLn,C/G) in Theorem
8.3.2, which often goes under the name of ‘Bogomolov multiplier’. (Recall that
H2(G,C∗) ∼= H3(G,Z) is the Schur multiplier of the finite group G.) Kunyavskĭı
[Ku10] proved that the Bomogolov multiplier vanishes for all simple groups.

Theorem 8.3.3 (Saltman) [Sal90] Let G be a finite group and let M be a
faithful G-lattice. Let C(M) be the field of fractions of the group algebra C[M ].
Then

Brnr(C(M)G) = Ker[H2(G,C∗ ⊕M) −→
∏
A∈B

H2(A,C∗ ⊕M)],

where B is the set of bicyclic subgroups A ⊂ G.

In other words, C(M) is the field of functions C(T ) of a complex torus T
equipped with an action of a group G. Then C(M)G is the field of functions
C(T/G) of the quotient T/G.

Further work along these lines has been done by D. Saltman, E. Peyre [P08],
and in joint work of B. Kahn and Nguyen Thi Kim Ngan [KN16].

There is an extension of Theorem 8.3.1 to almost free actions of reductive
groups, see [Bog89, Thm. 2.1] and [CTS07, Thm. 6.4].

Theorem 8.3.4 (Bogomolov) Let k be an algebraically closed field of char-
acteristic zero, let G be a reductive group over k, and let X be an integral affine
variety over k with an action of G such that all stabilisers are trivial. Write BG
for the set of finite bicyclic subgroups of G(k). Then

Brnr(k(X)G) = {α ∈ Br(k(X)G) | αA ∈ Brnr(k(X)A) for all A ∈ BG},

where αA is the restriction of α ∈ Br(k(X)G) to Br(k(X)A).

The following theorem was proved in several instalments.
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Theorem 8.3.5 Let k be an algebraically closed field of characteristic 0. Let
G be a connected linear algebraic group over k and let H ⊂ G be a connected
algebraic subgroup. Let Xc be a smooth compactification of X = G/H. Then
Br(Xc) = 0.

The case H = PGLn ⊂ G = GLN is due to Saltman [Sal85].
For G simply connected, the result is a theorem of Bogomolov [Bog89, Thm.

2.4]. For a detailed account of his proof see [CTS07, §9]. The proof given there
builds upon Theorem 8.3.4.

The result in the general case was obtained by Borovoi, Demarche and Harari
in [BDH13]. Their proof uses a long arithmetic detour. A direct reduction to
the case G semisimple simply connected was then given by Borovoi [Bor13].

In the special case when G = GLn and H is a connected semisimple group, a
proof in arbitrary characteristic is given by Blinstein and Merkurjev in [BM13,
Thm. 5.10].

Over a separably closed field of characteristic p > 0, assuming that the
connected groups G and H are smooth and reductive, Borovoi, Demarche and
Harari [BDH13] prove that Br(Xc) is a p-primary torsion group.

Remark 8.3.6 1. Let k = C. There exists a subgroup A ⊂ SLn, where A is an
extension of a finite abelian group by a torus, such that Brnr(C(SLn/A)) 6= 0.
Such examples can be constructed by a method suggested by C. Demarche.
Suppose that a group H ′ is a central extension of a finite abelian group A by
a finite abelian group Z. Let us embed Z into a torus T and define H =
(T ×H ′)/Z. Then H is a central extension of A by T . Suppose we are given an
embedding H ↪→ G = SLn. Since T commutes with H, there is a right action
of T on G/H ′. But H is generated by T and H ′, hence the natural morphism
G/H ′→G/H is a right torsor under the quotient torus T/Z. This torus is split,
hence G/H ′ is stably birationally equivalent to G/H. Thus the natural map
Brnr(G/H)→Brnr(G/H

′) is an isomorphism. Using Theorem 8.3.2, Bogomolov
[Bog87] has constructed examples with Brnr(G/H

′) 6= 0. (See also [CTS07].)
2. Let k = C. For a subgroup A ⊂ G, where G is semisimple and simply

connected and A is an extension of a group of multiplicative type by a semisimple
simply connected group, we have Brnr(C(G/A)) = 0. This follows by combining
Theorem 8.3.5 with [LA15, Prop. 26] (itself an elaboration on Corollary 8.2.3).

8.4 Homogeneous spaces over an arbitrary field

For g ∈ Γ we denote by 〈g〉 the closed subgroup of Γ generated by g. For a
continuous discrete Galois module M and i ≥ 0 we define

Xi
ω(Γ,M) = Ker[Hi(Γ,M) −→

∏
g∈Γ

Hi(〈g〉,M)].

Using hypercohomology one extends this definition to bounded complexes of
Galois modules. The following statements are proved using standard properties
of Galois cohomology.
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(1) If K ⊂ ks is a Galois extension of k such that Gal(ks/K) acts trivially
on M , then the inflation map H1(Gal(K/k),MGal(ks/K)→H1(Γ,M) induces an
isomorphism

Ker[H1(Gal(K/k),M) −→
∏

g∈Gal(K/k)

H1(〈g〉,M)] = X1
ω(Γ,M).

(2) If, in addition, the abelian group M is finitely generated and free, then
the inflation map H2(Gal(K/k),MGal(ks/K)→H2(Γ,M) induces an isomorphism

Ker[H2(Gal(K/k),M) −→
∏

g∈Gal(K/k)

H2(〈g〉,M)] = X2
ω(Γ,M).

Work of many authors [Vos98, CTS77, San81, Bog89, CTK98, BK00, BKG04,
CTK06, CTS07, CT08, Bor13, BM13] has led to the following results.

Theorem 8.4.1 Let k be a field of characteristic 0 with an algebraic closure
k̄ and Γ = Gal(k̄/k). Let X be a homogeneous space of a connected linear
algebraic group such that the stabilisers of geometric points are connected. Let
Xc be a smooth compactification of X. Then the following properties hold.

(i) Br(Xc) = 0, hence Br(Xc) = Br1(Xc).
(ii) The Γ-lattice Pic(Xc) is a flasque Γ-module, that is, for every closed

subgroup C ⊂ Γ we have Ext1
C(Pic(Xc),Z) = 0.

(iii) For any procyclic subgroup C ⊂ Γ we have H1(C,Pic(Xc)) = 0.
(iv) There is an exact sequence

Br(k) −→ Br(Xc) −→X1
ω(Γ,Pic(Xc)) −→ H3(k, k̄∗).

(v) If X(k) 6= ∅, then there is an exact sequence

0 −→ Br(k) −→ Br(Xc) −→X1
ω(Γ,Pic(Xc)) −→ 0.

Let us for simplicity assume X(k) 6= ∅. Then X = G/H, where G and
H are connected linear algebraic groups. Once Br(Xc) = 0 has been estab-
lished (Theorem 8.3.5), one has Br(Xc)/Br(k) = H1(Γ,Pic(Xc)). Statement
(ii) [CTK06, Thm. 5.1] implies (iii) for purely algebraic reasons (the duality for
Tate cohomology of a finite group with values in a lattice and the periodicity of
cohomology of a finite cyclic group). From (iii) we immediately get (iv) which
implies (v).

Corollary 8.4.2 Let k be a field of characteristic 0. Let X be a smooth, pro-
jective, geometrically integral variety over k with a k-point. Assume that X is
stably k-birational to a homogeneous space of a connected linear algebraic group
such that the stabilisers of geometric points are connected. If there exists a finite
cyclic extension K/k such that Pic(XK) = Pic(X), then the map Br(k)→Br(X)
is an isomorphism and the Γ-module Pic(X) is a direct summand of a permu-
tation Γ-module.
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This is a consequence of Proposition 5.2.13, Theorem 8.4.1, and the following
general lemma.

Lemma 8.4.3 Let k be field of characteristic zero and let W be a smooth pro-
jective variety over k. Assume that Pic(W ) is a finitely generated torsion-
free abelian group. Assume that H1(C,Pic(W )) = 0 for all procyclic sub-
groups C ⊂ Γ. If there exists a cyclic finite field exension K/k such that
Pic(WK) = Pic(W ), then H1(k,Pic(W )) = 0 and the Γ-module Pic(W ) is a
direct summand of a permutation Γ-module.

Proof. Let K ⊂ k̄ be a Galois extension of k such that G = Gal(K/k) is
cyclic. Let M = Pic(W ). The group Gal(k̄/K) acts trivially on the finitely
generated torsion-free abelian group M , hence H1(K,M) = 0. The restriction-
inflation sequence gives H1(G,M) = H1(K/k,M) = H1(k,M). The map Γ =
Gal(k̄/k)→G is surjective, so we can find a g ∈ Γ whose image generates G. Let
E = k̄g be the fixed field of g. The field extensions K/k and E/k are linearly
disjoint. In particular, H1(K/k,M) ∼= H1(KE/E,M). We have H1(KE,M) =
0, so the restriction-inflation sequence gives H1(KE/E,M) ∼= H1(E,M), and
the latter group is trivial by assumption. We thus get H1(K/k,M) = 0 and
then H1(k,M) = 0. This remains true if k is replaced by a finite field extension.
The last part of the statement is then a consequence of a theorem of Endo and
Miyata (cf. [CTS77, Prop. 2, p. 184]): if G is a finite cyclic group acting on a
finitely generated torsion-free abelian group M such that H1(H,M) = 0 for all
subgroups H ⊂ G, then M is a direct summand of a permutation G-module. �

Example 8.4.4 A Châtelet surface Y given by the affine equation

y2 − az2 = (x− e1)(x− e2)(x− e3),

where a ∈ krk∗2 and ei 6= ej for i 6= j, admits a smooth compactification Yc such
that Pic(Yc,K) = Pic(Y c), where K = k(

√
a). However, Br(Yc)/Br(k) = (Z/2)2

(see Exercise 10.2.6). Corollary 8.4.2 then shows that such a Châtelet surface is
not stably k-birational to any homogeneous space of a connected linear group
with connected geometric stabilisers.

One would like to have a formula for X1
ω(Γ,Pic(Xc)) in terms of the ho-

mogeneous space X and not in terms of a smooth compactification. Let G be
a connected linear algebraic group over a field k of characteristic 0. Let X be
a homogeneous space of G defined over k. Let H ⊂ G be the stabiliser of a
k̄-point of X. Assume that H is an extension of a group of multiplicative type
S by a connected linear algebraic group with trivial group of characters. Then
there is a natural group k-scheme S of multiplicative type such that S = S×k k̄.
Let T be a torus over k which is the maximal toric quotient of G. Then there is
an induced homomorphism S→T defined over k. Let [T̂→Ŝ] be the dual map
of respective groups of characters, viewed as a complex of Galois modules in
degrees −1 and 0.
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Theorem 8.4.5 [BDH13, Thm. 8.1, Cor. 8.3] With notation as above assume
Pic(G) = 0. Let Xc be a smooth compactification of X. Then there is an exact
sequence

0→Br1(Xc)/Br0(Xc)→X1
ω(k, [T̂→Ŝ])→Ker[H3(k, k̄∗)→H3

ét(Xc,Gm)].

If H is connected, then S is a torus and we have the same sequence with
Br1(Xc)/Br0(Xc) replaced by Br(Xc)/Br0(Xc).

Let us mention some special cases, some of which are used in the proof of
the general result.

• G = T is a torus and H = 1. Here S = 1, and

X1
ω([T̂→Ŝ]) = X1

ω([T̂→0]) = X2
ω(k, T̂ ).

Under the assumption X(k) 6= ∅, i.e. X = T , the result in this case
appeared in [CTS87b]. The proof uses the theorem of Endo and Miyata
mentioned above: for any finite cyclic group G any H1-trivial G-lattice
is a direct summand of a permutation G-lattice (cf. [CTS77, Prop. 2 p.
184]).

• G is a simply connected semisimple group, µ ⊂ G is a finite central sub-
group and X = G/µ. Here T = 1, S = µ, so

X1
ω([T̂→Ŝ]) = X1

ω([0→µ̂]) = X1
ω(k, µ̂),

where µ̂ = Homk-groups(µ,Gm,k). The result in this case was obtained in
[CTK98]. The proof relies on a reduction to the case of a finite ground
field k together with the above mentioned theorem on tori.

• G is a simply connected semisimple group and H is connected. Here T = 1
and we have

X1
ω([T̂→Ŝ]) = X1

ω([0→Ŝ]) = X1
ω(k, Ŝ).

Under the assumption X(k) 6= ∅, the result in this case appeared in
[CTK06] where Theorem 8.2.2 was used.

• G = GLn,k and H ⊂ G is semisimple. In this case

X1
ω([T̂→Ŝ]) = X1

ω([Z→0]) = X2
ω(k,Z) = 0.

The proof of Br1(Xc)/Br0(Xc) = X2
ω(k, T̂ ), where Xc is a smooth compact-

ification of a torus T , is done directly at the level of the field k. The proofs of
most other computations of Br1(Xc)/Br0(Xc) = X1

ω(Γ,Pic(Xc)) rely on vari-
ous reductions involving change of the ground field k. Let us mention some of
them, without going into details.
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IfX is a homogeneous space of a semisimple groupG, it is helpful to reduce to
the case when G is quasi-split, that is, G contains a Borel subgroup B. Indeed, in
this case the maximal torus of B is a quasi-trivial torus, that is, a product of tori
of the form Rk′/k(Gm,k′), where k′ is finite separable extension of k. This implies
that G is a rational variety over k. To reduce to this situation one extends the
ground field k to the function field K of the variety of Borel subgroups of G. One
then uses the fact that the map Pic(Xc×kks)→Pic(Xc×kKs) is an isomorphism,
see Proposition 5.2.14.

Another way to reduce to the case when G is quasi-split is first to reduce
to the case when k is the fraction field of a finitely generated Z-algebra over
which G, X, Xc can be extended, and then use Chebotarev’s density theorem
to reduce the whole situation to the case of a finite field where the Galois action
is preserved. See [CTK98] for details.

One also uses algebraic and arithmetic results from the theory of connected
linear algebraic groups: a semisimple algebraic group over a finite field is quasi-
split; a quasi-split semisimple group over a field k is birationally equivalent to
the product of an affine space and a torus. One also uses Theorem 8.2.2.

The above theorems do not cover the case of quotients GLn,k/G where G is
a non-commutative finite subgroup subscheme of GLn,k. Such an extension of
Theorem 8.3.2 to more general ground fields is given in [CT12a] for constant G
and in [LA17] for more general G. The case when G is constant and k = Q is
of interest in connection with the inverse Galois problem [Ha07a, Dem10, HW].
For further work on unramified Brauer groups of quotients, see [Dem10] and
[LA14, LA15, LA17].

Exercise 8.4.6 [CTS77, Prop. 7] Let K/k be a finite Galois extension of fields.
Let T = R1

K/k(Gm,K) be the kernel of the norm map RK/k(Gm,K)→Gm,k. Show

that Brnr(k(T )/k) ∼= H3(Gal(K/k),Z). If Gal(K/k) ∼= (Z/p)2, where p is a
prime number, show that Brnr(k(T )/k) ∼= Z/p. Thus T is not k-rational. This
example of a non-k-rational linear algebraic group was first given by C. Chevalley
(with a different proof).
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Chapter 9

Schemes over local rings
and fields

The object of study in this chapter is a scheme over the spectrum of a local ring.
A separately standing Section 9.1 is devoted to the concepts of a split variety
and of a split fibre of a morphism of varieties; for arithmetic applications and for
the calculation of the Brauer group, split fibres should be considered as ‘good’
or ‘non-degenerate’. In Section 9.2 we look at the classical case of quadrics over
a discrete valuation ring.

In the ensuing sections the local ring is henselian or complete. In Section
9.3 we consider regular integral proper schemes of relative dimenson 1 over
a henselian discrete valuation ring. The study of the Brauer group of such
schemes goes back to Artin and Grothendieck [Gro68, III, §3]. We also discuss
the parallel situation of proper regular desingularisations of a 2-dimensional
henselian local ring, already considered in [Art87]. This leads to local-global
theorems for the Brauer group of the function field. It also leads to comparison
of index and exponent of a central simple algebra of the function field of such
schemes under suitable assumptions on the residue field of the local ring, as
initiated by Artin and by Saltman. In Section 9.4 we analyse the Brauer group
of the generic fibre of a smooth proper scheme over a henselian discrete valuation
ring. In Section 9.5 we discuss various properties of the Brauer group of a variety
over a local field with respect to evaluation at rational and closed points.

9.1 Split varieties and split fibres

Split varieties

Recall our standard convention that a variety over k is a separated scheme of
finite type over k. For an irreducible variety X over k we write kX for the
algebraic closure of k in the field of functions k(X), which is the residue field
k(η) at the generic point η ∈ X.

183
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Recall that we write ks for a separable closure of k and k̄ for an algebraic
closure of k. We write X = X ×k k̄.

Let us recall birational criteria for an integral scheme to be geometrically
reduced or geometrically irreducible. Following Bourbaki [BouV, §15, no. 2,
Déf. 1], a commutative k-algebra A is called separable if the ring A ⊗k L is
reduced (i.e. has no nilpotents) for any field extension L/k. By [BouV, §15,
no. 2, Prop. 3] A is a separable k-algebra if and only if A ⊗k k̄ is a separable
k̄-algebra, which is equivalent to A⊗k k̄ being reduced [BouV, §15, no. 5, Thm.
3 (c)].

Let X be an integral scheme over k. Then X is geometrically reduced if
and only if k(X) is a separable k-algebra [EGA IV2, Prop. 4.6.1]. Next, X is
geometrically irreducible if and only if k is separably closed in k(X), that is,
the only separable algebraic field extension of k in k(X) is k itself [EGA IV2,
Prop. 4.5.9]. See also [Po18, Section 2.2].

Definition 9.1.1 Let X be an irreducible variety over a field k. The multi-
plicity of X is the length of the (artinian) local ring of X at the generic point
η of X. The geometric multiplicity of X is the length of the (artinian) local
ring of X at a point η̄ of X over η.

The definition of geometric multiplicity does not depend on the choice of η̄
because such points are conjugate under the action of Aut(k̄/k).

The multiplicity of X is 1 if and only if X contains a non-empty open reduced
subscheme. The geometric multiplicity of X is 1 if and only if X contains a non-
empty open geometrically reduced subscheme. By the birational criterion, this
is equivalent to k(X) being separable over k. Equivalently, X contains a dense
open smooth subscheme, cf. [Stacks, Lemma 056V]. The multiplicity divides
the geometric multiplicity; the ratio is the geometric multiplicity of the reduced
subscheme Xred [BLR90, §9.1, Lemma 4 (a)]. It is a power of the characteristic
exponent of k [BLR90, §9.1, Lemma 4 (c)].

Lemma 9.1.2 Let X→Y be a morphism of integral schemes over a field k.
Suppose that Y is normal. Then there is a natural embedding kY ⊂ kX .

Proof. Let y ∈ Y be a point and let OY,y be the local ring of Y at y. Since
Y is normal, OY,y is integrally closed in the function field k(Y ). Thus the in-
clusions k ⊂ kY ⊂ k(Y ) induce inclusions k ⊂ kY ⊂ OY,y. It follows that
kY is contained in H0(Y,OY ), so that the structure morphism Y→Spec(k) fac-
tors through Spec(kY ). Thus the structure morphism X→Spec(k) also factors
through Spec(kY ), hence kY ⊂ k(X). �

The following definition was introduced in [Sko96].

Definition 9.1.3 A variety over a field k is split if it contains a non-empty
open geometrically integral subscheme.

Proposition 9.1.4 Let X be a variety over a field k. The following properties
are equivalent.



9.1. SPLIT VARIETIES AND SPLIT FIBRES 185

(i) X is split;
(ii) X contains a non-empty open integral subscheme U such that kU = k

which is geometrically reduced;
(iii) X contains a non-empty open integral subscheme of geometric multi-

plicity 1 which is geometrically irreducible;
(iv) X contains a non-empty open integral subscheme which is smooth and

geometrically irreducible.

Proof. Let us show that (i) implies (ii). Let U ⊂ X be a non-empty open
geometrically integral subscheme. By the birational criterion, k is separably
closed in k(U) and k(U) is separable over k, hence kU is separable over k so
that kU = k.

Conversely, kU = k implies that k is separably closed in k(X), so X is
geometrically irreducible. Thus (ii) implies (i).

A non-empty open integral subscheme U ⊂ X has geometric multiplicity 1 if
and only if it contains a dense open subscheme which is geometrically reduced,
so (i) and (iii) are equivalent. This happens precisely when U contains a dense
open smooth subscheme, so (iii) and (iv) are equivalent. �

Lemma 9.1.5 A variety X over k which contains a smooth k-point is split.

Proof. Let P be a smooth k-point of X. Then there exists a smooth irreducible
Zariski open set U ⊂ X which contains P . In particular, U is geometrically
reduced. Lemma 9.1.2 gives kU = k, so U is geometrically irreducible. �

Split fibres

Proposition 9.1.6 Let R be a regular local ring with residue field k, maximal
ideal m and field of fractions K. Let f : X→Spec(R) be an R-scheme of finite
type such that X is regular and the generic fibre XK is a smooth K-scheme.
Let i : R ↪→ R′ be an extension of local rings such that m generates the maximal
ideal m′ ⊂ R′ and the residue field k′ of R′ is a separable extension of k (not
necessarily algebraic). Then any morphism σ : Spec(R′)→X such that fσ = i∗

factors through the smooth locus of f : X→Spec(R).

Proof. It is enough to show that P = σ(Spec(k′)) is a smooth point of the closed
fibre Xk. Let A be the local ring of X at P with maximal ideal mA ⊂ A and
residue field k(P ) = A/mA. We have homomorphisms of local rings f∗ : R→A
and σ∗ : A→R′ such that σ∗f∗ = i. They induce embeddings of residue fields
k ⊂ k(P ) ⊂ k′. The induced maps m/m2→mA/m

2
A→m′/m′2 are linear maps

of k-vector spaces such that the composition i∗ : m/m2→m′/m′2 is induced by
i : R ↪→ R′. We claim that the k′-vector space m′/m′2 is obtained from the
k-vector space m/m2 by extending scalars from k to k′. Indeed, tensoring the
exact sequence of R-modules

0 −→ m2 −→ m −→ m/m2 −→ 0
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with R′, using R′m = m′ which implies R′m2 = m′2, we obtain an isomor-
phism m′/m′2−̃→(m/m2) ⊗k k′ whose composition with i∗ : m/m2→m′/m′2 is
the natural map m/m2→(m/m2) ⊗k k′. It follows that f∗ : m/m2→mA/m

2
A is

injective.
Thus if {s1, . . . , sm} ⊂ m, where m = dim(R), is a regular system of pa-

rameters of R, then f∗(s1), . . . , f∗(sm) can be completed to a regular sys-
tem of parameters of A, that is, there exist tm+1, . . . , tn ∈ mA such that
f∗(s1), . . . , f∗(sm), tm+1, . . . , tn is a regular system in A. Indeed, it is enough to
choose tm+1, . . . , tn ∈ mA such that the classes of f∗(s1), . . . , f∗(sm), tm+1, . . . , tn
form a basis of the k(P )-vector space mA/m

2
A. Since X is regular, A is a regular

local ring, so dim(A) = n.
The quotient B = A/(m ⊗R A) is the local ring of Xk at P ; its maximal

ideal is mB = mA/(m ⊗R A) and its residue field is B/mB = k(P ). The k(P )-
vector space mB/m

2
B has a basis consisting of the images of tm+1, . . . , tn, hence

dim(mB/m
2
B) = n−m = dim(A)− dim(R) ≤ dim(B), see [Liu10, Thm. 4.3.12]

for the last inequality. But dim(B) ≤ dim(mB/m
2
B) for any local ring B, so

dim(B) = dim(mB/m
2
B) so that B is a regular local ring. Finally, the residue

field of B is k(P ) ⊂ k′, which is separable over k since k′/k is separable, so P
is smooth in Xk. �

Corollary 9.1.7 Let R be a regular local ring with residue field k. Let X
be a regular scheme which is an R-scheme of finite type. If the morphism
X→Spec(R) has a section, then this section meets the closed fibre Xk in a
smooth k-point. Hence Xk is a split k-variety.

Proof. Taking R′ = R in Proposition 9.1.6 we obtain a smooth k-point P in the
closed fibre Xk. The last statement now follows from Lemma 9.1.5. �

A variety Z over a field k is geometrically split if the ks-scheme Zs = Z×k ks

is split. Equivalently, Z contains a non-empty smooth open subscheme. In
particular, a variety over k is geometrically split if and only if it contains a
smooth closed point.

Corollary 9.1.8 Let f : X→Y be a dominant, proper and flat morphism of
regular varieties over a field k. Let P be a point of Y . The fibre XP is geo-
metrically split if and only if f has a section locally at P for the étale topology,
i.e. the morphism X ×Y Spec(R)→Spec(R) has a section, where R is the strict
henselisation of the local ring of Y at P .

Proof. Let X ′ = X ×Y R and let X ′0 be the closed fibre of X ′/R. It is enough
to show that X ′0 is split if and only if X ′/R has a section.

The Y -scheme Spec(R) is a direct limit of étale schemes V/Y , thus X ′ is
a limit of V ×Y X. But V ×Y X is étale over a regular scheme X, hence X ′

is regular. Now R is a regular local ring and X ′ is regular, so if X ′/R has a
section, then X ′0 is split by Corollary 9.1.7.

Conversely, since X ′0 is split over a separably closed field, Proposition 9.1.4
(iv) implies that X ′0 has a smooth rational point P . By assumption the mor-
phism X→Y is flat, so X ′ is a flat R-scheme. Hence the morphism X ′→Spec(R)
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is smooth in a neighbourhood of P . Since R is henselian, P can be lifted to a
section of X ′/R. �

In the case of a regular integral scheme over a discrete valuation ring, the
multiplicity of an irreducible component of the closed fibre has a clear geometric
meaning.

Lemma 9.1.9 Let R be a discrete valuation ring with maximal ideal m = (π)
and residue field k = R/m. Let X be a regular integral scheme with a faithfully
flat morphism f : X→Spec(R). Then the (non-empty) closed fibre Xt is the
principal divisor

(π) =

n∑
i=1

miCi ∈ Div(X),

where C1, . . . , Cn are the (reduced) irreducible components of Xk, and mi is the
multiplicity of Ci, for i = 1, . . . , n.

Proof. Since f is faithfully flat, Xk is non-empty, and each Ci is a divisor on X.
Since X is regular, each Ci is a Cartier divisor and the local ring OX,Ci

of X at
the generic point of Ci is a discrete valuation ring. The local ring of Xk at the
generic point of Ci is OX,Ci/πOX,Ci , which by assumption is a local Artinian
ring of length mi. Hence the valuation of π is mi. Thus the Cartier divisors
Xk = (π) and

∑n
i=1miCi coincide at codimension 1 points of X; this implies

that they coincide as Cartier divisors on X. �

Proposition 9.1.10 Let R be a discrete valuation ring with field of fractions
K, maximal ideal m and residue field k = R/m. Let Y and Y ′ be regular,
integral and flat R-schemes of finite type, with smooth generic fibres YK and
Y ′K . Assume that Y ′ is a proper R-scheme. If there is a rational map from YK
to Y ′K , then for any irreducible component C ⊂ Yk of geometric multiplicity 1
there exists an irreducible component C ′ ⊂ Y ′k of geometric multiplicity 1 such
that kC′ ⊂ kC . In particular, if Yk is split, then Y ′k is split too.

Proof. Write F = K(YK). Let OC be the local ring of Y at the generic point of
C. Since Y is integral, the field of fractions of OC is F ; the residue field of OC is
k(C). Since Y is regular, OC is a discrete valuation ring. Since Y/R is flat, OC
is a flat, hence torsion-free R-module, so the natural homomorphism R→OC is
injective. The multiplicity of C is 1, so Lemma 9.1.9 shows that the maximal
ideal of OC is m⊗ROC = mOC . Moreover, the geometric multiplicity of C is 1,
and as was noted in the discussion following Definition 9.1.1, this implies that
the smooth locus Csmooth is a dense open subscheme of C.

Let X ⊂ Y be the open subscheme obtained by removing from the closed
fibre Yk all the irreducible components other than C, and then removing the
closed subset C r Csmooth. The natural morphism X→Spec(R) is smooth. In-
deed, X is flat over R, with smooth generic fibre XK = YK and smooth closed
fibre Csmooth. The local ring of the closed fibre of X/R is OC .
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As X is smooth over R, the projection Y ′ ×R X→Y ′ is smooth. But Y ′

is regular, so Y ′ ×R X is regular too. Hence Y ′ ×R OC is regular. Since the
maximal ideal of OC is mOC , the closed fibre of Y ′ ×R OC→OC is Y ′k ×k k(C).

A rational map from YK to Y ′K can be thought of as an F -point of Y ′K . Recall
that F = K(YK) is the field of fractions of OC . The morphism Y ′ ×R OC→OC
is proper, so by the valuative criterion of properness any F -point of its generic
fibre extends to a section of the morphism. A section of Y ′ ×R OC→OC gives
rise to a k(C)-point P of the closed fibre Y ′k ×k k(C).

Since Y ′ ×R OC is regular and of finite type over OC , any section meets
the closed fibre at a smooth point (Corollary 9.1.7), therefore P is a smooth
point of Y ′k ×k k(C). This defines a morphism Spec(k(C))→Y ′k whose image
is in Y ′k,smooth. Let U be the connected component of Y ′k,smooth containing
the image of P . The Zariski closure of U in Y ′k is an irreducible component
C ′ ⊂ Y ′k of geometric multiplicity 1. The morphism U→Spec(k) factors through
U→Spec(kC′). The composition Spec(k(C))→P→U→Spec(kC′) gives rise to an
embedding kC′ ⊂ k(C), hence kC′ ⊂ kC , as required.

Finally, since Yk is split if and only if Yk contains an irreducible component
C of geometric multiplicity 1 such that kC = k (Proposition 9.1.4), we see that
C ′ has the same properties, hence Y ′k is split. �

Corollary 9.1.11 Let R be a discrete valuation ring with field of fractions K
and residue field k. Let X be a regular, integral, proper and flat R-scheme of
finite type, with smooth generic fibre. Let ΣX be the (possibly, empty) partially
ordered set of irreducible components of geometric multiplicity 1 of Xk, where
C dominates D if there exists an embedding of kD into kC . The set of finite
separable field extensions k ⊂ kC , where C is a minimal element of ΣX , is a
birational invariant of the generic fibre XK as a smooth, integral, proper variety
over K. In particular, the property of the closed fibre Xk to be split is a birational
invariant of XK .

Proof. Suppose that X and Y are regular, integral, proper and flat R-schemes,
with smooth generic fibres, such that K(XK) ∼= K(YK). Define the partially
ordered set ΣY in the same way as ΣX . Let C be a minimal element of ΣX .
By Proposition 9.1.10 there exists a C ′ ∈ ΣY such that kC′ can be embedded
into kC . By the same proposition, there is a C ′′ ∈ ΣX such that kC′′ can be
embedded into kC′ . By minimality of C we have kC′′ ' kC , hence kC ' kC′ .
Since C is minimal in ΣX , then, by Proposition 9.1.10, C ′ is minimal in ΣY .
The last statement then follows from the fact that Xk is split if and only if there
is a C ∈ ΣX such that kC = k, see Proposition 9.1.4. �

In some concrete cases, for example when the generic fibre is a quadric and
the residue field if of characteristic different from 2, it is not difficult to determine
this set of finite separable extensions.

One can give a criterion for the closed fibre to be split in terms of the generic
fibre [Sko96, Lemma 1.1].
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Theorem 9.1.12 Let R be a discrete valuation ring with field of fractions K
and residue field k. Let X be a regular, integral, proper and flat R-scheme of
finite type, with smooth generic fibre. Then the closed fibre Xk is split if and only
if there exists a flat local homomorphism of discrete valuation rings i : R→R′
satisfying the following properties, where k′ is the residue field of R′ and K ′ is
the fraction field of R′:

(a) k′ is a separable extension of k, and k is algebraically closed in k′;
(b) the maximal ideal of R generates the maximal ideal of R′;
(c) the generic fibre XK has a K ′-point.

Following Bourbaki, an extension k′/k satisfying the conditions in (a) is
called regular [BouV, §17, no. 4, Déf. 2].

Proof of Theorem 9.1.12. Assume that Xk is split, so that Xk contains a non-
empty open geometrically integral subscheme U . Let R′ be the local ring of X
at the generic point of U . Since X is flat over R, the Zariski closure of U has
codimension 1 in X. Then since X is regular, R′ is a discrete valuation ring. It
is clear that the residue field of R′ is k(U) and the fraction field is k(X). Since
U is geometrically integral over k, the field k(U) is a separable extension of k in
which k is algebraically closed, so (a) is satisfied. The multiplicity of U is 1, so
Lemma 9.1.9 shows that the maximal ideal of R′ is generated by the maximal
ideal of R, which is (b). Finally, the generic point of XK is a K ′-point, so (c)
holds as well.

To prove the converse, let i : R→R′ be as in the statement of the theorem.
By the valuative criterion of properness, the given K ′-point of XK extends to
an R-morphism φ : Spec(R′)→X. Since the field extension k ⊂ k′ is separable,
by Proposition 9.1.6 the morphism φ factors through the smooth locus Xsmooth

of X/R. Let P = φ(Spec(k′)) be the image of the closed point of Spec(R′) in
Xsmooth∩Xk. It follows that Xk contains an open irreducible smooth subscheme
U such that P ∈ U .

Let us show that U is geometrically integral. Since U is smooth over k, it is
geometrically reduced. By Lemma 9.1.2 applied to the morphism of k-schemes
φ : Spec(k′)→U , the field kU is a subfield of the algebraic closure of k in k′. But
k is algebraically closed in k′ by assumption, hence kU = k, so U is geometrically
irreducible. �

Under the additional assumption that R′ is finitely generated as an R-
algebra, this statement follows from Proposition 9.1.10. However, the case when
R′ is not a finitely generated R-algebra (or a localisation of such an algebra) is
of greater interest, e.g., the case when R′ contains the completion of R, because
it is usually easier to find a K ′-point in XK when R′ is complete.

As an example of application of this theorem let us prove the following

Proposition 9.1.13 Let k be a field of characteristic 0. Let f : X→Y be a
proper dominant morphism of smooth and geometrically integral varieties over
k. Assume that the generic fibre Xη is birationally equivalent to a k(Y )-torsor
for a simply connected semisimple group over k(Y ). Then for any point y ∈ Y
of codimension 1, the fibre Xy is split.
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Proof. Write κ = k(y). The completion of the local ring Oy of Y at y is
isomorphic to κ[[t]]. Let κ ⊂ L be a field extension as in Lemma 5.2.7. As
cd(L) ≤ 1, by Theorem 8.2.2 any torsor for a simply connected semisimple
group over L((t)) has an L((t))-point. The generic fibre Xη of the morphism
f : X→Y is a proper variety over k(η) = k(Y ) birationally equivalent to such a
homogeneous space. By the lemma of Lang and Nishimura, Xη has an L((t))-
point. The local extension of discrete valuation rings Oy ⊂ L[[t]] satisfies the
conditions of Theorem 9.1.12, so by this theorem the fibre Xy is split. �

Let us give an example (taken from [LS18]) when one can determine if the
closed fibre is split using only the information about the birational equivalence
class of the generic fibre without constructing an explicit model.

Proposition 9.1.14 Let k be a field of characteristic 0. Let k1, . . . , kn be finite
field extensions of k, and let m1, . . . ,mn be positive integers such that

g.c.d.
(
m1, . . . ,mn

)
= 1.

Let m be an integer and let X be the affine k((t))-variety with equation

n∏
i=1

Nki/k(xi)
mi = tm, (9.1)

where xi is a ki-variable. Let X be a regular scheme equipped with a proper
morphism X→Spec(k[[t]]) whose generic fibre is smooth, geometrically integral,
and contains X as an open subscheme. Then the closed fibre Xk is split if and
only if r|m, where

r = g.c.d.
(
m1[k1 : k], . . . ,mn[kn : k]

)
.

Proof. Equation (9.1) with right hand side replaced by 1 defines a k-torus. Hence
X is a k((t))-torsor for this torus; in particular, it is geometrically integral.

If r|m we can write m = s1m1[k1 : k] + . . . + snmn[kn : k] for some si ∈ Z.
Then xi = tsi , for i = 1, . . . , n, is a k((t))-point of X. By the valuative criterion
of properness, it gives rise to a section of X→Spec(k[[t]]). By Corollary 9.1.7
the closed fibre Xk is split.

Conversely, assume that Xk is split, so Xk has a geometrically irreducible
component C of multiplicity 1. Let OC be the local ring of C in X . This a
discrete valuation ring with field of fractions k((t))(X) and residue field k(C).

Let A = ÔC be the completion of OC . This is also a discrete valuation ring with
residue field k(C). Let K be the field of fractions of A and let v : K∗→Z be
the valuation. Then k[[t]] ⊂ A is an unramified extension of complete discrete
valuation rings, so v(t) = 1. In fact, A is isomorphic to k(C)[[t]]. Since C is
geometrically irreducible, k is algebraically closed in k(C), hence also in K.

The generic fibre X has a canonical k((t))(X)-point Q defined by the generic
point of X. This point is contained in the affine open subset given by (9.1).
Since k((t))(X) ⊂ K, we can think of Q as a K-point of X. Suppose that Q has
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coordinates (xi), where xi ∈ K ⊗k ki for i = 1, . . . , n. Since k is algebraically
closed in K, the k-algebra Ki = K ⊗k ki is a field, hence Ki is a complete
local field which is an unramified extension of K of degree [ki : k]. This implies
that v(NKi/K(xi)) = si[ki : k] for some si ∈ Z. But then (9.1) gives that
m = s1m1[k1 : k] + . . .+ snmn[kn : k], so we are done. �

We refer to [CT11] for further discussion and applications of the type of
results discussed here.

9.2 Quadrics over a discrete valuation ring

In this section R is a discrete valuation ring with fraction field K. Let m ⊂ R
be the maximal ideal and let k = R/m be the residue field. We assume that
char(k) = 0. For a ∈ R we denote by ā ∈ k the reduction of a modulo m.

Conics over a discrete valuation ring

Let X be a smooth conic over K. It has a regular model X ⊂ P2
R given either

by an equation
x2 − ay2 − bz2 = 0

with a, b ∈ R∗ (which we refer to as case (I)), or by an equation

x2 − ay2 − πz2 = 0,

where a ∈ R∗ and π is a uniformizing parameter (which we refer to as case (II)).
In fact, if ā is a square in k, then the conic X also has a model of type (I).

Proposition 9.2.1 Let W→Spec(R) be a proper flat morphism such that W is
regular and connected, and the generic fibre of W→Spec(R) is a smooth conic
over K. Then the natural map Br(R)→Br(W ) is surjective.

Proof. Let X be the generic fibre of W→Spec(R) and let X→Spec(R) be the
integral model of X given above. By a special case of Proposition 3.7.9 that only
involves purity for regular 2-dimensional schemes (which has been known for
some time, see [Gro68, II, Prop. 2.3]), there is an isomorphism Br(W ) ' Br(X )
compatible with the maps Br(R)→Br(W ) and Br(R)→Br(X ).

Thus we can assume that W = X as above. The conic X over K is a Severi–
Brauer variety of dimension 1. The exact sequence (6.1) shows that the map
Br(K)→Br(X) is surjective. Since char(K) 6= 2, its kernel is spanned by the
class of the quaternion algebra (a, b)K in case (I) and (a, π)K in case (II).

Pick any β ∈ Br(X ). Let βK be the image of β under the injective map
Br(X )→Br(X). Let α ∈ Br(K) be any element mapping to βK . Consider the
exact sequence

0 −→ Br(R) −→ Br(K) −→ H1(k,Q/Z)

from Proposition 3.6.1 (i). Comparing residues on Spec(R) and on X using
Theorem 3.7.4 one shows that the residue δR(α) is either 0 or is equal to the
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non-trivial class in H1(k(
√
ā)/k,Z/2), and this last case may happen only in

case (II). In the first case we have α ∈ Br(R), hence the images of α and β
in Br(X) coincide, thus they also coincide in Br(X ) since X is regular. In the
second case we have

δR(α) = δR((a, π))

hence α = (a, π) + γ with γ ∈ Br(R). We then get

β = (a, π)K(X) + γK(X) ∈ Br(K(X)).

But (a, π)K(X) = 0. Thus β − γX ∈ Br(X ) ⊂ Br(K(X)) vanishes, hence
β = γX ∈ Br(X ). The map Br(R)→Br(X ) is thus surjective. This proves
the statement for X , and hence also for W . �

Corollary 9.2.2 In the notation of Proposition 9.2.1 let Y ⊂ W be a divi-
sor which is an irreducible component of multiplicity 1 of the closed fibre of
W→Spec(R). Then the image of the restriction map Br(W )→Br(Y ) is con-
tained in the image of Br(k)→Br(Y ).

Quadric surfaces over a discrete valuation ring

The references for this section are [Sko90], [CTS93, §3], [CTS94, Thm. 2.3.1],
and [Pir18, Thm. 3.17].

Let X ⊂ P3
K be a smooth quadric, defined by a quadratic form q of rank 4

over K. By a linear change of variables and multiplication of q by an element
of K∗ we can reduce q to one of the following forms.

(I) q = 〈1,−a,−b, abd〉, where a, b, d ∈ R∗.
(II) q = 〈1,−a,−b, π〉, where a, b ∈ R∗ and π ∈ R is a uniformiser.
(III) q = 〈1,−a,−π, πb〉, where a, b ∈ R∗ and π ∈ R is a uniformiser.

In case (III) the discriminant of q is the class of ab in R∗/R∗2. Its image
a · b ∈ k∗ is a square if and only if ab is a square in the completion of K with
respect to the valuation of R.

Let X ⊂ P3
R be the subscheme q = 0. Let Y/k be the closed fibre of X/R.

In case (I) the morphism X→Spec(R) is smooth.
In case (II) the scheme X is regular and Y is a cone over a smooth conic.
In case (III) the closed fibre Y is given by the equation x2 − āy2 = 0 in

P3
k. If ā is a square, this is the union of two planes intersecting along the line
x = y = 0. If ā is not a square, this is an integral scheme which splits up over
k(
√
a) as the union of two planes. In each case the scheme X is singular at the

points x = y = 0, z2 − b̄t2 = 0. (See [Sko90, §2].)

Proposition 9.2.3 In case (III) let W be a projective, regular, integral scheme
over R such that there is a birational R-morphism W→X . Then we have the
following statements.

In case (I) the map Br(R)→Br(X ) is surjective. If d ∈ R is not a square,
this map is an isomorphism. If d is a square, the kernel is spanned by the class
(a, b) ∈ Br(R).
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In case (II) the map Br(R)→Br(X ) is an isomorphism.
In case (III), if either ā or b̄ is a square in k, or ā · b̄ is not a square in k,

then Br(R)→Br(W ) is surjective. Any element of Br(K) whose image in Br(X)
lies in Br(W ) belongs to Br(R).

In case (III), if ā · b̄ is a square in k, then the image of (a, π) ∈ Br(K) in
Br(X) belongs to Br(W ) and spans the cokernel of the map Br(R)→Br(W ). If,
moreover, ā is not a square in k, then this cokernel is non-zero.

Proof. To make our notation uniform, in cases (I) and (II) we set W = X .
By [Har77, Prop. III.9.7], the morphism f : W→Spec(R) is flat; since f is
projective, it is also surjective. Thus each fibre of f has dimension 2 at every
point. Let Y = W ×Spec(k) Spec(R) be the closed fibre of f . Each irreducible
component x of Y of multiplicity e gives rise to a commutative diagram

Br(X)
∂x // H1(k(x),Q/Z)

0 // Br(R) // Br(K)
∂ //

OO

H1(k,Q/Z)

OO

Here the bottom exact sequence is given by Proposition 3.6.1 (ii) and the right
hand vertical arrow is the restriction map followed by multiplication by e (by
the functoriality of residues, see Theorem 3.7.4). Since X is a smooth quadric
over K, the middle vertical map is surjective by Proposition 6.2.3 (a). Since W
is regular, the group Br(W ) is the intersection of the kernels Ker(∂x), for all
irreducible components x of Y .

In cases (I) and (II), the closed fibre Y is geometrically integral over k, so
x = Y and e = 1, hence the map H1(k,Q/Z)→H1(k(x),Q/Z) is injective. This
is enough to prove the claim in these cases.

Let us consider case (III). Let α ∈ Br(K) be such that the image of α in
Br(X) belongs to Br(W ). If ā is a square, then the closed fibre of X→Spec(R)
contains a geometrically integral component of multiplicity 1 which is one of
the two components of x2 − āy2 = 0. It gives rise to a geometrically integral
component x of Y of multiplicity 1. The above diagram then implies that
∂(α) = 0, so α ∈ Br(R). If b̄ is a square, we consider the quadratic form
q′ = 〈1,−b,−π, πa〉. Since X ⊂ P3

K can be also given by q′ = 0, we can apply
the same argument.

Now assume that neither ā nor b̄ is a square. The closed fibre of X→Spec(R)
is the integral subscheme of P3

k given by x2− āy2 = 0. It gives rise to an integral
component x of Y of multiplicity 1 such that the integral closure of k in k(x) is
k(
√
ā). From the diagram it follows that ∂(α) belongs to

Ker[H1(k,Q/Z)→H1(k(x),Q/Z)] = Ker[H1(k,Q/Z)→H1(k(
√
ā),Q/Z)],

which is the Z/2-module generated by the class of ā in k∗/k∗2. Applying this
argument to the model given by q′ = 0 we obtain that ∂(α) belongs to the
Z/2-module spanned by the class of b̄ in k∗/k∗2. If ā · b̄ is not a square, we
conclude that ∂(α) = 0, proving the statement.
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Finally, let ā · b̄ be a square, whereas neither ā nor b̄ is a square. If ∂(α) 6= 0,
then ∂(α) = ā = ∂((a, π)). We now show that (a, π) has trivial residues on W .
We actually prove the triviality of residues of (a, π) with respect to any rank one
discrete valuation v of the function field K(X) of X. It is enough to consider
only those v which extend the valuation of K defined by R. In K(X) we have

x2 − ay2 = π(z2 − b),

where both sides are non-zero. Thus in Br(K(X)) we have the equality

(a, π) = (a, x2 − ay2) + (a, z2 − b) = (a, z2 − b),

since (a, x2−ay2) = 0 by Proposition 1.1.7. To compute residues, we can go over

to the field extension K̂ ⊂ K̂(X), where K̂ is the completion of K and K̂(X) is

the completion of K(X) defined by v. We have ab ∈ K̂∗2, hence ab ∈ K̂(X)
∗2

.

But then in Br(K̂(X)) we have (a, z2 − b) = (b, z2 − b) = 0. Hence the residue
of (a, π) at v is zero. �

The following statement is a stronger version of Corollary 1.4.8 in the situ-
ation considered here.

Corollary 9.2.4 In the notation of Proposition 9.2.3 let D ⊂W be an integral
divisor contained in the closed fibre of W→Spec(R). Then the image of the re-
striction map Br(W )→Br(k(D)) is contained in the image of Br(k)→Br(k(D)).

Proof. This is clear when the map Br(R)→Br(W ) is surjective. It remains to
consider case (III) when ā and b̄ are not squares, but ā · b̄ is. To prove the result,
we may assume that R is henselian. Then ab is a square in R. By Proposition
9.2.3, the group Br(W ) is generated by the image of Br(R) and the image of
the class (a, π). The equation of the quadric X can be written as

X2 − aY 2 − πZ2 + aπT 2 = 0.

Proposition 1.1.7 implies that the image of (a, π) in Br(X) is zero, hence the
image of (a, π) in Br(W ) ⊂ Br(X) is zero. �

Remark 9.2.5 If R is a henselian discrete valuation ring, then the proof of
Corollary 9.2.4 also shows that the map Br(R)→Br(W ) is surjective in all cases.

9.3 Two-dimensional schemes over a henselian
local ring

Let D be a central simple algebra over a field F . Let ind(D) be the index of D,
that is, the square root of the dimension of the division algebra representing the
class [D] ∈ Br(F ). The index ind(D) can be also characterised as the smallest
degree of a field extension of F that splits D. Let exp(D) be the exponent of D,
that is, the order of [D] in Br(F ). The following facts were established in the
1930s by Brauer, Albert and others, see [Alb31].
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• exp(D) divides ind(D); moreover, the primes which divide exp(D) are the
same as the primes which divide ind(D).

• Let F be a number field or a p-adic field. Every central division algebra
D over F of exponent exp(D) = n is cyclic of degree n, hence is split by
a cyclic extension of F of degree n. In particular, ind(D) = exp(D).

• If F is a number field and D splits over each completion of F , then D
splits over F (the Albert–Brauer–Hasse–Noether theorem).

• Every central simple algebra over the function field of a curve over C is
split (Tsen’s theorem).

Such properties have applications to quadratic forms over F : the local-to-global
principle for a quadratic form to be isotropic (i.e. to have the zero value on some
non-zero vector) and the determination of the u-invariant of F (the maximum
dimension of an anisotropic quadratic form over F ).

One may wonder whether similar properties hold for other ‘arithmetic fields’.
Among the first examples one can think of are field extensions of C of transcen-
dence degree 2. In this case the equality of index and exponent was established
relatively recently by de Jong [deJ04]. One may also consider more local sit-
uations, such as function fields in one variable over C((t)) or the purely local
situation, that is, finite extensions of C((x, y)). Further up the cohomological
dimension there are function fields of curves over a p-adic field. As early as
1970, Lichtenbaum [Lic69], using Tate’s duality theorems for abelian varieties
over a p-adic field, established a local-to-global principle in this context. Later,
Saltman [Sal97] showed that over such a field the index divides the square of
the exponent.

We shall explain some of these results. Our starting point is the following
theorem which is a more general version of a theorem of Artin about families
of curves over a henselian discrete valuation ring (written up by Grothendieck
[Gro68, III, Thm. (3.1)]).

Theorem 9.3.1 Let R be a henselian local ring with residue field k. Let X be
a regular scheme of dimension 2 equipped with a proper morphism X→Spec(R)
whose closed fibre X0 has dimension 1. Then we have the following statements.

(i) The natural map Br(X)→Br(X0) is an isomorphism.
(ii) If k is separably closed or finite, then Br(X) = 0.

Proof. For part (i) see [CTOP02, Thm. 1.8, Remark 1.8.1]. Part (ii) then
follows from Theorem 4.5.1 (iv) and (v). �

Remark 9.3.2 (a) For ` invertible in k, the `-primary part of this theorem is
relatively easy to prove using the Kummer exact sequence [CTOP02, Thm. 1.3].

(b) When R is a discrete valuation ring, Theorem 9.3.1 removes the excel-
lence hypothesis in Artin’s theorem [Gro68, III, Thm. 3.1].

(c) The following two situations are of particular interest.
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• The “semi-global” case: R is a henselian discrete valuation ring, X is
integral, and the generic fibre of X→Spec(R) is smooth and geometrically
integral. This is the case considered in [Gro68, III, §3], with the additional
hypothesis that the discrete valuation ring is excellent (used only to handle
the p-torsion part of the theorem, where p = char(k)).

• The “local” case: R is a 2-dimensional henselian local domain and the
morphism X→Spec(R) is birational. Then X is a resolution of singular-
ities of Spec(R). If R is excellent, such a desingularisation always exists
(Hironaka, Abhyankar, Lipman).

In the “semi-global” case, we have the following theorem.

Theorem 9.3.3 Let R be an excellent henselian discrete valuation ring with
residue field k and fraction field K. Let F be the function field of a smooth,
projective, connected curve over K. Let D be a central division algebra over F .

(i) If k is algebraically closed of characteristic 0, then ind(D) = exp(D).
Moreover, D is cyclic and split by a field extension F ( n

√
f) for some f ∈ F ∗.

(ii) If k is a finite field, then ind(D)|exp(D)2.

Proof. Let us prove (i). This is a very slight variation on the proof of [CTOP02,
Thm. 2.1] which is Theorem 9.3.5 below.

There exists a regular, projective, integral model X→Spec(R) of the smooth,
projective curve over K with function field F . The purity theorem gives an exact
sequence (3.13):

0 −→ Br(X) −→ Br(F ) −→ ⊕x∈X(1)H1(κ(x),Q/Z).

By Theorem 9.3.1 (ii), we have Br(X) = 0. Thus the total residue map on
Br(F ) is an injection

Br(F ) ↪→ ⊕x∈X(1)H1(κ(x),Q/Z).

Let n = exp(D) and let ξ ∈ Br(F )[n] be the class of D. Let R be the sum of
the closures of codimension 1 points of X where ξ has a non-zero residue. By
blowing up X we can assume that R is a strict normal crossing divisor. Since
dim(X) = 2, the singular locus Rsing is a union of closed points; these are the
points where any two of the components meet. Replace X by its blow up in
Rsing, write C for the strict transform of R and write E for the exceptional
divisor. Thus D is unramified over X r (C + E) and both C and E are (not
necessarily connected) regular curves in X such that C+E has normal crossings.
If C +E = 0, i.e., if ξ is unramified on X, then ξ = 0 and the theorem is clear.
We thus assume that C + E 6= 0.

Let S be a finite set of closed points of X including all points of intersection
of C and E and at least one point of each component of C + E. Since X is
projective over Spec(R), there exists an affine open subset U ⊂ X containing S.
The semi-localisation of U at S is a semi-local regular domain, hence a unique
factorisation domain. Thus there exists an f ∈ F ∗ such that the divisor of f on
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X is of the form divX(f) = C+E+G, where the support of G does not contain
any point of S, hence in particular has no common component with C+E. Let
L/k be the splitting field of the polynomial Tn − f . At the generic point of
each component of C +E, the extension L/F is totally ramified of degree n. In
particular, L/F is a field extension of degree n. Let ξL be the image of ξ under
the restriction map Br(F )→Br(L). To prove (i) it suffices to show that ξL = 0.

Let X ′ be the normalisation of X in L and let π : Y→X ′ be a projective
birational morphism such that Y is regular and integral. Let B be the integral
closure of R in L. The ring B is a henselian discrete valuation ring with the same
residue field k as R. By the universal property of normalisation, the composition
X ′→X→Spec(R) factors though a projective morphism X ′→Spec(B), hence
induces a projective morphism Y→Spec(B). By Theorem 9.3.1 (ii), we have
Br(Y ) = 0. Just as above, the total residue map on Y defines an injection

Br(L) ↪→ ⊕y∈Y (1)H1(κ(y),Q/Z).

It is thus enough to show that ξL is unramified on Y . Let y ∈ Y be a codimension
one point. We show that ∂y(ξL) = 0. Let x ∈ X be the image of y under the
map Y→X ′→X.

Suppose first that codim(x) = 1. If {x} is not a component of C + E,
then ∂x(ξ) = 0, hence, by functoriality of residues, ∂y(ξL) = 0. Suppose that

D = {x} is a component of C + E. Then f is a uniformising parameter of the
discrete valuation ring OX,x. The extension L/F is totally ramified at x. The
restriction map Br(F )→Br(L) induces multiplication by the ramification index
on the character groups of the residue fields (Proposition 1.4.6). Hence ξL is
unramified at y.

Suppose now that codim(x) = 2. Note that x is in the closed fibre, hence
the residue field κ(x) = k, which is algebraically closed. If x /∈ C + E, then
ξ ∈ Br(OX,x), hence ξL is unramified at y. If x is a regular point of C + E,
then without loss of generality we can assume that x belongs to C but not to
E. Let C0 be the irreducible component of C that contains x, and let V ⊂ C0

be the complement to the intersection of C0 with the union of all the other
components of C. Then x ∈ V . Let π ∈ OX,x be a local equation of C at
x. (This is also a local equation of V at x.) By the exact sequence (3.11) the
residue ∂π(ξ) ∈ κ(C0)∗/κ(C0)∗n comes from an element of H1(V,Z/n). Since
C is regular we can choose a δ ∈ OX,x such that (π, δ) is a regular system of
parameters of OX,x. As ∂π(ξ) comes from an element of H1(V,Z/n), it goes to
zero under the map κ(C0)∗/κ(C0)∗n→Z/n induced by the valuation defined by
x on the field κ(C0), which is the fraction field of the discrete valuation ring
OX,x/(π). Thus ∂π(ξ) is the class of a unit of OX,x/(π), and such a unit lifts to
a unit µ of OX,x. Now the residues of ξ− (µ, π) at all points of codimension one
of OX,x are trivial. Since OX,x is a regular two-dimensional ring, this implies
that ξ − (µ, π) is the class of an element η ∈ Br(OX,x). Now

∂y(ξL) = ∂L((µ, π)) = µvy(π) mod κ(y)∗n ,

where κ(y) is the residue field of y and µ is the class of µ in κ(y). This class
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comes from κ(x) = k, which is algebraically closed, therefore µ is an n-th power
and ∂y(ξL) = 0.

Suppose now that x belongs to C ∩ E. There exists a regular system of
parameters (π, δ) defining (C,E) such that f = uπδ, where u ∈ O∗X,x. Since the
ramification of ξ on Spec(OX,x) is only along π and δ, it can be shown that

ξ = η + (π, µ1) + (δ, µ2) + r(π, δ) ,

for some η ∈ Br(OX,x), where µ1, µ2 ∈ O∗X,x and r ∈ Z. (This uses a Bloch–
Ogus argument similar to the one used in the proof of Theorem 10.5.1, see
[CTOP02] for details.) Since f = uπδ, we get

(π, δ) = (π, fu−1π−1) = (π, f) + (π,−u) .

The symbol (π, f) vanishes over L and the other symbols become unramified
at y.

For the proof of (ii) in the case when the index is coprime to the residual char-
acteristic we refer to [Sal97] (see also the review Zentralblatt Zbl. 0902.16021).
This restriction was recently lifted by Parimala and Suresh [PS14]. �.

Remark 9.3.4 The technique used in the proof is essentially that of [FS89] and
[Sal97]. For function fields of curves over the field of fractions K of a complete
discrete valuation ring R with arbitrary residue field k, Harbater, Hartmann
and Krashen introduced a new, patching technique which among other things
gives bounds [HHK09, Thm. 5.5] for the index in terms of similar bounds for
the field K and for the function fields of curves over the residue field k.

Here is a “local” analogue of Theorem 9.3.3.

Theorem 9.3.5 Let R be a 2-dimensional henselian local, normal, excellent
domain with fraction field F and residue field k. Let D be a central division
algebra over F .

(i) If k is separably closed and exp(D) is prime to char(k), then ind(D) =
exp(D). Moreover, D is cyclic.

(ii) If k is a finite field and exp(D) is coprime to char(k), then ind(D)|exp(D)2.

Proof. For (i) see [FS89, Thm. 1.6], [CTOP02, Thm. 2.1]. For (ii) see [Hu13,
Thm. 3.4]. �

Lemma 9.3.6 Let R be a discrete valuation ring with fraction field K. Let R̂
be the completion of R and let K̂ be the fraction field of R̂. If the image of
α ∈ Br(K) in Br(K̂) lies in Br(R̂) ⊂ Br(K̂), then α belongs to Br(R) ⊂ Br(K).

Proof. There exists an integer n, and elements x1 ∈ H1(K,PGLn) and x2 ∈
H1(R̂,PGLn), with the same image in H1(K̂,PGLn), such that the injective
map H1(K,PGLn)→Br(K) sends x1 to α. There is an embedding of reductive
group R-schemes PGLn,R ↪→ GLN,R for some N . Then E = GLN,R/PGLn,R is
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a smooth R-scheme. We have an exact sequence of pointed sets [SerCG, Ch. 1,
§5, Prop. 36]

E(K) −→ H1(K,PGLn) −→ H1(K,GLN ),

and a similar sequence for R̂ in place of K. By Hilbert’s Theorem 90 we have
H1(K,GLN ) = 0 (Theorem 1.3.1), so we can lift x1 to a point y1 ∈ E(K).
It is known that H1(R,GLN,R) = 0 for any local ring R, cf. [Mil80, Ch. III,

Lemma 4.10], hence we can lift x2 to a point y2 ∈ E(R̂). There exists an

element g ∈ GLN (K̂) such that gy1 = y2. As GLN,K is an open subset of an

affine space, any element g ∈ GLN (K̂) can be written as a product g2g1 where

g1 ∈ GLN (K) and g2 ∈ GLN (R̂). Then g1y1 = g−1
2 y2 is an element of E(K̂)

contained in E(K) ∩ E(R̂) = E(R). This implies that α ∈ Br(R). �

For a more general statement, see [CTPS12, Lemma 4.1].

Theorem 9.3.7 Let R be a henselian local domain with residue field k. Let X
be an integral regular scheme of dimension 2 equipped with a proper morphism
X→Spec(R) whose closed fibre X0 is of dimension 1. Let F be the function field
of X. Let ΩX be the set of rank 1 valuations v on F associated to codimension
1 points on X. Let Fv denote the completion of F with respect to v. Then the
natural restriction map Br(F )→

∏
v∈ΩX

Br(Fv) is injective.

Proof. Since α ∈ Br(F ) is trivial in each Br(Fv) for v attached to the points
of codimension 1 of the regular scheme X, by Lemma 9.3.6 (via a patching
argument) α can be represented by an Azumaya algebra over an open set U ⊂
X which contains all codimension 1 points of X. Since X is regular and 2-
dimensional, by a theorem of Auslander, Goldman and Grothendieck [Gro68,
II, §2, Thm. 2.1] there exists an Azumaya algebra over X whose class in Br(F )
is α. We thus have α ∈ Br(X) ⊂ Br(F ).

An irreducible component C of the curve X0 defines a valuation v ∈ ΩX .
The image of α in Br(Fv) belongs to the subgroup Br(Ov) ⊂ Br(Fv), where Ov
is the ring of integers of the complete field Fv. By assumption, this image is
zero. Thus the image of α in the Brauer group of the function field of C is zero.

Now let P be a closed point of X0. Since X is regular, there exists a closed
integral curve D ⊂ X through P which is regular at P . Arguing as above, we
see that the value of α at the generic point of D is zero. This implies that the
restriction of α to the local ring of P on D is zero, hence α(P ) = 0. We now
apply Proposition 4.5.1 (i) to conclude that the image of α in Br(X0) is zero.
Now Theorem 9.3.1 implies that α = 0. �

Remark 9.3.8 1. The above proof is essentially given by Y. Hu in [Hu12, §3].
It extends proofs in [CTOP02].

2. For R complete, in the semi-global case, a different proof of Theorem 9.3.7
is given in [CTPS12, Theorem 4.3]. This proof relies on the work of Harbater,
Hartmann and Krashen [HHK09].
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3. There exist examples of R, X and F as above such that the map

H1(F,Q/Z) −→
∏
v∈ΩX

H1(Fv,Q/Z)

has a non-trivial kernel. See [CTPS12, §6].
4. Let D be a central simple algebra over a field F . The relation between

ind(D) and exp(D) over specific fields F has been the object of much study.
Suppose F = C(X) is the function field of an integral algebraic variety X of
dimension d over C. It would be interesting to know if ind(D)|exp(D)d−1 for
any D over F , which is the best possible bound [CT02]. The case d = 1 is Tsen’s
theorem. The case d = 2 is a theorem of de Jong [deJ04], [CT06]. For more
work on the comparison of index and exponent over various fields of geometric
or arithmetic origin, see [Lie08, Lie11, Lie15], [KL08], [HHK09] and [AAI+].

The following theorem combines [CTPS16, Prop. 2.10] and work of Izquierdo
[Izq19].

Theorem 9.3.9 Let R be a 2-dimensional, local, normal, excellent, henselian
domain with algebraically closed residue field k of characteristic 0. Let K be the
fraction field of R. Let X→Spec(R) be a resolution of singularities such that the
reduced divisor associated to the closed fibre Y/k is a divisor on X with strict
normal crossings. For each place v of K, let Kv be the completion of K at v.
Then we have the following statements.

(i) There is an exact sequence

0 −→ Br(K) −→
⊕

v∈X(1)

H1(k(x),Q/Z) −→
⊕

x∈X(2)

Q/Z(−1) −→ 0.

(ii) For each v ∈ R(1) there are isomorphisms

Br(Kv)−̃→H1(k(v),Q/Z)−̃→Q/Z(−1).

(iii) The sum of these maps for all v ∈ R(1) fits into an exact sequence

Br(K) −→ ⊕v∈R(1)Br(Kv) −→ Q/Z(−1) −→ 0,

(iv) If R is regular, the map Br(K)→⊕v∈R(1) Br(Kv) is injective. Assume Y
is a curve. Let Γ be the graph associated to the reduced divisor Y whose vertices
correspond to the irreducible components of Yred and the edges correspond to the
intersection points of components. This graph is connected. Let c = ne−nv + 1
be Betti number of Γ. Let mY = c+ 2

∑
y∈Y (1) gy, where gy is the genus of the

smooth, irreducible, projective curve defined by y. Then

Ker[Br(K)→⊕v∈R(1) Br(Kv)] ∼= (Q/Z)mY .

(v) Br(X) ∼= (Q/Z)mY .
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Statements (iv) and (v) are due to Izquierdo. Statement (iv) is important,
it is one of the building blocks for the Poitou–Tate duality theorems which
Izquierdo establishes for finite commutative groups and for tori over K, with
respect to just the completions at the points of codimension 1 of Spec(R). This
leads to a proof [Izq19, §5.1] that for a principal homogeneous space E of a torus
T over K, a suitable Brauer–Manin obstruction defined in [CTPS16] is the only
obstruction to the existence of a K-point on E.

9.4 Smooth proper schemes over a henselian dis-
crete valuation ring

The content of the present section was developed in [CTS13a].
Let R be a henselian discrete valuation ring with field of fractions K and

residue field k. We assume that char(K) = 0 and k is perfect. Let K be an
algebraic closure of K, and let Knr ⊂ K be the maximal unramified extension
of K. Let Rnr be the ring of integers of Knr. Let

g = Gal(K/K), G = Gal(Knr/K), I = Gal(K/Knr).

The valuation of K gives rise to a split exact sequence of G-modules

1 −→ R∗nr −→ K∗nr −→ Z −→ 0.

We have Br(Knr) = 0 (Theorem 1.2.13), which implies H2(G,K∗nr) = Br(K).
Let π : X→Spec(R) be a faithfully flat proper morphism of integral schemes

with geometrically integral generic fibre X = X ×R K. Write

Xnr = X ×K Knr, Xnr = X ×R Rnr, X = X ×K K.

Lemma 9.4.1 If the proper R-scheme X is smooth over R with geometrically
integral fibres, then the following natural map is surjective:

Br(K)⊕Ker[Br(X )→Br(Xnr)] −→ Ker[Br(X)→Br(Xnr)].

Proof. The map is well defined since Br(Knr) = 0, so that the composition
Br(K)→Br(X)→Br(Xnr) is zero.

The restriction map Pic(Xnr)→Pic(Xnr) is surjective since Xnr is regular.
The kernel of this map is generated by the classes of components of the closed
fibre of Xnr→Spec(R). The closed fibre is a principal divisor in Xnr. Since
we assume that it is integral, the restriction map gives an isomorphism of G-
modules

Pic(Xnr) −̃→Pic(Xnr). (9.2)

There is a Hochschild–Serre spectral sequence attached to the morphism Xnr→X :

Epq2 = Hp(G,Hq
ét(Xnr,Gm))⇒ Hp+q

ét (X ,Gm),
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and a similar sequence attached to the morphism Xnr→X, see [Mil80, Thm.
III.2.20, Remark III.2.21 (b)]. By functoriality the maps in these sequences are
compatible with the inclusions of the generic fibres X ↪→ X and Xnr ↪→ Xnr.
We have H0

ét(Xnr,Gm) = R∗nr because the morphism π : X→Spec(R) is proper
with geometrically integral fibres. The low degree terms of the two spectral
sequences give rise to the following commutative diagram of exact sequences,
where the equality is induced by (9.2):

H2(G,R∗nr) → Ker[Br(X )→Br(Xnr)] → H1(G,Pic(Xnr)) → H3(G,R∗nr)
↓ ↓ || ↓

H2(G,K∗nr) → Ker[Br(X)→Br(Xnr)] → H1(G,Pic(Xnr)) → H3(G,K∗nr)

The inclusion of G-modules R∗nr ↪→ K∗nr has a G-module retraction, hence the
map H3(G,R∗nr)→H3(G,K∗nr) is injective. Since H2(G,K∗nr) = Br(K), the state-
ment follows from the above diagram. �

Proposition 9.4.2 Assume that the proper R-scheme X is smooth over R with
geometrically integral fibres. Assume also that H1(X,OX) = 0 and the Néron–
Severi group NS(X) is torsion-free. Then

Br1(X) = Ker[Br(X)→Br(Xnr)].

Proof. For any prime ` 6= char(k) the smooth base change theorem in étale
cohomology for the smooth and proper morphism π : X→Spec(R) implies that
the natural action of the inertia subgroup I on H2

ét(X,Z`(1)) is trivial. In-
deed, by [Mil80, Ch. VI, Cor. 4.2] the étale sheaf R2π∗µ`m is locally con-
stant for every m ≥ 1. Also, the fibre of R2π∗µ`m at the generic geometric
point Spec(K)→Spec(R) is H2

ét(X,µ`m). Now it follows from Remark 1.2 (b)
in [Mil80, Ch. V] that the action of g on H2

ét(X,µ`m) factors through

π1(Spec(R),Spec(K)) = Gal(Knr/K) = G = g/I,

see [Mil80, Ch. I, Ex. 5.2(b)]. Thus I acts trivially on H2
ét(X,µ`m) for every

m, hence I acts trivially on H2
ét(X,Z`(1)).

Since K has characteristic 0, for any prime ` the Kummer sequence gives a
Galois equivariant embedding

NS(X)⊗ Z` ↪→ H2
ét(X,Z`(1)).

For any ` 6= char(k) we conclude that I acts trivially on NS(X)⊗Z`, hence also
on Pic(X) ∼= NS(X) ⊂ NS(X)⊗Z`. Thus H1(Knr,Pic(X)) = H1(I,NS(X)) = 0.
From the exact sequence

Br(Knr) −→ Ker[Br(Xnr)→Br(X)] −→ H1(Knr,Pic(X))

we conclude that Br(Xnr)→Br(X) is injective. This implies the result. �

We are also interested in the situation when H2(X,OX) is not necessarily
zero, so we must take into account the transcendental Brauer group as well.
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Proposition 9.4.3 Let ` be a prime, ` 6= char(k). Let π : X→Spec(R) be a
smooth proper morphism with geometrically integral fibres, such that the closed
geometric fibre has no connected unramified cyclic covering of degree `. Then
the group Br(X){`} is generated by the images of Br(X ){`} and Br(K){`}.

Proof. Let Y = X ×R k be the closed fibre of π. We note that Y is a regular
subscheme of codimension 1 of the regular scheme X . Thus we can apply the
exact sequence (3.16):

0 −→ Br(X )[`m] −→ Br(X)[`m] −→ H1
ét(Y,Z/`m). (9.3)

Let Y = Y ×k k, where k is an algebraic closure of k. As Y is connected, the
spectral sequence

Epq2 = Hp(k,Hq
ét(Y ,Z/`

n))⇒ Hp+q
ét (X0,Z/`n)

gives rise to the exact sequence

0 −→ H1(k,Z/`n) −→ H1
ét(Y,Z/`n) −→ H1

ét(Y ,Z/`n).

By assumption Y has no connected unramified cyclic covering of degree `, hence
H1

ét(Y ,Z/`n) = 0.
Let A ∈ Br(X){`}. Take m such that A ∈ Br(X)[`m]. The image of A in

H1
ét(Y,Z/`m) belongs to the injective image of H1(k,Z/`m). We have the exact

sequence (3.10)

0 −→ Br(R)[`m] −→ Br(K)[`m] −→ H1(k,Z/`m) −→ 0,

with compatible maps to sequence (9.3). Hence there exists α ∈ Br(K)[`m] such
that A−α ∈ Br(X)[`m] goes to zero in H1

ét(Y,Z/`m). By the exactness of (9.3)
we have A− α ∈ Br(X )[`m]. �

Remark 9.4.4 1. Let char(k) = p. Already for π smooth and proper, it is an
interesting problem to decide whether a similar statement for Br(X){p} is true.
For elements split by an unramified extension of K, including those of order
divisible by p, this follows from Lemma 9.4.1 (see also [Bri07, Prop. 6]).

2. The hypotheses of Proposition 9.4.3 apply in particular when the fibres
of π : X→Spec(R) are smooth complete intersections of dimension at least 2 in
the projective space (an application of the weak Lefschetz theorem in étale co-
homology, see [Kat04]). In particular they apply to smooth surfaces of arbitrary
degree in P3.

9.5 Varieties over a local field

We start with the following statement, which is a generalisation of known results
such as the implicit function theorem for varieties over a complete local field to
the henselian case. Versions of this statement also hold for the fields of fractions
of much more general henselian valuation rings, see [C12, Prop. 5.4]. See also
[Mor12] and [GGMB14, §3.1].
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Theorem 9.5.1 Let A be a henselian discrete valuation ring with field of frac-
tions K. Let X be a variety over K.

(i) There is a unique structure of a topological space on X(K) which is
functorial and compatible with fibre products, and such that open (respectively,
closed) immersions in X give rise to open (respectively, closed) embeddings in
X(K), and étale morphisms give rise to local homeomorphisms. The topological
space X(K) is Hausdorff.

If f : X→Y is a smooth morphism of varieties over K, then the induced
map X(K)→Y (K) is topologically open.

(ii) Assume further that K is locally compact, hence complete. Then X(K)
is locally compact. Moreover, if X is smooth, then X(K) admits a unique func-
torial K-analytic manifold structure which agrees with the scheme structure and
carries étale morphisms to K-analytic local isomorphisms.

If f : X→Y is a proper morphism of varieties over K, then the induced map
X(K)→Y (K) is topologically proper.

Recall that a discretely valued field is locally compact if and only if it is
complete and has finite residue field, see [ANT67, Ch. II, §7].

9.5.1 Evaluation at rational and closed points

Proposition 9.5.2 Let A be a henselian discrete valuation ring with field of
fractions K. Let X be a variety over K and let A ∈ Br(X). The evaluation
map X(K)→Br(K) sending M ∈ X(K) to A(M) ∈ Br(K) is locally constant
and its image is annihilated by some positive integer.

Proof. Take any P ∈ X(K). Then α = A − A(P ) ∈ Br(X) is such that
α(P ) = 0. By Corollary 3.4.4 there exists an étale morphism f : U→X such
that f∗α = 0 and P lifts to a point M ∈ U(K). Then α vanishes on f(U(K)) ⊂
X(K). Since P ∈ f(U(K)), this is an open neighbourhood of P ∈ X(K) by the
implicit function theorem (Theorem 9.5.1). The last statement is a special case
of Lemma 3.4.5. �

It is clear that the same result also holds for a variety X over the field of
real numbers R.

By a p-adic field we understand a finite extension of Qp.

Theorem 9.5.3 Let k be a p-adic field with ring of integers R. Let X be a
regular, proper, integral, flat R-scheme with generic fibre X/k. If α ∈ Br(X)
vanishes at each closed point of a non-empty open set U ⊂ X, then α lies in
Br(X ) ⊂ Br(X).

Proof. Here is a sketch of the proof for the prime to p-part of the statement
[CTS96, Thm. 2.1]. Let ` be a prime, ` 6= p. Using Chebotarev’s theorem
for varieties over a finite field, a suitable version of Hensel’s lemma, and Theo-
rem 3.7.4, one sees that the assumption implies that α ∈ Br(X){`} has trivial
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residues at the codimension 1 points of X . Hence, by Gabber’s purity theo-
rem, α comes from an element of Br(X ). For the general case, combine Saito
and Sato’s result [SS14, Thm. 1.1.3], which is conditional on purity for the
Brauer group for regular schemes, with this purity theorem, proved recently by
Česnavičius using previous work of Gabber (Theorem 3.7.5). �

The case when X is a curve goes back to Lichtenbaum [Lic69].

Corollary 9.5.4 (Lichtenbaum) Let X be a smooth, projective, geometrically
integral curve over a p-adic field k. If α ∈ Br(X) vanishes at each closed point
of X, then α = 0.

Proof. Let R be the ring of integers of k. There exists a regular proper flat
model X→Spec(R) (as proved independently by Lipman and Shafarevich). By
the previous theorem, α lies in Br(X ) ⊂ Br(X). By Theorem 9.3.1, we have
Br(X )−̃→Br(X0), where X0 is the closed fibre of X→Spec(R). But Br(X0) = 0
by Theorem 4.5.1 (v), hence α = 0. �

Remark 9.5.5 1. Evaluation on closed points of a smooth projective curve
over a p-adic field induces a pairing

Br(X)× Pic(X) −→ Q/Z.

That the left kernel of this pairing is trivial (and, more precisely, the pairing
induces a duality) was proved by Lichtenbaum as a consequence of the Tate
duality theorems for abelian varieties over a p-adic field.

2. Let X be a smooth and geometrically integral curve over a p-adic field k.
Let U be a non-empty open subset of X. If α ∈ Br(U) vanishes at each closed
point of U , then α lies in Br(X) and, moreover, α = 0.

Let us explain this. Let P be a closed point in X r U and let K = k(P ) be
the residue field of P . Write XK = X ×k K. The morphism P : Spec(K)→X
gives rise to the morphism Spec(K ⊗k K)→XK that can be precomposed with
the dual morphism of the multiplication map K ⊗k K→K to define a K-point
P̃ : Spec(K)→XK above P .

Suppose that α has a non-trivial residue χ ∈ H1(K,Q/Z) at P . Let N > 1
be the order of χ in H1(K,Q/Z). Write αK for the image of α in Br(XK). The
multiplicity of P̃ in the fibre Spec(K ⊗k K) of XK→X above P is 1, so by the
functoriality of residues (Theorem 3.7.4) the residue of αK ∈ Br(UK) at P̃ is
χ ∈ H1(K,Q/Z).

Let π be a local equation at P̃ ∈ XK . Then αK differs from the cup-product
(χ, π) by an element β ∈ Br(V ), where V ⊂ XK is a Zariski neighbourhood
of P̃ . One then finds a p-adic neighbourhood W ⊂ V (K) of P̃ such that
β is constant on W and π is invertible on W r P̃ . The assumption on α
then implies that (χ, π) takes a constant value on W r P̃ . But for points
M 6= P̃ in W ⊂ U(K), the value π(M) ∈ K takes all possible valuations. Thus
(χ, π(M)) = v(π(M))χ ∈ H1(K,Z/N) is not constant, which is a contradiction.
(For a similar and more detailed argument in a global context, we refer the
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reader to Theorem 12.6.1.) We conclude that α has zero residues on X, hence
belongs to Br(X). Since α vanishes at all closed points of U , by the continuity
of the evaluation map it vanishes at all closed points of X. One then applies
Corollary 9.5.4.

3. There exist smooth, projective, geometrically integral curves X over a
p-adic field with non-zero elements in H1

ét(X,Z/`) which vanish at each closed
point of X, see [CTPS12, §6].

4. Let X be a variety over the field of real numbers R. The natural pairing

X(R)× Br(X) −→ Br(R) = Z/2

is locally constant on X(R) hence induces a map Br(X)→(Z/2)S , where S is
the set of connected components of X(R) for the real topology.

The real analogue of Tate’s duality theorem for abelian varieties over a p-adic
field and of Corollary 9.5.4 goes back to Witt (1934). For a smooth, projective,
geometrically connected curve over R, evaluating elements of Br(X) on the real
points induces an isomorphism Br(X)−̃→(Z/2)S . In particular Br(X) = 0 if
X(R) = ∅. If X is a quasi-projective but possibly singular real curve, the map
Br(X)→(Z/2)S is injective [CTOP02, Prop. 1.13].

9.5.2 Index

Let R be the ring of integers of a p-adic field K with finite residue field k. Let
X be a regular, connected, projective, flat R-scheme. Let X/K be the generic
fibre of X . We assume that X is geometrically integral. The closed fibre X0/k
is a divisor

∑
i eiDi, where ei is a positive integer and Di is an integral variety

over k. Let fi be the degree over k of the integral closure of k in the function
field k(Di). In this context one defines the following positive integers.

(1) IBr is the order of Ker[Br(K)→Br(X)/Br(X )].

(2) I is the g.c.d. of the degrees of the closed points of X.

(3) I0 is the g.c.d. of the eifi.

The positive integer I is called the index of X. Note, by the way, that the kernel
in (1) is cyclic; by the purity theorem it does not depend on the choice of X .

Theorem 9.5.6 We have IBr = I = I0.

Saito and Sato [SS14, Thm. 5.4.1] proved this theorem assuming purity for the
Brauer group of regular schemes, a result which is now known in full generality
(Theorem 3.7.5). Earlier results had been obtained by Lichtenbaum [Lic69]
(in the case of a curve), then in [CTS96, Thm. 3.1] (for the prime-to-p part,
in arbitrary dimension) and in [GLL13, Cor. 9.1] which shows I = I0. The
paper [GLL13] studies the case of a henselian discrete valuation ring R with an
arbitrary residue field k.
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9.5.3 Finiteness results for the Brauer group

In the good reduction case, Section 9.4 gives some control on the Brauer group
of a smooth proper variety over a p-adic field. Here are two general results under
weaker assumptions.

Proposition 9.5.7 Let X be a variety over a p-adic field K. Then for any
positive integer n the group Br(X)[n] is finite.

Proof. The Kummer exact sequence shows that Br(X)[n] is a quotient of
H2

ét(X,µn). Consider the spectral sequence

Epq2 = Hp(K,Hq
ét(X,µn))⇒ Hp+q

ét (X,µn).

The groups Hq
ét(X,µn) are finite for any q ≥ 0 (see [Mil80, Ch. VI, Cor. 4.5]).

The Galois cohomology groups Hp(K,M), where K is a p-adic field and M is
finite, are finite for all p ≥ 0 [SerCG, Ch. 2, §5, Prop. 14]. �

Proposition 9.5.8 Let X be a smooth, proper and geometrically integral va-
riety over a p-adic field K. Let Xnr = X ×K Knr, where Knr is the maximal
unramified extension of K. Then the group

Ker[Br(X)→Br(Xnr)]/Br0(X)

is finite.

Proof. [CTS13a, Prop. 2.1] We assume that Knr ⊂ K and use the previous
notation g = Gal(K/K), G = Gal(Knr/K), I = Gal(K/Knr). Consider the
Hochschild–Serre spectral sequence [Mil80, Thm. III.2.20, Remark III.2.21 (b)]
attached to the morphism Xnr→X:

Epq2 = Hp(G,Hq
ét(Xnr,Gm))⇒ Hp+q

ét (X,Gm). (9.4)

Since H2(G,K∗nr) = Br(K), the exact sequence of low degree terms of (9.4)
shows that the group under consideration is a subgroup of H1(G,Pic(Xnr)).
There is an exact sequence of continuous discrete g-modules

0 −→ Pic0(X) −→ Pic(X) −→ NS(X) −→ 0.

By the representability of the Picard functor, and since char(K) = 0, there
exists an abelian variety A over K such that A(K) is isomorphic to Pic0(X) as
a g-module (Theorem 4.1.1). Thus we rewrite the previous sequence as

0 −→ A(K) −→ Pic(X) −→ NS(X) −→ 0. (9.5)

The Hochschild–Serre spectral sequence attached to X→Xnr is

Epq2 = Hp(I,Hq
ét(X,Gm))⇒ Hp+q

ét (Xnr,Gm).
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By Hilbert’s theorem 90 we have H1(I,K
∗
) = 0. Since Br(Knr) = 0 we obtain

that the natural map Pic(Xnr)→Pic(X)I is an isomorphism. Now, by taking
I-invariants in (9.5) we obtain the exact sequence of G-modules

0 −→ A(Knr) −→ Pic(Xnr) −→ NS(X)I .

The group NS(X) is finitely generated by the theorem of Néron and Severi,
hence so is NS(X)I . Thus there is a G-module N , finitely generated as an
abelian group, that fits into the exact sequence of continuous discrete G-modules

0 −→ A(Knr) −→ Pic(Xnr) −→ N −→ 0.

The resulting exact sequence of cohomology groups gives us an exact sequence

H1(G,A(Knr)) −→ H1(G,Pic(Xnr)) −→ H1(G,N). (9.6)

We note that G is canonically isomorphic to the profinite completion Ẑ, with the
Frobenius as a topological generator. If M is a continuous discrete G-module
which is finitely generated as an abelian group, then H1(G,M) is finite. To see
this, let G′ be a finite index subgroup of G that acts trivially on M . The group
G′ ' Ẑ has a dense subgroup Z generated by a power of the Frobenius. Now
H1(G′,M) is the group of continuous homomorphisms

Homcont(G
′,M) = Homcont(G

′,Mtors) = Mtors,

which is visibly finite. An application of the restriction-inflation sequence fin-
ishes the proof of the finiteness of H1(G,M).

To complete the proof of the proposition it remains to prove the finite-
ness of H1(G,A(Knr)). By [Mil86, Prop. I.3.8] this group is isomorphic to
H1(G, π0(A0)), where π0(A0) is the group of connected components of the closed
fibre A0 of the Néron model of A over Spec(R). Since π0(A0) is finite, we see
that H1(G, π0(A0)) is finite. �



Chapter 10

The Brauer group and
families of varieties

In this section we are interested in the following question. Let f : X→Y be a
dominant morphism of regular integral varieties. Can one compute the Brauer
group Br(X) and its elements from the Brauer group of the base Br(Y ) and
the Brauer group of the generic fibre Br(Xη), in terms of the geometry of va-
rieties X, Y and the morphism f? For example, when is the induced map
f∗ : Br(Y )→Br(X) surjective or injective? Recall that Br(X) is naturally a
subgroup of Br(Xη). If Br(Xη) is known, then computing Br(X) involves de-
termining the elements of Br(Xη) that are unramified on X. In general, this is
a hard problem even if the generic fibre has very simple geometry, for instance,
Xη is finite or Xη is a projective quadric.

The focus of Section 10.1 is the so called vertical subgroup Brvert(X/Y ) of
Br(X). It is defined as the set of elements of Br(X) whose restriction to Br(Xη)
belongs to the image of Br(k(Y )), where k(Y ) = k(η) is the function field of Y .
There are several reasons to be interested in Brvert(X/Y ).

• In some cases there are clean-cut algebraic formulae for Brvert(X/Y ),
whereas it may be difficult to give such formulae for the full Brauer group
Br(X). For example, when Y = P1

k and Xη is geometrically integral, gen-
erators of Brvert(X/Y ) are explicitly computed in terms of the structure
of the degenerate fibres of f : X→Y .

• For certain types of morphisms, e.g. for families of quadrics of relative
dimension at least one or for families of Severi–Brauer varieties, the full
Brauer group is vertical, that is, the natural map Brvert(X/Y )−̃→Br(X)
is an isomorphism.

• Over a number field k, the vertical Brauer group Brvert(X/Y ) appears in
the definition of an obstruction to the existence of a rational point P ∈
Y (k) such that the fibre XP is smooth and has points in all completions
of k.

209
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In Section 10.3 we give a description of the 2-torsion subgroup Br(X)[2],
where f : X→Y is a double cover of a rational surface Y over an algebraically
closed field k. In Section 10.4 we study a universal family of cyclic twists and
the associated vertical Brauer group; this construction has useful arithmetic
applications. The main result of Section 10.5 is a formula for Br(X) in the case
whenXη is a conic and Y is a rational surface over C. This is used in Section 10.6
to recover the Artin–Mumford examples of unirational non-rational threefolds,
along with several other examples.

10.1 The vertical Brauer group

Definition 10.1.1 Let Y be an integral scheme with generic point i : η→Y .
Let f : X→Y be a dominant morphism, and let Xη = X ×Y η be the generic
fibre of f . Write j : Xη→X for the natural inclusion, so that there is a cartesian
square

Xη
j //

��

X

f

��
η

i // Y

The vertical Brauer group of X/Y is

Brvert(X/Y ) = {A ∈ Br(X)|j∗(A) ∈ Im[Br(η)→Br(Xη)]}.

A formal consequence of the definition of Brvert(X/Y ) is the exact sequence

0 −→ Brvert(X/Y ) −→ Br(X) −→ Br(Xη)/Im[Br(η)→Br(Xη)].

If X is regular and integral, then by Theorem 3.5.4 we have inclusions

Br(X) ⊂ Br(Xη) ⊂ Br(η′),

where η′ is the generic point of X.
We shall mostly consider the case when X and Y are smooth, proper and

geometrically integral varieties over a field k, so that η = Spec(k(Y )) and η′ =
Spec(k(X)). Then Brvert(X/Y ) ⊂ Br(X) ⊂ Br(k(X)) is the intersection of
Br(X) = Brnr(k(X)/k) (see Proposition 5.2.2) with the image of the restriction
map Br(k(Y ))→Br(k(X)). In other words, the elements of Brvert(X/Y ) are the
restrictions to k(X) of the (possibly, ramified) classes in Br(k(Y )) that become
unramified in k(X).

The following standard lemma will be useful.

Lemma 10.1.2 Let k ⊂ K be an extension of fields such that k is separably
closed in K. Then the restriction map H1(k,Q/Z)→H1(K,Q/Z) is injective.

Proof. The assumption implies that the natural map Gal(Ks/K)→Gal(ks/k)
is surjective. Thus a non-trivial character χ : Gal(ks/k)→Q/Z gives rise to a
non-trivial character Gal(Ks/K)→Q/Z. �
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Lemma 10.1.3 Let n be a positive integer. For i = 1, . . . , n let ki be a finite
separable extension of k and let mi be a positive integer. Let m be the g.c.d. of
m1, . . . ,mn, and let r be the g.c.d. of [k1 : k]m1, . . . , [kn : k]mn. Define

L =

n⋂
i=1

Ker[mireski/k : H1(k,Q/Z) −→ H1(ki,Q/Z)].

Then rL = 0. Moreover, L is an extension of a finite abelian group by an abelian
group of exponent m.

Proof. The first statement is clear since coreski/kreski/k = [ki : k]. We note
that L is the kernel of the composition of multiplication by m on H1(k,Q/Z)
and the direct sum of maps

(mi/m)reski/k : H1(k,Q/Z) −→ H1(ki,Q/Z)

for i = 1, . . . , n. Thus it is enough to prove that L is finite if m = 1. So we
now assume m = 1. Let K be a finite Galois extension of k that contains ki for
i = 1, . . . , n. Then ki ⊗k K ∼= K [ki:k]. It is clear that the kernel of the direct
sum of multiplication by mi maps on H1(K,Q/Z) is trivial. Extending k to K
we can conclude the proof since the kernel of resK/k : H1(k,Q/Z)→H1(K,Q/Z)
is the finite group H1(Gal(K/k),Q/Z). �

Let k be a field of characteristic 0. Let X and Y be smooth, integral varieties
over k and let f : X→Y be a dominant morphism with generic fibre Xη, where
η = Spec(k(Y )) is the generic point of Y . Then there is a commutative diagram
of exact sequences

0 // Br(X) // Br(Xη) // ⊕
P∈Y (1)

⊕
V⊂XP

H1(k(V ),Q/Z)

0 // Br(Y ) //

f∗

OO

Br(k(Y )) //

OO

⊕
P∈Y (1)

H1(k(P ),Q/Z)

OO

(10.1)

The bottom sequence is the exact sequence (3.13); here P ranges over all codi-
mension 1 points of Y . The top exact sequence is obtained from (3.12) by taking
the inductive limit over all open subsets f−1(U) ⊂ X, where U is a non-empty
open subset of Y . Here V ⊂ XP ranges over the irreducible components of the
fibre XP . Then the map H1(k(P ),Q/Z)→H1(k(V ),Q/Z) is mV resk(V )/k(P ),
where mV is the multiplicity of VP in XP . The diagram commutes by the
functoriality of residues (Theorem 3.7.4).

For an irreducible component V of XP we define κV as the algebraic closure
of k(P ) in k(V ). For f : X→Y as above, the fibre XP at a codimension 1
point P ∈ Y is a variety over k(P ) which is split if and only if it contains an
irreducible component V of multiplicity mV = 1 such that κV = k(P ).

When Xη is geometrically integral, there is a non-empty Zariski open subset
U ⊂ Y such that the fibres of f at the points of U are geometrically integral.
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Thus all but finitely many fibres of f over the points of codimension 1 in Y are
geometrically integral, hence split.

Proposition 10.1.4 Let f : X→Y be a dominant morphism of smooth, integral
varieties over a field k of characteristic 0 with geometrically integral generic
fibre. Let S be the finite set of points P ∈ Y of codimension 1 such that the
fibre XP is not split (for example, XP can be empty). Then every element of
Brvert(X/Y ) can be written as f∗(α), where α ∈ Br(k(Y )) is such that if P /∈ S,
then ∂P (α) = 0, and if P ∈ S, then

∂P (α) ∈
⋂

V⊂XP

Ker[mV resk(V )/k(P ) : H1(k(P ),Q/Z) −→ H1(κV ,Q/Z)]. (10.2)

Proof. This follows from the above diagram in view of Lemma 10.1.2. �

If XP is empty, then the condition in (10.2) is vacuous.
This proposition shows, in particular, that split fibres can be disregarded,

that is, counted as ‘good’ fibres for the determination of the vertical Brauer
group attached to a morphism of varieties.

Corollary 10.1.5 Let f : X→Y be a dominant morphism of smooth, integral
varieties over a field k of characteristic 0 with geometrically integral generic
fibre.

(i) Assume that for each point P ∈ Y of codimension 1, the g.c.d. of the
multiplicities mV , where V is an irreducible component of XP , is equal to 1.
(This condition is satisfied if the fibres of f over all points of Y of codimension
1 are geometrically split.) Then Brvert(X/Y )/f∗Br(Y ) is finite.

(ii) Assume that for each point P ∈ Y of codimension 1, the g.c.d. of the
integers mV [κV : k(P )], where V is an irreducible component of XP , is equal to
1. (This condition is satisfied if the fibres of f over all points of Y of codimension
1 are split.) Then Brvert(X/Y ) = f∗Br(Y ).

Proof. Diagram (10.1) implies that Brvert(X/Y )/f∗Br(Y ) is a quotient of⊕
P∈Y (1)

Ker
[
H1(k(P ),Q/Z) −→

⊕
V⊂XP

H1(k(V ),Q/Z)
]
,

where the map to H1(k(V ),Q/Z) is mV resk(V )/k(P ). Now both statements
follow from Lemma 10.1.3. �

Remark 10.1.6 The proof of Corollary 10.1.5 (i) actually shows that the sub-
group of Br(k(Y )) consisting of the classes α such that f∗(α) ∈ Br(k(X)) lies
in the image of Br(X) is finite modulo the image of Br(Y ).

Exercise 10.1.7 Let t be a coordinate function on A1
Q ⊂ P1

Q. Let X be a

smooth, projective, geometrically integral surface over Q with a morphism X→P1
Q

whose generic fibre Xη is the smooth plane cubic curve over Q(t) defined by

u3 + tv3 + t2w3 = 0.

Show that the group Brvert(X)/Br0(X) is infinite.
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Hint. Use a valuative argument to show that divX(t) = 3D for some divisor D
on X. This implies that all symbols (χ, t) ∈ Br(Q(t)) with χ ∈ H1(Q,Z/3) and
t is viewed in Q(t)∗/Q(t)∗3 = H1(Q(t), µ3) are unramified over X. Thus the
image of the composition, where the first arrow sends χ to (χ, t),

H1(Q,Z/3) ↪→ Br(Q(t)) −→ Br(Xη) ↪→ Br(Q(X))

belongs to the subgroup Br(X) ⊂ Br(Q(X)). The group H1(Q,Z/3) is infinite.
The map H1(Q,Z/3) ↪→ Br(Q(t)) defined by χ 7→ (χ, t) is injective, as one
sees by taking the residue at t = 0. By the exact sequence (4.9) the kernel of
Br(Q(t))→Br(Xη) is the image of Pic(Xη ×Q(t) Q(t))G, where G is the absolute
Galois group of Q(t). By the theorems of Mordell–Weil and Néron, the group
Pic(Xη ×Q(t) Q(t))G is finitely generated, hence its image in the torsion group
Br(Q(t)) is finite.

In this example the divisor of the function t is divisible by 3. In fact, we can
consider the following general situation.

Proposition 10.1.8 Let X be a smooth, projective, geometrically integral vari-
ety over a field k of characteristic 0. Let F ∈ k(X)∗ be a non-constant rational
function. Write the divisor of F as

∑n
i=1miDi, where each Di ⊂ X is an inte-

gral divisor. Let m be the g.c.d. of m1, . . . ,mn. Let ki be the algebraic closure
of k in the function field k(Di). Define

L(F ) =

n⋂
i=1

Ker[mireski/k : H1(k,Q/Z) −→ H1(ki,Q/Z)].

Let BrF (X) be the intersection of Br(X) with the image of the homomorphism
H1(k,Q/Z)→Br(k(X)) associating to χ ∈ H1(k,Q/Z) the class of the cyclic
algebra (F, χ) of degree d in Br(k(X)), where d is the order of χ. Then we have
the following statements.

(i) The group BrF (X) consists of the classes (F, χ), where χ ∈ L(F ).
(ii) If m = 1, then BrF (X) is finite modulo Br(k). If m > 1 and k is finitely

generated over Q, then BrF (X) is infinite modulo Br(k).

(iii) Let X̃→X be a proper birational morphism such that F defines a sur-

jective morphism f : X̃→P1
k. Then BrF (X) ⊂ Brvert(X̃/P1

k).

Proof. (i) is immediate by a computation of residues of (F, χ).
(ii) Lemma 10.1.3 gives that L(F ) is finite if m = 1. For m > 1 use the hint

to Exercise 10.1.7.
(iii) is obvious, because (F, χ) = (t, χ), where t be the coordinate on P1

k such
that F = t ◦ f . �

Using diagram (10.1) one can compute the Brauer group of a product of two
varieties, under a simplifying assumption on the geometry of one of them. (For
more general statements see Sections 4.6 and 15.4.)
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Proposition 10.1.9 Let k be a field of characteristic 0. Let X and Y be
smooth, projective, geometrically integral varieties over k. Assume X(k) 6= ∅.
If Pic(X) is torsion-free and Br(X) = 0, then Br(X ×k Y ) is generated by the
inverse images of Br(X) and Br(Y ) with respect to the maps induced by projec-
tions. If, moreover, H1(k,Pic(X)) = 0, then the map Br(Y )→Br(X×k Y ) is an
isomorphism.

Proof. The assumptions on X imply that Br(X) = Br1(X) and give a split
exact sequence (see Section 4.3)

0 −→ Br(k) −→ Br(X) −→ H1(k,Pic(X)) −→ 0.

If one extends the ground field from k to the function field K = k(Y ) of Y , the
assumptions on the geometric Picard group and on the geometric Brauer group
of XK over the algebraic closure K of K are preserved. For the Picard group,
see Section 4.1. For the Brauer group, see Proposition 4.2.2. Thus one still
has the analogous exact sequence for the K-variety XK . Moreover, the map
Pic(X)→Pic(XK) is an isomorphism and the absolute Galois group of k(X)
acts on these finitely generated free abelian groups via its quotient Γk, which
gives an isomorphism H1(k,Pic(X))−̃→H1(K,Pic(XK)). The compatible split
exact sequences

0 −→ Br(k) −→ Br(X) −→ H1(k,Pic(X)) −→ 0

and
0 −→ Br(K) −→ Br(XK) −→ H1(K,Pic(XK)) −→ 0

thus give that the natural map Br(X)/Br(k)→Br(XK)/Br(K) is an isomor-
phism. All fibres of the projection X ×k Y→Y are geometrically integral. Di-
agram 10.1 applied to the projection X ×k Y→Y then immediately gives that
Br(X ×k Y ) is generated by the sum of the images of Br(Y ) and Br(X) under
the two projections. Compare with [GA18]. �

We conclude this section by proving a statement announced in Chapter 8.

Theorem 10.1.10 Let k be a field of characteristic 0. Let f : X→Y be
a dominant morphism of smooth, projective, geometrically integral varieties
over k. Assume that the generic fibre Xη is birationally equivalent to a k(Y )-
torsor for a simply connected semisimple group over k(Y ). Then the map
f∗ : Br(Y )→Br(X) is an isomorphism.

Proof. We have a commutative diagram of natural pullback maps

Br(X) �
� // Br(Xη)

Br(Y ) �
� //

OO

Br(k(Y ))

∼=

OO

The injectivity of horizontal arrows is due to the fact that X and Y are smooth
and integral. The right hand vertical arrow is an isomorphism by Proposition
8.2.1. Thus Br(X) = Brvert(X/Y ). Now the result follows from Proposition
9.1.13 in view of Corollary 10.1.5 (ii). �
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10.2 Conic bundles over the projective line

In this section we assume that the ground field k has characteristic zero. With
extra care, one could extend most results over an arbitrary ground field.

Definition 10.2.1 A conic bundle over P1
k is a smooth, projective, geometri-

cally integral surface X over a field k equipped with a morphism X→P1
k whose

generic fibre Xη is a smooth conic over K = k(P1
k).

Let A ∈ Br(K) be the class of the quaternion algebra associated to the conic
Xη. If A = 0, then Xη ' P1

K , hence Br(Xη) = Br(K).
If A 6= 0, or, equivalently, Xη has no K-point, i.e., Xη 6' P1

K , then, by
Proposition 6.2.1, we have an exact sequence

0 −→ Z/2 −→ Br(K) −→ Br(Xη) −→ 0, (10.3)

where 1 ∈ Z/2 is mapped to A ∈ Br(K).
After suitable birational transformations respecting the projection to P1

k, one
may assume that for each closed point P = Spec(k(P )) ∈ P1

k the fibre XP is a
reduced conic and that X→P1

k is relatively minimal. The last property means
that no fibre XP contains a curve that can be contracted onto a smooth point.

Let S be the finite set of closed points P ∈ P1
k such that the fibre XP is

not smooth over k(P ), or, equivalently, is not geometrically integral. To such
a point P one associates a quadratic field extension FP /k(P ) over which XP

decomposes as a pair of transversal lines, with a unique intersection point defined
over k(P ). Let us write FP = k(P )(

√
aP ), where aP ∈ k(P )∗.

By Proposition 10.1.4, since A goes to 0 in Br(Xη), for each point P ∈ S
the residue ∂P (A) ∈ H1(k(P ),Q/Z) lies in the subgroup

H1(FP /k(P ),Z/2) = Ker[H1(k(P ),Z/2) −→ H1(FP ,Z/2)] ∼= Z/2.

A local calculation with a diagonal equation of Xη shows that ∂P (A) is the
generator of this group, i.e. the class of aP in k(P )∗/k(P )∗2 = H1(k(P ),Z/2).

Lemma 10.2.2 Let X→P1
k be a relatively minimal conic bundle as above. Then

Brvert(X) = Br(X). The following properties are equivalent.
(a) The class A is in the image of Br(k)→Br(K).
(b) There exists a smooth conic C over k such that X is birationally equiv-

alent over P1
k to the constant conic bundle C × P1

k→P1
k.

(c) For each closed point P ∈ P1
k, the fibre XP is smooth.

If these properties do not hold, then the map Br(k)→Br(X) is injective.

Proof. Since Br(K)→Br(Xη) is surjective and Br(X)→Br(Xη) is injective (as
X is smooth over k), we have Brvert(X) = Br(X). The class of A in Br(K) is
given by a quaternion (a, b), with a, b ∈ K∗ = k(P1)∗. Since k is infinite, there
exists a k-point P in P1

k where a and b are invertible. Under assumption (a),
the class (a, b) ∈ Br(k(t)) coincides with the image of (a(P ), b(P )) ∈ Br(k) in



216 CHAPTER 10. FAMILIES OF VARIETIES

Br(k(P1)). Thus (a) implies (b). Under assumption (b), the generic fibre of
X→P1

k is isomorphic to Ck(P1). This gives (a).
The equivalence of (a) and (c) follows from the Faddeev exact sequence

(1.26) via the interpretation of the class aP in k(P )∗/k(P )∗2 as the residue of
A at P .

The kernel of Br(k)→Br(X) ↪→ Br(k(X)) is equal to the kernel of the com-
position

Br(k) ↪→ Br(K)→Br(Xη) ↪→ Br(k(X)).

By (10.3), this map is injective unless Xη = C ×kK, where C is a conic over k.
�

Proposition 10.2.3 Let f : X→P1
k be a relatively minimal conic bundle as

above. If the class of Xη is not in the image of Br(k)→Br(K), then there is an
exact sequence

0 −→ Br(k) −→ Br(X) −→
⊕
P∈S

(Z/2)P /〈∂(A)〉 −→ k∗/k∗2,

where ∂(A) ∈
⊕

P∈S(Z/2)P =
⊕

P∈S H1(FP /k(P ),Z/2) is the vector with co-
ordinates ∂P (A). The last map sends 1 ∈ (Z/2)P to the class of the norm
Nk(P )/k(aP ) in k∗/k∗2.

Proof. When the base is P1
k, the commutative diagram (10.1) whose bottom row

is extended to the right as in the Faddeev exact sequence (1.26) and the middle
column is extended as in (10.3), takes the following form:

0
↑

0 → Br(X) → Br(Xη) →
⊕
P

H1(k(XP ),Q/Z)

↑ ↑ ↑
0 → Br(k) → Br(K) →

⊕
P

H1(k(P ),Q/Z) → H1(k,Q/Z) → 0

↑
Z/2
↑
0

The corestriction map coresk(P )/k : H1(k(P ),Z/2) −→ H1(k,Z/2) is the map
k(P )∗/k(P )∗2→k∗/k∗2 induced by the norm Nk(P )/k. Indeed, the Kummer
exact sequence in view of Hilbert’s theorem 90 shows that this map comes from
coresk(P )/k : H0(k(P ), k∗s ) −→ H1(k, k∗s ) which is Nk(P )/k : k(P )∗→k∗.

The proposition then follows from a diagram chase and Lemma 10.2.2. �

Corollary 10.2.4 Let f : X→P1
k be a relatively minimal conic bundle as above.

Assume that the class of Xη is not in the image of Br(k)→Br(K). Fix a k-point
M ∈ P1

k with smooth fibre. Let S ⊂ P1
k be the finite set of closed points with



10.2. CONIC BUNDLES OVER THE PROJECTIVE LINE 217

singular fibre. Let A1
k ⊂ P1

k be the complement to M . Let t be the coordinate on
A1
k. Then we have a direct sum decomposition

Br(X) = Br(k)⊕ f∗B,

where B ⊂ Br(K) = Br(k(t)) is a finite subgroup whose elements have the
following explicit description.

A closed point P ∈ S is the zero set of a monic irreducible polynomial P (t) ∈
k[t]. Let τP ∈ k(P ) be the image of t in k(P ) = k[t]/(P (t)). Consider the

subgroup B ⊂ F|S|2 of vectors ε = (εP ) such that∏
P∈S

Nk(P )/k(aP )εP = 1 ∈ k∗/k∗2.

The injective map B→Br(K) sends ε to

Aε =
∑
P∈S

εP coresk(P )/k(t− τP , aP ),

where (t−τP , aP ) is the class of the quaternion algebra Q(t−τP , aP ) in Br(k(P )).

Proof. A calculation based on Proposition 1.4.6 shows that ∂P (Aε) = aεPP . This
shows that the map B→Br(K) is indeed injective. Then the statement follows
from Proposition 10.2.3. �

Exercise 10.2.5 Show that each Aε is unramified at the point at infinity M
and, moreover, Aε(M) = 0.

Exercise 10.2.6 Let P (x) ∈ k[x] be a separable polynomial and let a ∈ k,
a /∈ k∗2. Let f : X→P1

k be a smooth projective model of the generalised Châtelet
surface given by the affine equation

y2 − az2 = P (x).

Prove the following statements.

(a) If P (x) is irreducible, or is the product of two irreducible polynomials of
odd degree, then Br(X)/Br(k) = 0.

(b) If P (x) the product of two non-constant irreducible polynomials of even
degree, each of which is irreducible over k(

√
a), then Br(X)/Br(k) = Z/2.

(c) Assume that the degree of P (x) is even. Let n be the number of monic
irreducible factors of P (x) of even degree which remain irreducible over
k(
√
a). Let m be the number of monic factors of P (x) of odd degree.

Then Br(X)/Br(k) = (Z/2)s, where s = n− 1 if m = 0, s = n+m− 1 if
m is odd, and s = n+m− 2 if m > 0 is even.
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Proposition 10.2.7 Let f : X→Y be a proper surjective morphism of smooth
geometrically integral varieties over a field k of characteristic 0 such that the
generic fibre Xη is a smooth quadric of dimension at least 1. Suppose that all
fibres over points of codimension 1 in Y are split, or dim(Xη) ≥ 3. Then the
map f∗ : Br(Y )→Br(X) is surjective.

Proof. From Proposition 6.2.3 we see that Br(X) = Brvert(X/Y ). By Corollary
10.1.5 (ii) we have Brvert(X/Y ) = f∗Br(Y ), whenever all fibres over points of
codimension 1 of Y are split. It remains to show that the splitness condition
is satisfied when dim(Xη) ≥ 3. Recall that, for P ∈ Y of codimension 1, the
property that XP is split does not depend on the choice of a smooth and proper
model X→Y over the local ring OP,Y , see Corollary 9.1.11. If dim(Xη) ≥ 3,
then working with a diagonal quadratic form one constructs a model whose
closed fibre is split. �

In Section 10.5 we shall consider quadric bundles f : X→Y for which the
map f∗ : Br(Y )→Br(X) is not surjective.

Remark 10.2.8 (1) Another way to compute Br(X)/Br(k) is to identify the
Galois module Pic(Xs), then to compute H1(k,Pic(Xs)). By Remark 4.3.3 the
last group is Br1(X)/Br(k), which coincides with Br(X)/Br(k).

This method produces the finer invariant given by the Galois module Pic(Xs)
but is slightly less effective for producing explicit generators of the group Br(X).
Further references: [CTSS87], [Sko96], [Sko01, §7.1].

(2) Vertical Brauer groups have been computed in various set-ups, including
some cases where the generic fibre is given but there is no explicit smooth
projective model for the total space. Examples include families of quadrics of
relative dimension 2 over P1

k and families of Severi–Brauer varieties, see [Sko90]
and [CTS94]. In these two cases one has Brvert(X) = Br(X).

(3) More generally, one would like to compute Br(X) for a smooth, projective
and geometrically integral variety X equipped with a morphism X→P1

k whose
generic fibre is geometrically integral and contains an open subset isomorphic to
a homogeneous space of a connected linear algebraic group G over K = k(P1).
In this case the fibration admits a section over a finite extension of k.

Already in the case when G = T ×k K, where T is a k-torus, it is difficult
to compute Br(X). The quotient of Br(X) by the subgroup Brvert(X) is a
subgroup of a known group, namely the unramified Brauer group of the K-
torus TK modulo Br(K), but in general one does not know which subgroup. A
concrete case is when the generic fibre of X→P1

k is birationally equivalent to
the affine K-variety with equation

NL/k(Ξ) = P (t)

for a finite separable extension L/k and a non-zero polynomial P (t) ∈ k[t]. (The
projection to P1

k is given by the coordinate t.) For some computations in this
direction see [CTHS03] and [Wei12]; see also [VV12].
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10.3 Double covers

The following theorem is a special case of [Sko17, Thm. 1.1]. We refer to [Sko17]
for the proof of this theorem and more general results.

Theorem 10.3.1 Let k be an algebraically closed field of characteristic different
from 2. Let S be a smooth, projective, integral surface such that Pic(S)[2] = 0
and Br(S)[2] = 0, for instance a rational surface. Let π : X→S be a double
cover ramified exactly along a smooth irreducible curve C. Let j : C ↪→ X be
the natural closed embedding. There is a natural map Φ : Pic(C)[2]→Br(X)[2],
which gives rise to an exact sequence

0 −→ Pic(C)[2]/j∗(Pic(X)[π∗]) −→ Br(X)[2] −→ Pic(S)/π∗(Pic(X)) −→ 0.

Here one writes Pic(X)[π∗] for the kernel of π∗ : Pic(X)→Pic(S).
In the special case when S = P2

k we have Pic(S) = Pic(P2
k) = Z, hence

Pic(S)/π∗(Pic(X)) is 0 or Z/2.
Here we content ourselves with giving the definition of the map Φ. It comes

from the comparison of the Gysin sequences for étale cohomology groups of S
and X with coefficients µ2 = Z/2:

H2(X,µ2) // H2(X r C, µ2) // H1(C,Z/2) // H3(X,µ2)

H2(S, µ2) //

π∗

OO

H2(S r C, µ2) //

π∗

OO

H1(C,Z/2) //

[0]

OO

H3(S, µ2)

π∗

OO

The morphism π : X→S is ramified along C with ramification index 2, hence
the induced map H1(C,Z/2)→H1(C,Z/2) is zero.

Since S and X are smooth, the restriction maps

Pic(S) −→ Pic(S r C), Pic(X) −→ Pic(X r C)

are surjective, and the restriction maps

Br(S) −→ Br(S r C), Br(X) −→ Br(X r C)

are injective. Using the Kummer sequences with coefficients µ2, one obtains a
commutative diagram of exact sequences

0 // Br(X)[2] // Br(X r C)[2] // H1(C,Z/2) // H3(X,µ2)

0 // Br(S)[2] //

π∗

OO

Br(S r C)[2] //

π∗

OO

H1(C,Z/2) //

[0]

OO

H3(S, µ2)

π∗

OO

We thus get a map

Φ : Ker[H1(C,Z/2)→H3(S, µ2)] −→ Br(X)[2]/π∗(Br(S)[2]).
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Assuming Pic(S)[2] = 0, we have H1(S, µ2) = 0 and thus by Poincaré duality
H3(S, µ2) = 0. If, moreover, Br(S)[2] = 0, then we get a map

Φ : Pic(C)[2] = H1(C,Z/2) −→ Br(X)[2].

Remark 10.3.2 (1) The group H1(C,Z/2) is represented by rational functions
f ∈ k(C)∗ such that div(f) = 2D for a divisor D on C. Such a rational function
thus gives rise to an element of Br(X)[2] ⊂ Br(k(X))[2]. By Merkurjev’s theo-
rem every such class is a sum of quaternion algebras. When k is algebraically
closed, k(X) is a C2-field by Tsen’s theorem. By Albert’s criterion [GS17, Thm.
1.5.5] the class of a sum of quaternion algebras in Br(k(X)) is equal to the class
of a single quaternion algebra. It seems quite a challenge to construct such a
quaternion algebra explicitly starting from f .

(2) Other papers have been concerned with double and more generally cyclic
covers [F92, vG05, CV15, IOOV17]. In [IOOV17] for a double cover of S = P2

as above, one constructs an exact sequence

0 −→ Pic(X)/(Zπ∗O(1) + 2Pic(X)) −→ (Pic(C)/ZKC)[2] −→ Br(X)[2] −→ 0,

whereKC ∈ Pic(C) is the canonical class. The map (Pic(C)/ZKC)[2]→Br(X)[2]
has a description in terms of a geometric construction of Azumaya algebras on
X. See also [CV15].

Remark 10.3.3 In a different direction, one can ask the following question.
Suppose X→S is a double cover of smooth, projective, complex surfaces. Can
one compute the kernel of the restriction map Br(S)→Br(X)? A restriction-
corestriction argument shows that this kernel is contained in Br(S)[2]. An in-
teresting case is that of an Enriques surface S and its unramified double K3-
covering X→S over an algebraically closed field of characteristic zero. Here
Pic(S) = Z10 ⊕ Z/2, Br(S) = Z/2, Pic(X) is torsion-free, and Br(X) ' (Q/Z)s

for some integer s > 0. Beauville [Bea09] showed that the kernel of the map
Z/2 = Br(S)→Br(X) = (Q/Z)s depends on the Enriques surface S. He proved
that in the (coarse) moduli space of Enriques surfaces, the surfaces S for which
the kernel is non-zero, hence equal to Z/2, form a countable, infinite union of
non-empty algebraic hypersurfaces. In [HS05] one finds an example definable
over Q for which the map Br(S)→Br(X) is injective.

One step in Beauville’s proof is the following general result [Bea09, Prop.
4.1]. Let π : X→S be an étale, cyclic covering of smooth projective varieties over
an algebraically closed field k. Let σ be a generator of the Galois group G of π :
X→S, and let N = π∗ : Pic(X)→Pic(S) be the natural norm homomorphism.
Then the kernel of π∗ : Br(S)→Br(X) is isomorphic to Ker(N)/(1−σ∗)Pic(X).

10.4 The universal family of cyclic twists

Let X be a smooth, proper and geometrically integral variety over a field k of
characteristic 0 equipped with an action of µn. Assume that there is a dense
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open subset U ⊂ X such that the morphism π : U→V , where V = U/µn, is a
µn-torsor. This implies that V is smooth and geometrically integral.

For a ∈ k∗ let Xa be the cyclic twist of X by a, that is, the quotient of
X ×k Ta by the diagonal action of µn, where Ta is the µn-torsor over k given
by xn = a. The twists are naturally parameterised by the points of Gm,k and
there is a universal family of cyclic twists X→Gm,k. More precisely, one defines
X as the quotient of X ×kGm,k by the diagonal action of µn, where µn ⊂ Gm,k
acts on Gm,k by multiplication. Then U = (U ×k Gm,k)/µn is Zariski open in
X . The projection U ×k Gm,k→U gives rise to a map U→V which is a Gm,k-
torsor. We have the following commutative diagram, where the vertical arrows
are quotients by µn and the arrows pointing left are Gm,k-torsors:

U

��

U ×k Gm,koo //

��

Gm,k

��
V Uoo // Gm,k

By Hilbert’s theorem 90 any Gm-torsor is trivial over the generic point. Hence
U , and thus X , is stably birationally equivalent to V .

Using Hironaka’s theorem, we can compactify X to a regular proper variety
W equipped with a morphism f : W→P1

k so that X = f−1(Gm,k). In particular,
the generic fibre of W→P1

k is geometrically integral and the closed fibres away
from 0 and∞ are smooth (these fibres are twists of X, e.g., the fibre over a ∈ k∗
is Xa).

Let Y be a smooth proper variety over k containing V as a dense open subset.
Since X and W are stably birationally equivalent to Y , we have a isomorphism
Br(W ) ∼= Br(Y ).

In this section we compute the vertical Brauer group Brvert(W/P1
k) as a

subgroup of Br(Y ). The motivation for this comes from arithmetic. Suppose
that k is a number field and Y is everywhere locally solvable. If Brvert(W/P1

k)
gives no Brauer–Manin obstruction to the Hasse principle on Y , for example, if
Brvert(W/P1

k) = Br(k), then, under an appropriate assumption on the ramifica-
tion, there is an a ∈ k∗ such that Xa is everywhere locally solvable, see Theorem
13.2.23. Moreover, an unobstructed family of points Pv ∈ V (kv) can be lifted
to a family of points Q ∈ Ua(kv) on a twisted form of the torsor π : U→V .

Let [U/V ] be the class of the torsor π : U→V in H1
ét(V, µn). Let F ∈ k(Y )∗

be a non-zero rational function such that the generic fibre of π is given by
the equation xn = F . Since U is geometrically integral, F is not a constant
function. In k(X ) = k(W ) we have the relation tun = F , where u ∈ k(W )∗.
Write div(F ) =

∑
DmDD, where each D is an integral divisor in Y and mD

is a positive integer. Let kD be the integral closure of k in k(D). Recall from
Proposition 10.1.8 the notation

L(F ) =
⋂
D

Ker[mD reskD/k : H1(k,Q/Z) −→ H1(kD,Q/Z)]. (10.4)
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For χ ∈ H1(k,Z/n) we denote by [U/V ] ∪ χ ∈ H2
ét(V, µn) the element obtained

via the cup-product

H1
ét(V, µn)×H1(k,Z/n) −→ H1

ét(V, µn)×H1(V,Z/n) −→ H2
ét(V, µn).

Let Aχ ∈ Br(V ) be the image of this element under the map H2
ét(V, µn)→Br(V )

coming from the Kummer sequence. The restriction of Aχ to Br(k(Y )) is the
class of the cyclic algebra (χ, F ). For each irreducible divisor D supported in
div(F ) we have ∂D(Aχ) = mDreskD/k(χ). (We have ∂D(Aχ) = 0 if D is not
contained in Y r V .) Thus Aχ ∈ Br(Y ) if and only if χ ∈ L(F )[n].

Proposition 10.4.1 (i) The group Brvert(W/P1
k) ⊂ Br(k(W )) is generated by

Br(k) and the classes Aχ = (χ, F ) = f∗(χ, t), where χ ∈ L(F )[n].
(ii) Let m be the g.c.d. of the integers mD, for all integral divisors D in the

support of div(F ). If (m,n) = 1, then Brvert(W/P1
k) is finite modulo Br(k).

(iii) If (mD, n) = 1 for some integral divisor D in the support of div(F ),
then each fibre of f : W→P1

k is geometrically split.

Proof. (i) Let ϕ : P1
k→P1

k be the finite morphism given by t = zn. By the
definitions of X and W the base change of W/P1

k along ϕ is a variety birationally
equivalent to X ×k P1

k over P1
k. We have a commutative diagram

Br(k(z)) // Br(k(X ×k P1
k)) Br(X ×k P1

k)? _oo

Br(k(t))

OO

// Br(k(W ))

OO

Br(W )

OO

? _oo

where the Brauer groups in the right hand column are identified with the un-
ramified (over k) subgroups of their ambient groups.

By definition, any element of Brvert(W/P1
k) comes from some A ∈ Br(k(t))

whose image in Br(k(W )) lies in Br(W ). The fibres of X→Gm,k are geomet-
rically integral, thus A can be ramified only at 0 and ∞. Let χ ∈ H1(k,Q/Z)
be the residue of A at ∞. By the diagram, ϕ∗A ∈ Br(k(z)) gives an element
of Br(k(X ×k P1

k)) that lies in Br(X ×k P1
k). However, all fibres of the projec-

tion X ×k P1
k→P1

k are geometrically integral, which implies that already ϕ∗A is
unramified over k, so that ϕ∗A ∈ Br(P1

k) = Br(k). The covering ϕ : P1
k→P1

k is
ramified at ∞ with ramification index n, hence nχ = 0. Thus χ ∈ H1(k,Z/n).
The Faddeev exact sequence implies that up to addition of an element of Br(k),
the class A is represented by the cyclic algebra (χ, t). In k(W ) we have the
relation tun = F , so the image of (χ, t) in Br(k(W )) = Br(k(Y ×k P1

k)) is the
image of (χ, F ) ∈ Br(k(Y )), which is exactly Aχ ∈ Br(V ) ⊂ Br(k(Y )). Thus
(χ, t) ∈ Br(W ) if and only if Aχ ∈ Br(Y ). We have seen that Aχ ∈ Br(Y ) if
and only if χ ∈ L(F ). This proves (i).

(ii) Lemma 10.1.3 implies that L(F )[n] is finite in this case.
(iii) Since the fibres over the points other than t = 0 and t =∞ are geomet-

rically integral, it is enough to consider the fibre above 0 (the fibre above ∞ is
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treated similarly). This fibre has an integral component of multiplicity 1 if and
only if the morphism W→P1

k has a section over k̄[[t]]. By the valuative criterion
of properness, it suffices to show that the generic fibre of W→P1

k has a k̄((t))-
point. The generic fibre is the cyclic cover of Y ×k k̄((t)) given by xn = t−1F .
By assumption, there is an irreducible divisor D ⊂ Y with valD(F ) = m such
that (m,n) = 1. Take a, b ∈ Z such that am− bn = 1 and a > 0. Consider the
‘constant’ k̄[[t]]-scheme Y = Y ×k k̄[[t]] and let D = D ×k k̄[[t]] ⊂ Y. We can
find a section s of Y→Spec(k̄[[t]]) such that the value of s at the generic point
Spec(k̄((t))) is outside the support of div(F ) and the value of s at the closed
point Spec(k̄) is contained in D but not in any other irreducible component of
div(F ); moreover, we can arrange that the intersection index of D and s in Y
equals a. Let v be the valuation of the discrete valuation ring k̄[[t]]. By the
construction of s we have v(F (s)) = am, hence v(t−1F (s)) = am−1 = bn. Thus
s lifts to a k̄((t))-point on the cyclic cover of Y ×k k̄((t)) given by xn = t−1F .
This means that the generic fibre of W→P1

k has a k̄((t))-point. �
We compute the group in Proposition 10.4.1 in two concrete situations. Let

p(x) and q(y) be separable non-constant polynomials with coefficients in k, and
let n ≥ 2 be a positive integer. Let C1 and C2 be smooth, projective curves
with affine equations un = p(x) and vn = q(y), respectively.

Example A Let n = 2. Consider the affine surface with equation z2 = p(x)q(y).
It is birationally equivalent to the quotient of C1 ×k C2 by the diagonal action
of µ2 on u and v. Indeed, z = uv is invariant and satisfies z2 = p(x)q(y).
For example, if p(x) and q(x) are of degree 3 or 4, we obtain a K3 surface.
If deg p(x) = deg q(x) = 3, we obtain the Kummer surface associated to the
product of elliptic curves C1 and C2. If deg p(x) = deg q(x) = 4, we obtain the
Kummer surface associated to a 2-covering of the product of Jacobians of C1

and C2. Such a situation occurs in [SkS05].

Example B Here we assume that n = deg p(x) = deg q(x). Let P (x, y) and
Q(z, w) be homogeneous forms of degree n such that p(x) = P (x, 1) and q(x) =
Q(x, 1). The smooth surface S ⊂ P3

k of degree n given by P (x, y) = Q(z, w) is
birationally equivalent to the quotient of C1×k C2 by the diagonal action of µn
on u and v. Indeed, z = u/v is invariant under this action of µn and satisfies
p(x) = q(y)zn. If n = 3, then S is a smooth cubic surface; such a situation
occurs in Swinnerton-Dyer’s paper [SwD01]. If n = 4, then S is a quartic K3
surface.

Let us consider both examples at the same time. In Example A, to fix ideas,
we assume that the degrees of p(x) and q(y) are even. The ramification locus of
the projection C1→P1

k given by x is exactly the zero set of p(x), and similarly
for C2. Define

L1 = k[x]/(p(x)), L2 = k[y]/(q(y)), L = L1 ⊗k L2.

Let Z = Spec(L) ⊂ C1 ×k C2 be the closed subset given by p(x) = q(y) = 0;
this is the fixed locus of the action of µn. Let U be the complement to Z in
C1×k C2. It is clear that U is the largest open subset of C1×k C2 on which the



224 CHAPTER 10. FAMILIES OF VARIETIES

diagonal action of µn is free. The singular locus of the quotient (C1 ×k C2)/µn
is Z/µn ∼= Z. We define Y as the minimal resolution of this quotient. Each
singular k̄-point of (C1×k C2)/µn is an isolated quotient singularity with a well
known resolution. Over the completion of its local ring, it is isomorphic to
the vertex of the affine cone over the rational normal curve of degree n. The
exceptional divisor of the resolution is a smooth irreducible rational curve E
with (E2) = −n.

Let X be the blow-up of Z in C1 ×k C2. Then we have a finite morphism
π : X→Y of smooth projective varieties whose restriction to U is a torsor
π : U→V with structure group µn. We have the following commutative diagram
where the vertical arrows are quotient morphisms by the action of µn and the
horizontal arrows are birational morphisms:

C1 ×k C2

��

Xoo //

��

S′

��
(C1 ×k C2)/µn Yoo // S

The surfaces S and S′ feature only in Example B: here S′ ⊂ P4
k is given by

tn = P (x, y) = Q(z, w) and the action of µn on S′ is by multiplication on the
coordinate t. The natural projection S′→S is a torsor for µn away from its
ramification divisor D which is given by P (x, y) = Q(z, w) = 0. (Geometrically
this is the union of n2 lines joining two sets of n points each. So Dsing(k̄) consists
of 2n points.) Note that S′sing is the union of closed subsets x = y = 0 and
z = w = 0; the image of S′sing in S is Dsing. The morphism X→S′ is obtained
by blowing-up S′sing, and the morphism Y→S is obtained by blowing-up Dsing.

With notation as before we can take F = P (x, y)/xn, then

L(F )[n] = H1(L/k,Z/n) = Ker[resL/k : H1(k,Z/n)→H1(L,Z/n)].

Proposition 10.4.2 Assume that we are in the situation of Example A, with
n = 2 and deg(p(x)), deg(q(x)) even, or Example B, with n = deg(p(x)) =
deg(q(x)).

(i) If L is generated by the subgroups H1(L1/k,Z/n) and H1(L2/k,Z/n),
then Brvert(W/P1

k) = Br0(Y ).
(ii) For n = 2 the condition of (i) is satisfied when each of p(x) and q(y) is

irreducible with a pluriquadratic splitting field.
(iii) If n is a prime number, the condition of (i) is satisfied when

p(x) = a1x
n + a2, q(y) = a3y

n + a4, where a1, a2, a3, a4 ∈ k∗.

Proof. (i) Recall that C1 and C2 are curves with affine equations un = p(x) and
vn = q(y), respectively. We have two natural morphisms Y→Ci→P1

k given by
the projections to the coordinates x and y, respectively. The rational function F
on Y can be represented by either p(x) or q(y) modulo n-th powers. Thus, if χ ∈
H1(L1/k,Z/n), then Aχ = (p(x), χ) ∈ Br(Y ) belongs to the image of Br(k(x))
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in Br(k(Y )). As an element of Br(k(x)), the class (p(x), χ) is unramified away
from the closed points of A1

k given by the monic irreducible factors r(x) of p(x).
The residue at the closed point r ∈ A1

k given by r(x) = 0 is the restriction
reskr/k(χ) ∈ H1(kr,Z/n), where kr = k[x]/(r(x)). Since L1 = ⊕rkr, where the
sum is over all monic irreducible r(x) dividing p(x), we have reskr/k(χ) = 0.
Hence (p(x), χ) is unramified everywhere on A1

k. This implies that (p(x), χ) ∈
Br(k). Similar considerations apply to the case χ ∈ H1(L2/k,Z/n). This proves
(i).

(ii) In this case L is the direct sum of copies of L1L2, the compositum of L1

and L2. All these fields are pluriquadratic extensions of k, and the statement
follows at once.

(iii) In this case n is coprime to [k(ζ) : k] = n − 1, where ζ is a primitive
n-th root of unity. A restriction-corestriction argument then shows that it is
enough to establish (i) for k = k(ζ), but this is straightforward. �

If p(x) and q(y) are very general, then the map k∗/k∗2→L∗/L∗2 is injective.
Such is the case if p(x) and q(y) are both irreducible of degree 4, the Galois
closure of each of the extensions k[x]/(p(x)) and k[y]/(q(y)) is an extension of
k whose Galois group is the symmetric group S4, and these Galois extensions
are linearly disjoint. See [HS16, Prop. 3.1, Lemma 2.1].

For a proof of (iii) in terms of valuations which avoids discussing the geom-
etry of underlying varieties, see [CT03, Prop. 3.5].

10.5 Conic bundles over a complex surface

The following result is due to Artin and Mumford [AM72, §3, Thm. 1]. We give
a different proof based on the Bloch–Ogus theory.

Theorem 10.5.1 (Artin–Mumford) Let S be a smooth, projective, rational
surface over C. There is an exact sequence

0→Br(C(S))→
⊕
x∈S(1)

H1(C(x),Q/Z)→
⊕
y∈S(2)

Q/Z(−1)→Q/Z(−1)→0.

The map Br(C(S))→H1(C(x),Q/Z), is the residue map ∂x attached to x ∈ S(1).
The map ∂y : H1(C(x),Q/Z)→Q/Z(−1) attached to y ∈ S(2) is zero when y is
not in the closure of x, otherwise it is the sum of residue maps computed on the
normalisation of the closure of x. The last map is the sum.

Proof. Let X be a smooth integral variety over C. We write η for the generic
point Spec(C(X)). Let n > 0, q ≥ 0 and j be integers. Let Hq(µ⊗jn ) be the
Zariski sheaf on X associated to the presheaf

U 7→ Hq
ét(U, µ

⊗j
n ).

Then there is the local-to-global spectral sequence

Epq2 = Hp
zar(X,Hq(µ⊗jn ))⇒ Hn

ét(X,µ
⊗j
n ). (10.5)
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By the Gersten conjecture for étale cohomology proved by Bloch and Ogus in
1974 (see [CT95a, CTKH97]) there is an exact sequence of Zariski sheaves

0→Hq(µ⊗jn )→iη∗Hq
ét(C(X), µ⊗jn )→

⊕
x∈X(1)

ix∗H
q−1
ét (C(x), µ⊗(j−1)

n )→ . . . (10.6)

which is a flasque resolution of the sheaf Hq(µ⊗jn ). Here iη∗ is the map induced
by the natural map i : η→X, and similarly for ix∗. The maps in the exact
sequence are residue maps, as explained by Kato in [Kat86]. In particular, we
obtain

Hp
zar(X,Hq(µ⊗jn )) = 0, p > q.

Together with the spectral sequence (10.5) this gives an injective map

H1
zar(X,H2(µ⊗jn )) ↪→ H3

ét(X,µ
⊗j
n ). (10.7)

Now set q = 2 and j = 2. Taking global sections of the flasque resolution
(10.6) we obtain a complex

0 −→ H2
ét(C(X), µ⊗2

n ) −→
⊕

x∈X(1)

H1
ét(C(x), µn) −→

⊕
x∈X(2)

Z/n −→ 0. (10.8)

By the purity theorem for the Brauer group we have an exact sequence

0 −→ Br(X)[n] −→ Br(C(X))[n] −→
⊕

x∈X(1)

H1
ét(C(x),Z/n).

It shows that the cohomology group of (10.8) at H2
ét(C(X), µ⊗2

n ) is canonically
isomorphic to Br(X)[n] ⊗ µn. The cohomology group at the middle term is
H1

zar(X,H2(µ⊗jn )). Finally, the cohomology group at the right term is the co-
kernel of the map ⊕

x∈X(1)

C(x)∗/C(x)∗n −→
⊕

x∈X(2)

Z/n

induced by the divisor map on the normalisation of the closure of x in X. This
group is CH2(X)/n, the mod n quotient of the codimension 2 Chow group
CH2(X).

Let us specialise to the case when X = S is a smooth and projective ra-
tional surface. Since S is simply connected, we have H1

ét(S,Z/n) = 0. By
Poincaré duality this implies H3

ét(S,Z/n) = 0. Now the inclusion (10.7) gives
H1

zar(S,H2(µ⊗jn )) = 0. For any smooth, projective, integral variety over C the
Chow group of zero-cycles of degree zero is divisible, as one sees by reducing to
the case of curves. Hence the degree map CH2(S)→Z induces an isomorphism
CH2(S)/n−̃→Z/n.

Since S is a smooth and projective rational variety, we have Br(S) = 0 by
Corollary 5.2.6. The complex (10.8) then gives the exact sequence

0→Br(C(S))[n]⊗ µn→⊕x∈X(1) C(x)∗/C(x)∗n→⊕x∈X(2) Z/n→Z/n→0.

Twisting by µ
⊗(−1)
n and passing to the direct limit over all integers n gives the

exact sequence of the theorem. �
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Theorem 10.5.2 Let S be an integral surface over C. Any element of Br(C(S))[2]
is the class of a quaternion algebra.

Proof. Any element of order 2 in the Brauer group of a field of characteristic
not equal to 2 is the class of a tensor product of quaternion algebras. This is a
special case of Merkurjev’s theorem, itself a special case of the Merkurjev–Suslin
theorem. In the special case when the field is the field of rational functions on
a surface over C, this was proved earlier by S. Bloch.

The tensor product of two quaternion algebras over C(S) is similar to a
quaternion algebra. This follows from Albert’s criterion [GS17, Thm. 1.5.5]
and the fact that a quadratic form in at least 5 variables over C(S) has a
nontrivial zero (Tsen–Lang). �

Corollary 10.5.3 Let S be a smooth and projective rational surface over C.
Suppose that {γx} ∈ ⊕x∈S(1)H1(C(x),Z/2) has trivial image in ⊕y∈S(2)Z/2.
Then there exists a quaternion algebra α over C(S) whose class in Br(C(S))
has residue γx ∈ H1(C(x),Z/2) at each x ∈ S(1). The class of α in Br(C(S)) is
uniquely defined.

Proof. This follows from Theorems 10.5.1 and 10.5.2. �

Note that the above proof is far from constructive: it is not clear how to
find rational functions f and g in C(S)∗ such that α = (f, g) ∈ Br(C(S))[2].

Proposition 10.5.4 Let S be a smooth surface over C. Let π : X→S be a
proper morphism. If X is smooth and all the fibres of π are conics, then the
morphism π is flat and the ramification locus C ⊂ S is a curve with at most
ordinary quadratic singularities.

Proof. See [Bea77, Ch. I, Prop. 1.2]. �

We could not find the following general formula in the literature.

Theorem 10.5.5 Let S be a smooth and projective rational surface over C. Let
X be a smooth threefold equipped with a dominant morphism π : X→S whose
generic fibre is a smooth conic. Let α ∈ Br(C(S))[2] be the associated quaternion
algebra class. Assume that α 6= 0. Let C1, . . . , Cn be the integral curves in S
such that the residue of α at the generic point of Ci is non-zero:

0 6= ∂Ci(α) ∈ H1(C(Ci),Z/2) = C(Ci)
∗/C(Ci)

∗2.

Assume that each Ci is smooth and the ramification locus C = ∪ni=1Ci of α is
a curve with at most ordinary quadratic singularities. Consider the subgroup
H ⊂ (Z/2)n consisting of the elements (r1, . . . , rn) such that for i 6= j we have
ri = rj when there is a point p ∈ Ci ∩ Cj with the property that ∂p(∂Ci

(α)) =
∂p(∂Cj

(α)) ∈ Z/2 is non-zero. Then Br(X) is the quotient of H by the diagonal
element (1, . . . , 1) which is the image of α.
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Proof. The generic fibre Xη of π is a smooth conic over the function field
C(S). By a result going back to Witt, the natural map Br(C(S))→Br(Xη) is
surjective with kernel Z/2 spanned by α 6= 0 (Proposition 6.2.1). Pick any
β ∈ Br(X). The image of β in Br(Xη) is the image of some ρ ∈ Br(C(S)).
For x ∈ S(1) write γx = ∂x(α). Comparing the residues of ρ on S and on
X we see that for any x ∈ S(1) the residue of ρ in H1(C(x),Q/Z) lies in the
subgroup of H1(C(x),Z/2) generated by γx. From Theorem 10.5.1 we conclude
that ρ is of exponent 2, hence Br(X) is of exponent 2. Moreover, the injective
image of Br(X) in Br(C(X)) coincides with the image of a certain subgroup
of Br(C(S))[2] under the natural map Br(C(S))[2]→Br(C(X))[2] (whose kernel
Z/2 is generated by α).

Let us prove that this subgroup consists of the classes ρ ∈ Br(C(S))[2]
unramified outside the Ci’s and with the property that

(∂C1
(ρ), . . . , ∂Cn

(ρ)) = (r1γ1, . . . , rnγn) ∈
n⊕
i=1

H1(C(Ci),Z/2)

is in the kernel of the map

n⊕
i=1

H1(C(Ci),Z/2)→⊕y∈S(2) Z/2.

Indeed, let v be a discrete, rank one valuation on the function field C(X) of X.
Let Fv be its residue field, which contains C. Since π is proper, the valuation v
centered at a point M of S. If M does not lie on one of the Ci’s, then clearly
π∗(ρ) is unramified at v. If M is the generic point of one of the Ci’s, then the
residue of ρ at v is a multiple of the residue of α at v, hence is zero since α = 0
in Br(C(X)).

Assume M is a closed point which lies on exactly one Ci. The residue γi can
be represented by the class of a rational function which is invertible at M . One
may lift this function to a rational function h on S invertible at M . If u is a
local equation for Ci ⊂ S at M , the difference α− (h, u) is in the Brauer group
of the local ring of S at M , because its residues on the curves passing through
M vanish. Thus the image of (h, u) in Br(C(X)) is unramified at v. Similarly,
the difference ρ − ri(h, u) is in the Brauer group of the local ring of S at M .
Hence the image of ρ in Br(C(X)) is unramified at v.

Let us now consider the case when M lies at the intersection of two curves
C1 and C2.

Suppose first that ∂M (∂C1
(α)) = ∂M (∂C2

(α)) = 0 ∈ Z/2. Let u, resp. v, be
a local equation for C1 ⊂ S, resp. C2 ⊂ S at M . One may find rational functions
h1 and h2 invertible at M with the property that ρ− r1(h1, u)− r2(h2, v) is in
the Brauer group of the local ring of S at M . The residue of ρC(X) at v is then
the class of a product of powers of h1(M) and h2(M) in F ∗v /F

∗2
v , and that is 1,

since h1(M) and h2(M) are in C∗.
Suppose now that ∂M (∂C1

(α)) = ∂M (∂C2
(α)) = 1 ∈ Z/2. By assumption,

we then have r1 = r2. Thus locally around M , the residue of ρ is a multiple
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of the residue of α, hence there exists an integer s (equal to 0 or 1) such that
ρ − sα is in the Brauer group of the local ring of S at M . Since α vanishes in
Br(C(X)), we conclude that ρC(X) is unramified at v. �.

Remark 10.5.6 By a definition common in the literature on complex algebraic
geometry, a “standard conic bundle” over a surface S is a proper flat morphism
f : X→S of smooth projective varieties such that each fibre is a conic, the
ramification locus is a simple normal crossings divisor with smooth components,
and the fibration is relatively minimal. Assume that X→S is a standard conic
bundle – this is a more stringent assumption than the hypothesis of Theorem
10.5.5. Then by [Bea77, Lemme 1.5.2] in each connected component of the
ramification divisor the integers ri are equal. Theorem 10.5.5 then gives the
formula Br(X) ' (Z/2)c−1, where c is the number of connected components of
C. This result is mentioned by V.A. Iskovskikh [Isk97, Teorema, p. 206]; it can
also be extracted from [Zag77].

10.6 Variations on the Artin–Mumford example

Now let us take S = P2
C. Let E1 and E2 be two transversal smooth cubic curves

E1 and E2. Let γi ∈ H1
ét(Ei,Z/2), γi 6= 0, for i = 1, 2. By Corollary 10.5.3

there exists a unique quaternion algebra class α ∈ Br(C(P2))[2] unramified
outside of E1 ∪ E2, with residues γ1 on E1 and γi on E2. Let X be a smooth
threefold with a morphism X→P2

C whose generic fibre is a conic corresponding
to α ∈ Br(C(P2)). By Proposition 6.2.1 (Witt’s theorem) the kernel of the map
Br(C(P2))→Br(C(X)) is Z/2 generated by α. Theorem 10.5.5 gives Br(X) =
Z/2.

Artin and Mumford [AM72] provided a concrete example of such a situa-
tion and proved that Br(X) 6= 0 by computing H3(X(C),Z)tors on an explicit
smooth projective model. In [AM72, §2] they construct a singular variety V
which is a double cover of P3

C ramified along a special quartic surface with 10
nodes. They compute an explicit resolution of singularities Ṽ→V and determine
H3(Ṽ ,Z)tors. In [AM72, §3, §4], they study general conic bundles over rational
complex surfaces. At the end of §4, they come back to the variety V of §2 and
show that it is birational to a conic bundle, and look at it from this point of
view. Here are some details (cf. [CTO89]).

Let C ⊂ P2
C be a smooth conic with a homogeneous quadratic equation

q(x, y, t) = 0. Fix three distinct points P1, Q1, R1 on C and consider the divisor
2P1 + 2Q1 + 2R1 on C. The restriction map H0(P2

C,O(3))→H0(C,OC(3)) is
surjective, since H1(P2

C,O(j)) = 0 for any j ∈ Z. Thus there exists a cubic
curve E1 which meets C in the divisor 2P1 + 2Q1 + 2R1, that is, a cubic curve
through P1, Q1, R1, which is tangent to C at these points and whose equation
is not a multiple of q. Repeat this construction for a disjoint triple of points
P2, Q2, R2 on C to obtain a cubic curve E2. A Bertini argument shows that one
can choose E1 and E2 which are smooth and intersect each other transversally
outside of C. Let h1 = 0 and h2 = 0 be the equations of these cubic curves.
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Let l = 0 be a general tangent line to C. Then it is not hard to check (see
[CTO89]) that the quaternion algebra (q/l2, h1h2/l

6) defines a conic bundle
over P2

C unramified outside E1 ∪ E2 such that the residue at Ei is a non-zero
element γi ∈ H1(Ei,Z/2), for i = 1, 2. Similarly, the unique non-trivial residue
of the quaternion algebra (q/l2, h1/l

3) is γ1 ∈ H1(E1,Z/2); thus this algebra
defines a non-trivial element in Br(C(X)) which is actually in Br(X).

One advantage of this concrete representation is that it leads to a proof of the
unirationality of this particular X. Indeed, the conic bundle acquires a rational
section after the base change from P2

C to the double cover z2 = q(x, y, t). This
equation defines a smooth quadric in P3

C which is a rational variety.
In Section 11.1.2 we shall use this very special example for a deformation

argument.
Similar examples are given in [CTO89]. The ramification locus in [CTO89,

Example 2.4] is a union of eight lines.

Exercise 10.6.1 Let X→P2
C be a smooth conic bundle as in Theorem 10.5.5.

If the ramification locus C = ∪ni=1Ci is a union of n ≤ 5 lines without triple
intersections, then Br(X) = 0.

In fact, one can drop the assumption about triple intersections. For this,
blow up P2

C in the points where more than two lines meet. We obtain a surface
S, where the reduced total transform of the 5 lines (including the exceptional
curves produced in the process) is a divisor C with normal crossings. We also
obtain a smooth conic bundle X ′→S unramified outside C. Check that for any
initial configuration of 5 lines, we have Br(X) = 0.

Exercise 10.6.2 Construct smooth conic bundles X→P2
C with Br(X) 6= 0 ram-

ified exactly in the union of six lines.
It is enough to take six lines in general position and partition them into two

triples, say L1, L2, L3 and M1,M2,M3. Choose γL1 ∈ C(L1)∗/C(L1)∗2 to be
the class of a rational function whose divisor on L1 is (L1∩L2)− (L1∩L3), and
similarly for the other lines. One immediately checks that the assumptions of
Corollary 10.5.3 are fulfilled for the family γx with γx = γL1

at x = L1, similarly
at the other 5 lines, and 1 ∈ C(x)∗/C(x)∗2 at other codimension 1 points.
There thus exists a quaternion algebra (a, b) over C(S) which has exactly these
residues. One may thus produce a conic bundle X→S = P2

C with ramification
locus the union of these 6 lines in P2

C.
Choosing six lines tangent to a given smooth conic, one produces a degen-

erate version of the Artin–Mumford example.

Exercise 10.6.3 Let (u, v) be the coordinates in A2
C. Let X→A2

C be the conic
bundle given in A2

C × P2
C by the equation

S2v(v2 − 1)− T 2u(u2 − 1) + uv(u2 − v2)W 2 = 0.

Let Y→A2
C be the conic bundle given in A2

C × P2
C by the equation

S2 − uT 2 − vR2 = 0.
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By computing residues on A2
C show that X and Y are birationally equivalent

over A2
C. Hint. Use the fact that if two quaternions algebras have the same

class in the Brauer group, then the associated conics are isomorphic. Conclude
that X is rational over C. For background and a detailed proof, see [CT15].

Exercise 10.6.4 A construction of a unirational but not stably rational vari-
ety fibred in Severi–Brauer varieties over P2

C. In [CTO89, Exemple 2.4] one
constructs a non-trivial unramified Brauer class in the function field of a conic
bundle over P2

C without actually producing a nice explicit model. This example
can be generalised.

Let p be a prime. Let L1, respectively L2, be the line in P2
C given by the

affine equation u = 0, respectively by v = 0. Choose p distinct points on each
of these affine lines. Join each of these p points on L1 to all the p points on L2.
Let g1 be an equation of the union of these p2 lines. Do this construction again
using disjoint sets of points. Let g2 be an equation of the union of the second
family of p2 lines. Let ζ be a primitive p-th root of unity. Let X→P2

C be a proper
morphism such that X is smooth and the generic fibre Xη is the Severi–Brauer
variety over C(P2) = C(u, v) attached to the cyclic algebra (u/v, g1g2)ζ .

By Amitsur’s theorem ([GS17, Thm. 5.4.1], see also Section 6.1), the kernel
of the restriction map Br(C(P2))→Br(C(X)) is the Z/p-module generated by
the class (u/v, g1g2)ζ . Comparing the residues of α = (u/v, g1g2)ζ and β =
(u/v, g1)ζ at codimension 1 points of P2

C, one sees that β is not a multiple of α,
hence its image βC(X) ∈ Br(C(X)) does not vanish. One then shows that the
residue of βC(X) is trivial at any point x of codimension 1 of X by studying the
behaviour of β at the point y ∈ P2 which is the image of x. (Note that y can
have dimension 0, 1 or 2.) Thus Br(X) 6= 0. This implies that X is not stably
rational.

Let K = C(u, v) = C(P2). Let L = K( p
√
g1g2). By Proposition 6.1.7 the

generic fibre Xη is birationally equivalent to the affine K-variety with equation

u/v = NL/K(Ξ). Let E = K( p
√
u/v). We have E = C(u, z), where zp = u/v, so

E is a purely transcendental extension of C. The variety XE = Xη×KE is then
birationally equivalent to the affine variety over E with equation 1 = NEL/E(Ξ).
As is well-known (Hilbert’s theorem 90 for a cyclic extension, see the proof of
Proposition 6.1.6), the latter variety is an E-torus isomorphic to the cokernel
of the diagonal embedding Gm,E→REL/E(Gm). But this is an open set of a
projective space over E, hence the function field of XE is purely transcendental
over E, hence over C. Thus the function field C(X) is contained in a purely
transcendental extension of C, hence X is unirational.

For some recent computations of unramified Brauer groups of conic bundles
over threefolds, see [ABBP].
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Chapter 11

Rationality in a family

The specialisation method allows one to prove that a smooth and projective
complex variety is not stably rational if it can be deformed into a singular variety
whose desingularisation has a non-zero Brauer group. The original idea is due
to C. Voisin who stated it in terms of the decomposition of the diagonal. In
this chapter we present this method in the set-up proposed by Colliot-Thélène
and Pirutka [CTP16] and later simplified by S. Schreieder. In this form the
method can be applied under very mild additional assumptions. As an example
of application, we construct a conic bundle over P2

C ramified in a smooth sextic
curve which is not stably rational.

In Section 11.2 we consider smooth projective fourfolds X with a dominant
morphism X→P2

C such that the generic fibre is a quadric. Using a calculation of
Br(X) in this case, we present the striking recent example of Hassett, Pirutka
and Tschinkel of an algebraic family of smooth projective fourfolds some of
whose elements are rational, whereas others not even stably rational.

Most of the material in this chapter follows the exposition in [CT18].

11.1 Specialisation method

11.1.1 Main theorem

The following theorem is S. Schreieder’s improvement [Sch18, Prop. 26] of the
specialisation method. The assumptions in [Sch18, Prop. 26] are weaker than
in this section. The same proof also works in the more general setting of higher
unramified cohomology with torsion coefficients in place of the Brauer group.

Schreieder’s proof is cast in the geometric language of the decomposition of
the diagonal. We give here a more “field-theoretic” proof. It is known that both
points of view are equivalent, cf. [ACTP17, CTP16].

Theorem 11.1.1 Let R be a discrete valuation ring with field of fractions K
and algebraically closed residue field κ of characteristic 0. Let X be an integral

233
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projective scheme over R, whose generic fibre X = XK is smooth and geomet-
rically integral and whose closed fibre Z/κ is geometrically integral. Assume
that

(i) there exist a non-empty open set U ⊂ Z and a projective, birational
desingularisation f : Z̃→Z such that V := f−1(U)→U is an isomorphism and
such that Z̃ r V is a union ∪iYi of smooth irreducible divisors of Z̃;

(ii) XK is stably rational, where K is an algebraic closure of K.

Then the restriction map Br(Z̃)→ ⊕i Br(κ(Yi)) is injective. In particular, if
each Br(Yi) = 0, then Br(Z̃) = 0.

Proof. We can go over to the completion of R and thus assume that R = κ[[t]]
and K = κ((t)). Since XK is stably rational, there exists a finite extension
K1 = κ((t1/n)) of K such that XK1

is K1-stably rational. We replace X/R by
X ×R κ[[t1/n]]. This does not affect the closed fibre.

Now X/R is an integral projective scheme whose generic fibre X/K is stably
rational over K and whose closed fibre Z/κ satisfies (i). Since X is stably
rational over K, for any field extension K ⊂ F the degree map CH0(XF )→Z is
an isomorphism.

Let L = κ(Z). We have a commutative diagram of exact sequences⊕
i CH0(Yi,L) → CH0(Z̃L) → CH0(VL) → 0

↓ ↓ ∼=
CH0(ZL) → CH0(UL) → 0.

Let us explain how this diagram is constructed. For each i, the closed em-
bedding ρi : Yi→Z̃ induces a map ρi∗ : CH0(Yi,L)→CH0(Z̃L). The top ex-
act sequence is the classical localisation sequence for the Chow group. The
map f∗ : CH0(Z̃L)→CH0(ZL) is induced by the proper map f : Z̃→Z. The
map CH0(VL)−̃→CH0(UL) is the isomorphism induced by the isomorphism1

f : V −̃→U . Finally, CH0(ZL)→CH0(UL) is the restriction map.

Let ξ be the generic point of Z̃ and let η be the generic point of Z. Choose
m ∈ V (κ) and let n = f(m) ∈ U(κ). Thus η and nL are smooth L-points of ZL.

Let S = L[[t]] and let F be the field of fractions of S. The extension R ⊂ S
of complete discrete valuation rings is compatible with the extension κ ⊂ L of
their residue fields. By Hensel’s lemma, the points η and nL lift to F -points
of the generic fibre XF of XS/S. Since the degree map CH0(XF )→Z is an
isomorphism, these two points are rationally equivalent in XF . By Fulton’s
specialisation theorem for the Chow group of a proper scheme over a discrete
valuation ring [Ful98, Prop. 20.3], we obtain η = nL ∈ CH0(ZL). Then from
the above diagram we conclude that

ξ = mL +
∑
i

ρi∗(zi) ∈ CH0(Z̃L),

1Instead of assuming that f−1(U)→U is an isomorphism, it would be enough, as in [Sch19],
to assume that this morphism is a universal CH0-isomorphism.
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where zi ∈ CH0(Yi,L). There is a natural bilinear pairing (5.2)

CH0(Z̃L)× Br(Z̃) −→ Br(L).

Suppose that α ∈ Br(Z̃) goes to zero in Br(κ(Yi)), for each i. Since Yi is smooth
and integral, already the image of α in Br(Yi) is zero. The value α(mL) ∈ Br(L)
is just the image of α(m) ∈ Br(κ) = 0. Now the above equality implies α(ξ) =
0 ∈ Br(L). But since Z̃ is smooth and integral, the pairing of Br(Z̃) with the
generic point ξ ∈ Z̃L(L) induces the embedding Br(Z̃) ↪→ Br(κ(Z)) = Br(L).
Thus α = 0 ∈ Br(Z̃). �

Remark 11.1.2 (a) One may replace condition (ii) in the above theorem by the
weaker hypothesis that XK is universally CH0-trivial. The same proof works.

(b) In the proof of the theorem, under the assumption of (ii), one can replace
the use of specialisation of the Chow group by specialisation of R-equivalence
on rational points. See [CTP16] and [CT18].

11.1.2 Irrational conic bundles with smooth ramification

The Artin–Mumford example was used by Voisin [Voi15] to prove that very
general double coverings of P3

C ramified in a smooth quartic hypersurface are
not stably rational. It was used by Colliot-Thélène and Pirutka [CTP16] to
prove that very general quartic hypersurfaces in P4

C are not stably rational. The
specialisation method was applied in [BB18] and [HKT16] to prove that for
d ≥ 6 very general conic bundles over P2

C ramified in a smooth curve of degree
d are not stably rational. Let us show how the Artin–Mumford example can be
used to establish the following special case of this result.

Proposition 11.1.3 There exists a standard conic bundle X→P2
C ramified in

a smooth curve of degree 6 such that X is not stably rational.

Proof. In Deligne’s Bourbaki talk [Del71] we find the following presentation of
the Artin–Mumford example. As in Section 10.6 we are given two transversal
smooth cubic curves with homogeneous equations h1 = 0 and h2 = 0 and
a smooth conic q = 0 which is tangent to the each cubic hi = 0 in three
points Pi, Qi, Ri, where i = 1, 2. Moreover, the points P1, Q1, R1, P2, Q2, R2 are
distinct and disjoint from the intersection points of the two cubics. Let g = 0 be
a cubic curve that meets the conic in the divisor P1 +Q1 +R1 +P2 +Q2 +R2.
Multiplying g by a non-zero number we arrange that the curve h1h2 − g2 = 0
contains the conic as an irreducible component, so that

h1h2 = g2 + qc

for some homogeneous polynomial c of degree 4. Consider the vector bundle
V = O(−2)⊕O(−1)⊕O on P2

C and the quadratic form Φ : V→O given by

Φ(x, y, z) = cx2 + 2gxy − qy2 − z2.
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The vanishing of Φ defines a flat conic bundle X ⊂ P(V∗) over P2
C whose total

space has nine singular points, which are ordinary quadratic singularities. Re-
solving the singularities gives a birational map X ′→X. There are many ways
to prove that Br(X ′) 6= 0, see Section 10.6.

One then considers the family of all quadratic forms Φ : V→O given by

Φ(x, y, z) = Cx2 + 2Gxy −Qy2 − z2,

where C,G,Q are homogeneous forms of respective degrees 4, 3, 2. We claim
that for a very general triple of such forms, the vanishing of the discriminant
G2 +QC = 0 defines a smooth curve in P2

C. (Then the total space X is smooth.)
More precisely, suppose that C = 0, G = 0, Q = 0 are smooth curves such that
the closed set C = G = Q = 0 is empty. We claim that for almost all λ ∈ C,
the curve G2 + λQC = 0 is smooth. By one of the Bertini theorems, since G2

and QC have no common factor, it is enough to show that for λ 6= 0, the curve
G2 + λQC = 0 has no singular point with G2 = 0 and QC = 0. Any such
point would satisfy 2GG′x + λQ′xC + λQC ′x = 0 and the similar equations with
respect to the variables y and z. If the point lies on G = C = 0 it then satisfies
QC ′x = 0, QC ′y = 0, QC ′z = 0, hence Q = 0 by the non-singularity of the curve
C = 0. However, the set G = C = Q = 0 is empty, so we have a contradiction.
A similar argument shows that the point cannot lie on G = Q = 0.

Voisin’s deformation argument in its original form [Voi15] can now be ap-
plied: by specialising to the Artin–Mumford example in the version recalled
above, we see that the very general conic bundle in the family defined by C,G,Q
is not stably rational. Alternatively, one can use [CTP16, Thm. 1.17] or Theo-
rem 11.1.1 together with [CTP16, §2] to establish this result. �

11.2 Quadric bundles over the complex plane

Hassett, Pirutka and Tschinkel [HPT18] used the specialisation method to give
the first examples of families X→B of smooth, projective, integral complex
varieties with some fibres rational and some other fibres not even stably rational.
A simplified version of the specialisation method, as proposed by Schreieder
[Sch18, Sch], gives a streamlined proof of the main result of [HPT18] which
avoids explicit resolution of singularities. This simplified specialisation method
was described in Section 11.1. In this section, following [CT18], we give examples
from [HPT18] in their simplest form.

11.2.1 A special quadric bundle

The references for this section are [HPT18], [Pir18], [CT18].

Let x, y, z be homogeneous coordinates in P2
k, and U, V,W, T be homogeneous

coordinates in P3
k. Let

F (x, y, z) = x2 + y2 + z2 − 2(xy + yz + zx).
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Let X ⊂ P3
C × P2

C be the hypersurface given by the bihomogeneous equation

yzU2 + zxV 2 + xyW 2 + F (x, y, z)T 2 = 0.

Let p : X→P2
C be the morphism given by the projection P3

C×P2
C→P2

C. The fibres
of p : X→P2

C are 2-dimensional quadrics; in particular, p is a flat morphism.
The morphism p is smooth over the complement to the plane octic curve defined
by the vanishing of the determinant

x2y2z2F (x, y, z) = 0.

Note that this equation describes the union of the smooth conic F = 0 and
three tangents to this conic taken with multiplicity 2. Note that X has singular
points over the singular points of the curve xyzF (x, y, z) = 0.

Part (a) of the following proposition is a result of Hassett, Pirutka, and
Tschinkel [HPT18, Prop. 11]. Part (b) is a special case of the general statement
[Sch18, Prop. 7], the proof of which builds upon results of Pirutka ([Pir18, Thm.
3.17], [Sch18, Thm. 4]). As we shall now see, the proof of (a) can be modified
to simultaneously give a proof of (b).

Proposition 11.2.1 Let X̃→X be a projective birational desingularisation of
X. Let

α = (x/z, y/z) ∈ Br(C(P2))

and let β be the image of α under the map p∗ : Br(C(P2))→Br(C(X)).
(a) We have β ∈ Br(X̃) and β 6= 0.
(b) For each irreducible divisor Y ⊂ X̃ the restriction of β to Br(C(Y )) is 0.

Proof. The equation of X is symmetric in (x, y, z). In view of this symmetry, it
is enough to consider the open set z = 1 with affine coordinates x and y. In the
rest of the proof we consider only this open set. Then α = (x, y) has non-trivial
residues precisely at x = 0 and y = 0. In particular, α 6= 0.

Let K = C(P2) = C(x, y), let L = C(X), and let Xη/K be the generic fibre
of p : X→P2

C. The discriminant of the quadratic form 〈y, x, xy, F (x, y, 1)〉 is not
a square in K, thus the map Br(K)→Br(Xη) is an isomorphism by Proposition
6.2.3 (c), so that the composition Br(K)−̃→Br(Xη) ↪→ Br(L) is injective. Thus
β = p∗(α) ∈ Br(L) is non-zero.

Let v be a discrete valuation L∗→Z, let S be the valuation ring of v and
let κv be the residue field. If K ⊂ S, then v(x) = v(y) = 0, hence (x, y) is
unramified. If K 6⊂ S, then S ∩ K = R is a discrete valuation ring with field
of fractions K. The image of the closed point of Spec(R) in P2

C is then either a
point m of codimension 1 or a (complex) closed point m of P2

C.
Consider the first case. If the codimension 1 point m does not belong to

xy = 0, then α = (x, y) ∈ Br(K) is unramified at m, hence β ∈ Br(L) is
unramified at v. Moreover, the evaluation of β in Br(κv) is just the image
under Br(C(m))→Br(κv) of the evaluation of α in Br(C(m)). By Tsen’s theorem
Br(C(m)) = 0, hence the image of β in Br(κv) is zero.
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Suppose that m is a generic point of a component of xy = 0, say m is the
generic point of x = 0. In L = C(X) we have an identity

yU2 + xV 2 + xyW 2 + F (x, y, 1) = 0

with yU2 + xV 2 6= 0. In the completion of K at the generic point of x = 0,
F (x, y, 1) is a square, because F (x, y, 1) modulo x is equal to (y − 1)2, a non-
zero square. Thus, in the completion Lv, the quadratic form 〈y, x, xy, 1〉 has a
non-trivial zero, hence (x, y) goes to zero in Br(Lv). Hence β is unramified at
v, thus β ∈ Br(S) and the image of β in Br(κv) is zero.

Now consider the second case, i.e. m is a closed point of P2
C. There is a local

homomorphism of local rings OP2
C,m
→S which induces an embedding C→κv of

residue fields. If x(m) 6= 0, then x becomes a non-zero square in the residue
field C hence in κv. This implies that the residue of β = (x, y) ∈ Br(L) at v is
trivial. The analogous argument holds if y(m) 6= 0. It remains to discuss the
case x(m) = y(m) = 0. We have F (0, 0, 1) = 1 ∈ C∗. Thus F (x, y, 1) reduces
to 1 in κv, hence is a square in the completion Lv. As above, in the completion
Lv, the quadratic form 〈y, x, xy, 1〉 has a non-trivial zero, hence (x, y) goes to
zero in Br(Lv). Hence β is unramified at v, thus β ∈ Br(S) and the image of β
in Br(κv) is zero. �

As in the reinterpretation [CTO89] of the Artin–Mumford examples, the
intuitive idea behind the above result is that the quadric bundle X→P2

C is ram-
ified along xyzF (x, y, z) = 0 and the ramification of the symbol (x/z, y/z),
which is “contained” in the ramification of the quadric bundle X→P2

C, disap-
pears over smooth projective models of X: ramification eats up ramification
(Abhyankar’s lemma). Here one also uses the fact that the smooth conic de-
fined by F (x, y, z) = 0 is tangent to each of the lines x = 0, y = 0, z = 0, and
does not vanish at the intersection point of any two of these three lines.

11.2.2 Rationality is not constant in a family

In this section we complete the simplified proof of the theorem of Hassett,
Pirutka and Tschinkel [HPT18].

Theorem 11.2.2 There exist a smooth projective family of complex fourfolds
X→T , where T is an open subset of the affine line A1

C, and points m,n ∈ T (C)
such that the fibre Xn is rational whereas the fibre Xm is not stably rational.

Proof. Consider the universal family of quadric bundles over P2
C given in P3

C×P2
C

by a bihomogeneous form of bidegree (2, 2). This is given by a symmetric (4×4)-
matrix whose entries ai,j(x, y, z) are homogeneous quadratic forms in x, y, z. If
the determinant of the matrix is non-zero, it is a homogeneous polynomial of
degree 8. The parameter space is B = P59

C (the corresponding vector space is
given by the coefficients of 10 quadratic forms in three variables). We have the
map X→B whose fibres Xm are quadric bundles Xm→P2

C, where Xm ⊂ P3
C×P2

C

is the zero set of a non-zero complex bihomogeneous form of bidegree (2, 2).
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Using Bertini’s theorem, one shows that there exists a non-empty open set
B0 ⊂ B such that the fibres of X→B over the points m ∈ B0 are flat quadric
bundles Xm→P2

C which are smooth as complex varieties.
Using Bertini’s theorem, one also shows that there exist points m ∈ B0 with

the property that the corresponding quadric bundle has a1,1 = 0. This implies
that the morphism Xm→P2

C has a rational section given by the point (1, 0, 0, 0),
hence the generic fibre of Xm→P2

C is rational over C(P2), so that the complex
variety Xm is rational over C. [Warning. This Bertini argument uses the fact
that we consider families of quadric surfaces over P2

C. It does not work for
families of conics over P2

C.]
These Bertini arguments are briefly described in [Sch19, Lemma 20, Thm.

47] and are tacitly used in [Sch18, p. 3].
The special example in Section 11.2.1 defines a point P0 ∈ B(C). Let

Z = XP0
. Using Proposition 11.2.1, one finds a projective birational desin-

gularisation f : Z̃→Z and a non-empty open set U ⊂ Z such that

• the induced map V := f−1(U)→U is an isomorphism;

• Z̃ r V is a union ∪iYi of smooth irreducible divisors of Z̃;

• there is a non-trivial element in Br(Z̃) which vanishes on each Yi.

Theorem 11.1.1 then implies that the generic fibre of X→B is not geomet-
rically stably rational. There are various ways to conclude from this that there
are many points m ∈ B0(C) such that the fibre Xm is not stably rational.

Take one such point m ∈ B0(C) and a point n ∈ B0(C) such that Xn is
rational. Over an open set of the line joining m and n we get a projective
family of smooth varieties with one fibre rational and another fibre not stably
rational. �

The proof by Hassett, Pirutka and Tschinkel [HPT18] uses an explicit desin-
gularisation of the variety Z in Section 11.2.1, with a description of the ex-
ceptional divisors appearing in the process. Schreieder’s improvement of the
specialisation method enables one to bypass this explicit desingularisation. Pa-
pers [HPT18] and [Sch18] contain many other results about families of quadric
surfaces over the projective plane. For further developments the reader is re-
ferred to [ABBP], which gives a different approach to [HPT18] as well as some
generalisations, to [ABP] and [Sch19, Sch].

Let us summarise the current state of knowledge about the behaviour of
rationality and stable rationality in the fibres of an algebraic family of proper
and smooth varieties. Let T be a smooth connected variety over C and let X→T
be a proper and smooth morphism with connected, projective fibres of relative
dimension d. It has been known for a while that the set of points t such that Xt

is rational, respectively, stably rational, is a countable union of locally closed
subsets of T , see [dFF13, Prop. 2.3].

• For d ≤ 2, stable rationality is equivalent to rationality, and either all
fibres are rational or no fibre is rational.



240 CHAPTER 11. RATIONALITY IN A FAMILY

• For arbitrary d stable rationality specialises. Thus the set of points t such
that Xt is stably rational, is a countable union of closed subsets of T
(Nicaise–Shinder [NSh]).

• For arbitrary d rationality specialises. Thus the set of points t such that
Xt is rational, is a countable union of closed subsets of T (Kontsevich–
Tschinkel [KTsc]).

• By the examples discussed in this section, for d ≥ 4, neither rationality nor
stable rationality extends by generisation (Hassett, Pirutka and Tschinkel
[HPT18]).

• For d = 3 stable rationality does not extend by generisation (Hassett,
Kresch and Tschinkel [HKT]).

• For d = 3 it is not known if rationality extends by generisation.

Recall that a property P of varieties over algebraically closed fields, which is
stable under extensions of such fields, extends by generisation if for any smooth
projective scheme X over Spec(C[[t]]), if P holds for the closed fibre, then P
holds for the geometric generic fibre, that is, the fibre over an algebraic closure
of C((t)).



Chapter 12

The Brauer–Manin set and
the formal lemma

This is the first of three chapters which deal with applications of the Brauer
group to the arithmetic of varieties over a number field k. Section 12.1 is a collec-
tion of preliminary results from algebraic number theory and class field theory.
In Section 12.2 we discuss the Hasse principle, weak and strong approximation.
Section 12.3 contains the definition and basic properties of the Brauer–Manin
obstruction, which is the fundamental reason why the knowledge of the Brauer
group is necessary for the study of local-to-global principles for rational points.
When the cokernel of the natural map Br(k)→Br(X) is finite, the Brauer–Manin
obstruction on X involves only finitely many primes; the set of these primes is
studied in Section 12.4. Explicit examples of calculation of the Brauer–Manin
obstruction to the Hasse principle and weak approximation are presented in
Section 12.5. In Section 12.6 we state and prove Harari’s formal lemma, which
is a fundamental tool in studying the variation of the Brauer–Manin obstruction
in a family of varieties.

12.1 Number fields

Let k be a number field. We write Ω for the set of places of k. The completion
of k at a place v is denoted by kv. For a finite (=non-archimedean) place v we
will also use the notation v to denote the associated normalised valuation.

12.1.1 Primes and approximation

Dirichlet’s theorem on primes in an arithmetic progression can be extended to
number fields in the following form.

Theorem 12.1.1 (Dirichlet, Hasse) Let S ⊂ Ω be a finite set of finite places
and let λv ∈ kv for each v ∈ S. For any ε > 0 there exist λ ∈ k∗ and a finite
place v0 /∈ S of absolute degree 1 such that

241
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(i) |λ− λv|v < ε for each place v ∈ S;
(ii) λ > 0 in each real completion of k;
(iii) λ is a unit at any place v /∈ S ∪ {v0} whereas v0(λ) = 1.

Here v0 may not be chosen at the outset.
The next statement (which is easy for k = Q) enables one to approximate

also at the archimedean places, if one accepts to lose control over an infinite set
of places of k that can be chosen at the outset. Typically, this will be the set of
places split in a given finite extension of k.

Theorem 12.1.2 (Dirichlet, Hasse, Waldschmidt, Sansuc) Let S ⊂ Ω be
a finite set of places and let λv ∈ kv for each v ∈ S. Let V be an infinite set
of places of k. For any ε > 0 there exist λ ∈ k∗ and a finite place v0 /∈ S of
absolute degree 1 such that

(i) |λ− λv|v < ε for each v ∈ S,
(ii) λ is a unit at each finite place v /∈ S ∪ {v0} ∪ V and v0(λ) = 1.

Proof. See [San82a]. �

Here again v0 may not be chosen at the outset.
We recall a corollary of the celebrated Chebotarev density theorem.

Theorem 12.1.3 (Chebotarev) Let K/k be a finite extension of number fields.
There exists an infinite set of places v of k which are completely split in K, i.e.

such that the kv-algebra K ⊗k kv is isomorphic to k
[K:k]
v .

This special case of Chebotarev’s theorem has an elementary proof (reference
given in [HW15, Lemma 5.2]). Theorem 12.1.2 can be compared to the following
proposition [HW15, Lemma 5.2].

Proposition 12.1.4 Let K/k be an extension of number fields. Let S be a
finite set of places of k. Let ξv ∈ NK/k(K ⊗k k∗v) ⊂ k∗v for each v ∈ S. Then
there exists ξ ∈ k∗ arbitrarily close to ξv for v ∈ S and such that ξ is a unit
outside S except possibly at the places above which K has a place of degree 1.
In addition, if v0 is a place of k not in S, over which K possesses a place of
degree 1, one can ensure that ξ is integral outside S ∪ {v0}.

Chebotarev’s theorem is used to prove the existence of such a place v0, but
the proof otherwise only uses the strong approximation theorem.

Here is another corollary of the Chebotarev density theorem.

Theorem 12.1.5 Let K/k be a non-trivial finite extension of number fields.
There exist infinitely many places v of k such that the kv-algebra K⊗k kv has no
direct summand isomorphic to kv. In particular, given an irreducible polynomial
P (t) of degree at least 2, there exist infinitely many places v such that P (t) has
no root in kv.

It is well known that the second statement does not hold for reducible poly-
nomials. A classical example is P (t) = (t2 − 13)(t2 − 17)(t2 − 221) ∈ Q[t].

Here is another variation on the same theme [Har94, Prop. 2.2.1].
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Theorem 12.1.6 Let L/K/k be finite extensions of number fields, with L/K
cyclic. There exist infinitely many places w of K of degree 1 over k which are
inert in the extension L/K.

12.1.2 Class field theory and the Brauer group

There is a vast literature on class field theory. We refer here to Harari’s recent
book [Har17] both for proofs and for a list of references to classical literature.
The Witt residue was introduced in Definition 1.4.9.

Definition 12.1.7 For each place v of k define

invv : Br(kv) −→ Q/Z

as follows. If v is finite, let invv be the Witt residue Br(kv)→H1(Fv,Q/Z) =
Hom(Gal(Fv/Fv),Q/Z) followed by the evaluation at the Frobenius element. If
v is real, define invv by Br(kv) = Z/2 ↪→ Q/Z. For a complex place v set
invv = 0.

The definition of Br(kv)→Q/Z given here is the one used in [SerCL, Ch.
XIII, §2], [ANT67, Ch. VI], [NSW, Ch. VII, Cor. (7.1.4)], and [Har17, §8.2].

Theorem 12.1.8 (i) For each finite place v of k, the map invv is an isomor-
phism. For each real place v, the map invv is the injection Br(kv) = Z/2 ↪→
Q/Z. For each complex place v we have Br(kv) = 0.

(ii) The diagonal map Br(k)→
∏
v∈Ω Br(kv) factors through the direct sum

⊕v∈ΩBr(kv).

(iii) The maps invv fit into an exact sequence

0 −→ Br(k) −→
⊕
v∈Ω

Br(kv) −→ Q/Z −→ 0, (12.1)

where the map to Q/Z is the sum of invv for all v ∈ Ω.

The fact that (12.1) is a complex is a generalisation of the Gauss quadratic
reciprocity law. Injectivity on the second arrow is a celebrated theorem of H.
Hasse, R. Brauer and E. Noether, generalising results of Legendre and Hilbert.

Theorem 12.1.9 Let K/k be an abelian extension of number fields, and let
G = Gal(K/k). For each place v ∈ Ω, let Gv ⊂ G be the decomposion group of
v. There is a well-defined isomorphism

jv : k∗v/NK/k((K ⊗k kv)∗)−̃→Gv

called the norm residue homomorphism, or the local Artin map [SerCL, Ch.
XIII, §4], [Har17, Ch. 9]. For a normalised valuation v of k unramified in K,
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this map sends an element c ∈ k∗ to Frobv(c)
v ∈ G (ibid.). These maps fit into

an exact sequence

k∗/NK/k(K∗) −→
⊕
v∈Ω

k∗v/NK/k((K ⊗k kv)∗) −→ G −→ 1. (12.2)

If K/k is cyclic, we have an exact sequence

1 −→ k∗/NK/k(K∗) −→
⊕
v∈Ω

k∗v/NK/k((K ⊗k kv)∗) −→ G −→ 1. (12.3)

Corollary 12.1.10 Let K/k be an abelian extension of number fields.
(a) If c ∈ k∗ is a local norm for K/k at all places of k except possibly one

place v0, then c is also a local norm at v0.
(b) (Hasse) If K/k is cyclic, and c ∈ k∗ is a local norm for K/k at all places

of k except possibly one place v0, then it is a global norm.

The above results are special cases of the following theorem.

Theorem 12.1.11 (Tate–Nakayama) Let T be an algebraic k-torus. Write
T̂ = Homk−gp(T,Gm,k) for the Galois lattice defined by the character group of
T . There is a natural exact sequence of abelian groups

H1(k, T )→
⊕
v∈Ω

H1(kv, T )→Hom(H1(k, T̂ ),Q/Z)→H2(k, T )→
⊕
v∈Ω

H2(kv, T )

(12.4)
and a perfect duality of finite abelian groups X1(k, T )×X2(k, T̂ )→Q/Z.

The map H1(kv, T )→Hom(H1(k, T̂ ),Q/Z) is induced by a perfect pairing
induced by the cup-product

H1(kv, T )×H1(kv, T̂ ) −→ H2(kv,Gm) = Br(kv) ↪→ Q/Z.

We refer the reader to the following references: [Tate66], [SerCG, Ch. II,
§5.8, Thm. 6] (local duality), [NSW, Ch. VII, VIII], [Mil86, Ch. I, Thm. 4.20].

Remark 12.1.12 Using Theorem 12.1.11, one easily proves the following state-
ment. If K/k, K 6= k, is a finite extension of number fields, then the quo-
tient k∗/NK/k(K∗) is infinite if and only if the kernel of the restriction map
Br(k)→Br(K) is infinite. In fact, these groups are indeed infinite. The only
known proof of this statement for an arbitrary extension K/k (due to Fein,
Kantor, and Schacher) uses the classification of finite simple groups.

Note that a priori there are two possible definitions of the map Br(kv)→Q/Z
(see Theorem 1.4.10). To discuss global problems, it is necessary to define the
local maps invv : Br(kv)→Q/Z and jv : k∗v/NK/k((K ⊗k kv)∗)→G in a uniform
way. (It is not enough to define these maps up to sign, except obviously in the
case where one deals with the 2-torsion subgroups).
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Formulae for invariants of cup-products with values in Br(kv) ⊂ Q/Z are
called explicit reciprocity laws [SerCL, Ch. XIV], [Iwa68], [Har17, Ch. 9].
One should pay particular attention when applying the formulas. For instance,
formulae for residues of cup-products in Section 1.4.1 in this book are given for
the cohomological residue, and not for the Witt residue. By Theorem 1.4.10,
the Witt residue is the negative of the cohomological residue.

See [CTKS87] for a concrete example where one handles 3-torsion elements.

12.1.3 Adèles and adelic points

In this section we use a very helpful article of B. Conrad [C12] to which we refer
for many carefully worked out details.

If v is a non-archimedean place of k, we denote by Ov the ring of integers of
the completion kv. We shall write S for a finite set of places of k containing all
the archimedean places. Let O be the ring of integers of k and let OS be the
ring of S-integers, i.e. the elements of k that belong to Ov for v /∈ S.

The product
∏
v∈Ω kv is a topological ring equipped with the product topol-

ogy, where each kv carries its natural archimedean or non-archimedean topology.
The ring of adèles Ak is defined as a subring of

∏
v∈Ω kv given by the condi-

tion that all but finitely many components are in Ov. The topology of Ak

induced by the topology of
∏
v∈Ω kv is such that a base is given by the open

sets
∏
v∈S Uv ×

∏
v/∈S Ov, where Uv is open in kv. We put

AS =
∏
v∈S

kv ×
∏
v/∈S

Ov.

Then Ak is the direct limit of the open subrings AS over all finite S ⊂ Ω
containing the archimedean places. We note that k is discrete in Ak, and OS
is discrete in Ak,S .

If X ⊂ Ank is an affine variety, then the set X(Ak) is identified with a closed
subset of An

k and so acquires a locally compact Hausdorff subspace topology.
This topology does not depend on the closed immersion X ↪→ Ank , see [C12,
Prop. 2.1]. Since k is discrete in Ak, the set X(k) is discrete in X(Ak) if X is
affine. Although a closed immersion X ↪→ X ′ gives rise to a closed embedding
X(Ak) ↪→ X ′(Ak) of topological spaces, this is not true for open immersions.
The standard example is Gm,k ⊂ A1

k. Indeed, the topology on the ring of idèles
A∗k coming from the closed immersion Gm,k ⊂ A2

k given by xy = 1, is not the
topology induced from Ak. (The elements a, b ∈ A∗k are close when not only
a and b are close, but a−1 and b−1 are close too.) This shows that to equip
the set X(Ak) with the structure of a topological space when X is not affine
one cannot proceed by gluing over the affine open subsets. Following Weil and
Grothendieck, this goal is achieved by working with integral models.

Nevertheless, the approach via gluing works for a local topological ring R
such that R∗ is open in R and has continuous inversion, e.g. if R = kv or
R = Ov. This crucially uses the fact that if {Ui} is an open covering of X,
then X(R) is the union of the sets Ui(R). See [C12, Prop. 3.1, Prop. 5.4] and
Theorem 9.5.1.
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Let X be a variety over k (that is, a separated scheme of finite type over
k). By [EGA, IV3, §8.8] for some finite set T of places there exists a separated
scheme X of finite type over OT with generic fibre X. Let S ⊂ Ω be a finite set
containing T . It is clear that an Ak,S-valued point of X gives rise to an Ak-
valued point of X ×OT

Ak. Since OT ⊂ k ⊂ Ak, we have X ×OT
Ak = X×kAk,

so an Ak-valued point of X ×OT
Ak is identified with an Ak-valued point of X.

This gives rise to a map of sets

lim−→X (Ak,S) −→ X (Ak) = X(Ak). (12.5)

Here the limit is over S, and it does not depend on T . An Ak-valued point of
X comes from an Ak,S-valued point of X for some S, so this map is bijective.

gwrite XS,v for XS ×OS
Ov. The natural map of sets

X (Ak,S)−̃→
∏
v∈S

X(kv)×
∏
v/∈S

X (Ov)

is a bijection [C12, Thm. 3.6]. This implies that X(Ak) is the restricted topo-
logical product of the sets X(kv), for v ∈ Ω, with respect to their subsets X (Ov)
for v /∈ S. Here X(kv) and X (Ov) are topologised via gluing, as explained above.
This makes X (Ak,S) a locally compact Hausdorff topological space. If S ⊂ S′,
then X (Ak,S)→X (Ak,S′) is an open embedding. Using (12.5) we make X(Ak)
a topological space in such a way that a subset of X(Ak) is open if its intersec-
tion with each X (Ak,S) is open. Then X(Ak) is a locally compact Hausdorff
topological space with a countable basis of open sets. We note that the sets
X (Ak,S) form an open covering of X(Ak). A morphism f : X→Y of varieties
over k gives rise to a continuous map X(Ak)→Y (Ak).

We refer to X(Ak) as the adelic space of X and call its elements the adelic
points of X. If X is an affine variety over k, the topology of the adelic space
X(Ak) is the natural topology defined earlier in the affine case.

If X is proper, we can take X to be proper over OT . For v /∈ S, by the
valuative criterion of properness, we have X(kv) = X (Ov), hence X(Ak) co-
incides with the product topological space

∏
v∈ΩX(kv), and so is compact by

Tychonoff’s theorem. More generally, if X→Y is a proper morphism of vari-
eties over k, then the continuous map of topological spaces X(Ak)→Y (Ak) is
topologically proper: the inverse image of a compact set is compact. If X→Y
is a smooth surjective morphism of separated schemes of finite type over k with
geometrically integral fibres, then X(Ak)→Y (Ak) is open [C12, Thm. 4.5] (the
proof uses the Lang–Weil–Nisnevich inequality [LW54], [Po18, Thm. 7.7.1]).

For a finite set of places T ⊂ Ω let AT
k be the ring of T -adèles of k, i.e.

the adèles without the components at the places in T . We have the topological
space X(AT

k ) of T -adelic points.

12.2 Hasse principle and approximation

A variety X over k is called everywhere locally soluble if
∏
v∈ΩX(kv) 6= ∅.
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Definition 12.2.1 (Hasse principle) A variety X over k fails the Hasse prin-
ciple if

∏
v∈ΩX(kv) 6= ∅ whereas X(k) = ∅. A class of algebraic varieties over k

satisfies the Hasse principle if no variety in this class fails the Hasse principle.

For each place v the set of local points X(kv) has a natural topology inherited
from the topology of kv. For any subset S ⊂ Ω we consider

∏
v∈S X(kv) as the

topological space with respect to the product topology.

Definition 12.2.2 (Weak approximation) Weak approximation holds for a
variety X over k if the image of the diagonal map

X(k) −→
∏
v∈Ω

X(kv)

is dense. Equivalently, for any finite set S ⊂ Ω, the image of X(k) under the
diagonal embedding

X(k) −→
∏
v∈S

X(kv)

is dense.

In particular, if an everywhere locally soluble variety over k satisfies weak
approximation, then it has a k-point. Thus, according to our definition, if we
have a class of varieties over k such that weak approximation holds for each
variety of this class, then this class satisfies the Hasse principle. One should
however be aware that for some classes of varieties it may be easy to prove weak
approximation assuming the existence of a k-point, but hard to prove the Hasse
principle. The simplest example is the class of quadrics.

Proposition 12.2.3 (Kneser) Let X and Y be smooth and geometrically in-
tegral varieties over k such that X is everywhere locally soluble. If X and Y
are birationally equivalent, then weak approximation holds for X if and only if
it holds for Y .

Proof. There exist non-empty open sets U ⊂ X and V ⊂ Y which are isomor-
phic. For a given place v of k, U(kv) is open in X(kv) for the v-adic topology.
Since X is smooth, U(kv) is also dense in X(kv) by the implicit function theorem
(Theorem 9.5.1). This is enough to conclude. �

In particular, it suffices to prove weak approximation for a non-empty open
subset.

Definition 12.2.4 (Weak weak approximation) A smooth, geometrically in-
tegral variety X over k with a k-point satisfies weak weak approximation if there
exists a finite set T ⊂ Ω such that the image of the diagonal map

X(k) −→
∏

v∈ΩrT
X(kv)
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is dense. Equivalently, for any finite set S ⊂ Ω with S ∩ T = ∅, the image of
the diagonal map

X(k) −→
∏
v∈S

X(kv)

is dense.

Let X be an integral variety over a number field k. A subset H ⊂ X(k) is
called a Hilbert set if there exists an integral variety Z over k and a dominant
quasi-finite morphism Z→X such that H is the set of k-points P with connected
fibre ZP = Z ×X P . The intersection of two Hilbert sets in X(k) contains a
Hilbert set.

Definition 12.2.5 (Hilbertian weak approximation) A geometrically in-
tegral variety X over k satisfies hilbertian weak approximation if the image of
any Hilbert set H ⊂ X(k) under the diagonal map

X(k) −→
∏
v∈Ω

X(kv)

is dense.

Assume Xsmooth(k) 6= ∅. If X satisfies hilbertian weak approximation, then
any Hilbert subset of X(k) is Zariski dense in X, so is not empty. The follow-
ing result shows that Hilbertian weak approximation holds for any non-empty
Zariski open subset of the projective line.

Theorem 12.2.6 (Ekedahl) Let H ⊂ A1(k) = k be a Hilbert set. Let S ⊂ Ω
be a finite set of places and let λv ∈ kv for each v ∈ S. Then for any ε > 0
there exists λ ∈ H such that |λ− λv|v < ε for each v ∈ S.

Proof. See [Eke90]. �

Recall that for a finite set of places T ⊂ Ω we denote by AT
k the ring of

T -adèles of k, i.e. the adèles without the components at the places of T .

Definition 12.2.7 (Strong approximation) A variety X over k satisfies strong
approximation with respect to a finite set T ⊂ Ω if the image of the diagonal
map

X(k) −→ X(AT
k )

is dense.

Definition 12.2.8 (Hilbertian strong approximation) A variety X over
k satisfies Hilbertian strong approximation with respect to a finite set T ⊂ Ω
if for any Hilbert set H ⊂ X(k) the image of H under the diagonal map
X(k)→X(AT

k ) is dense.
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If X is proper, then X(AT
k ) =

∏
v∈ΩrT X(kv). Thus if weak approximation

holds for X, then strong approximation holds for X with respect to any finite
set S ⊂ Ω, in particular for S = ∅. The same is true in the Hilbertian case.

The following theorem from [Eke90] may be viewed as an extension of the
Chinese remainder theorem.

Theorem 12.2.9 (Ekedahl) Let H ⊂ k be a Hilbert set. Let S ⊂ Ω be a finite
set of places and let λv ∈ kv for each v ∈ S. Let v0 be a place of k not in S.
Then for any ε > 0 there exists λ ∈ H such that

(i) |λ− λv|v < ε for each v ∈ S, and
(ii) v(λ) ≥ 0 at each finite place v /∈ S ∪ {v0}.

Thus Hilbertian strong approximation holds for the affine line A1
k with re-

spect to any non-empty finite set T ⊂ Ω. Note that v0 can be chosen to be any
place outside of S.

Ekedahl’s theorem [Eke90, Thm. 1.3] is actually more general.

Theorem 12.2.10 (Ekedahl) Let R be the ring of integers of a number field
k. Let π : X→Spec(R) be a morphism of finite type and let ρ : Y→X be
an étale covering such that the generic fibre of the composed morphism πρ is
geometrically irreducible. If weak approximation holds for X ×R k, then weak
approximation holds for the set of points x ∈ X(k) with connected fibres ρ−1(x).

The same holds when weak approximation is replaced by strong approxima-
tion with respect to a finite set T ⊂ Ω.

12.3 The Brauer–Manin set

Adelic evaluation map

Proposition 12.3.1 Let k be a number field, let X be a variety over k and let
A ∈ Br(X).

(i) There exist a finite set of places T ⊂ Ω containing all the archimedean
places, a separated scheme X of finite type over OT with generic fibre X, and
an element A ∈ Br(X ) with image A ∈ Br(X).

(ii) For X→Spec(OT ) as in (i), for any finite place v /∈ T and for any point
Mv ∈ X (Ov) ⊂ X(kv) we have A(Mv) = A(Mv) = 0.

(iii) If X is proper, there exists a finite set of places T ⊂ Ω such that for all
v /∈ T and for any Mv ∈ X(kv) we have A(Mv) = 0.

(iv) The map
evA : X(Ak) −→ Q/Z

which sends an adelic point (Mv) to
∑
v∈Ω invvA(Mv) ∈ Q/Z is a well-defined

continuous map whose image is annihilated by a positive integer.

Proof. (i) We have X = lim←−X , where the limit is over separated OS-schemes
of finite type with generic fibre such that S ⊂ Ω is finite and contains all the
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archimedean places. By Section 2.2.4 we have Br(X) = lim−→Br(XS), which
implies (i).

(ii) This follows from Br(Ov) = 0 (Theorem 3.4.2 (ii)).
(iii) If X is proper, then in (i) we can take X→Spec(OT ) to be proper. Then

for any finite place v /∈ T we have X (Ov) = X(kv). Now (iii) follows from (ii).
(iv) Let X→Spec(OT ) be as in (i). By Section 12.1.3 the sets∏

v∈S
Uv ×

∏
v/∈S

X (Ov),

where S ⊂ Ω is a finite set containing T and Uv ⊂ X(kv) is an open set for
v ∈ S, form a basis of open sets of X(Ak). By (ii), the adelic evaluation map
evA is well-defined on such open sets. It is continuous on each of these open
sets. Indeed, the local evaluation map evA : X (Ov)→Br(kv) is zero for v /∈ T
and evA : X(kv)→Br(kv) is continuous for any place v (Corollary 9.5.2). That
the image of the adelic evaluation map evA : X(Ak) −→ Q/Z is annihilated by
a positive integer is a consequence of Lemma 3.4.5. �.

Write AC
k for the ring of ΩC-adèles AΩC

k , where ΩC is the set of complex
places of k. In particular, AC

k = Ak if k is totally real, e.g. if k = Q. Since
Br(C) = 0, the evaluation map evA : X(Ak) −→ Q/Z factors through the
evaluation map

evC
A : X(AC

k ) −→ Q/Z.

The Brauer–Manin pairing

By definition, the Brauer–Manin pairing

X(Ak)× Br(X) −→ Q/Z

sends (Mv) ∈ X(Ak) and A ∈ Br(X) to

evA
(
(Mv)

)
=
∑
v∈Ω

invvA(Mv) ∈ Q/Z.

If X is proper, then X(Ak) =
∏
vX(kv). In this case the pairing becomes∏

v∈Ω

X(kv)× Br(X) −→ Q/Z.

For any subset B ⊂ Br(X), we denote by X(Ak)B ⊂ X(Ak) the set of adelic
points orthogonal to B with respect to the Brauer–Manin pairing, that is, the
intersection of ev−1

A (0) for A ∈ B. By the continuity of the evaluation map, it
is a closed subset of X(Ak). When B is finite, Proposition 12.3.1 (iv) shows
that the map X(Ak)→Maps(B,Q/Z) factors through Maps(B,Z/n) for some
n, hence X(Ak)B is closed and open in X(Ak). The set X(Ak)Br(X) is called
the Brauer–Manin set of X. We abbreviate this notation by X(Ak)Br.

Similarly, the evaluation map without complex components gives rise to the
Brauer–Manin set X(AC

k )Br.
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If, moreover, X is proper, then X(Ak) is compact. When X(Ak)Br is empty,
the compact set X(Ak) has a covering by open subsets X(Ak) r X(Ak)b, for
all b ∈ Br(X). Hence there is a finite subset B ⊂ Br(X) such that

X(Ak) =
⋃
b∈B

(X(Ak) rX(Ak)b),

and therefore X(Ak)B = ∅.
LetX be a variety over k. For any A ∈ Br(X) we have the basic commutative

diagram:

X(k) �
� //

evA

��

X(Ak)

��

evA

##
Br(k) //

⊕
v∈Ω

Br(kv)
invv // Q/Z

where the bottom line is the complex given by the class field theory exact
sequence (12.1).

Theorem 12.3.2 (Manin) [Man71] Let k be a number field and let X be a
variety over k. The Brauer–Manin set X(Ak)Br contains the closure of the
image of the diagonal map X(k)→X(Ak).

Proof. The inclusion X(k) ⊂ X(Ak)Br follows immediately from the above
diagram. Since X(Ak)Br is closed in X(Ak), it contains the closure of X(k). �

Manin’s observation is that this simple theorem accounts for most counter-
examples to the Hasse principle known at the time. In these examples, the rôle
of sequence (12.1) is played by some explicit form of the reciprocity law, mostly
the quadratic reciprocity law. We shall review some of these examples in Section
12.5.

It is common to use the following terminology:

If X is a variety over k such that X(Ak) 6= ∅ but X(Ak)Br = ∅, then one
says that there is a Brauer–Manin obstruction to the Hasse principle for X.

If the inclusion X(Ak)Br ⊂ X(Ak) is not an equality, then one says that
there is a Brauer–Manin obstruction to strong approximation for X. If X is
proper, then this is a Brauer–Manin obstruction to weak approximation.

The space X(Ak) is the union of subsets∏
v∈S

X(kv)×
∏
v/∈S

X (Ov),

where S ⊂ Ω is a finite set containing all infinite places, and X→Spec(OS) is a
separated scheme of finite type with generic fibre X. For each subset B ⊂ Br(X)
there is an inclusion

X (OS) ⊂

(∏
v∈S

X(kv)×
∏
v/∈S

X (Ov)

)B
.
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The Brauer–Manin pairing may sometimes be used to show the failure of strong
approximation outside a finite set of places, or even to give counter-examples
to the integral Hasse principle (proving the emptiness of the set X (OS) of OS-
integral points).

As we have seen in Proposition 12.3.1 (i), for a given element A ∈ Br(X ), the
image of evA on the set

∏
v∈S X(kv)×

∏
v/∈S X (Ov) is computed using only the

places in S. In general (unless X is proper) one cannot reduce the computation
of X(Ak)A to calculations at finitely many places.

Remark 12.3.3 Let X be a variety over k. More generally, given a contravari-
ant functor F from the category of k-schemes to the category of sets, any element
ξ ∈ F (X) gives rise to a commutative diagram

X(k) → X(Ak)
↓ ↓

F (k) →
∏
v∈Ω F (kv)

where the vertical arrows are given by “evaluation” of the element ξ on rational
points and on local points. This gives a restriction on the image of X(k) in
X(Ak). The Brauer–Manin obstruction corresponds to the case F (X) = Br(X)
and ξ ∈ Br(X). Another useful example of such a functor is the étale cohomol-
ogy set H1

ét(·, G), where G is an algebraic group over k.

Here are some observations on the Brauer–Manin obstruction.

(1) Recall that Br0(X) ⊂ Br(X) is the image of the map Br(k)→Br(X)
induced by the structure morphism X→Spec(k). If X(k) 6= ∅, then the homo-
morphism Br(k)→Br(X) has a section and so is injective. Using the injective
map of the exact sequence (12.1) one shows that if X(Ak) 6= ∅, then the natural
map Br(k)→Br0(X) is an isomorphism.

(2) Let B ⊂ Br(X). The set X(Ak)B only depends on the image of B in
the quotient Br(X)/Br0(X).

(3) Let us write Xv for X ×k kv. Let B(X) ⊂ Br(X) be the subgroup
consisting of elements A ∈ Br(X) such that for each place v ∈ Ω there exists
αv ∈ Br(kv) whose image in Br(Xv) is the same as the image of A. Assume
X(Ak) 6= ∅. Then Br(kv)→Br(Xv) is injective for each v, so that αv is well
defined and equal to the value of A at any kv-point of X. By Proposition 12.3.1,
αv = 0 for almost all v. For each adelic point (Mv) ∈ X(Ak) one then has∑

v∈Ω

invvA(Mv) =
∑
v∈Ω

invv(αv) ∈ Q/Z.

The value of this sum does not depend on (Mv). The Brauer–Manin obstruc-
tion attached to the “small” subgroup B(X) ⊂ Br(X) plays a great rôle in
the study of the Hasse principle for homogeneous spaces of connected linear
algebraic groups [Bor96, BCS08, Witt08] – but it is too small to control weak
approximation.
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Recall that for any abelian variety A over a number field k, the Tate-
Shararevich group of A is defined as

X(A) = Ker[H1(k,A)→
∏
v∈Ω

H1(kv, A)].

The quotient group B(X)/Br0(X) is conjecturally finite. Indeed, we have the
following proposition.

Proposition 12.3.4 [BCS08, Prop. 2.14] Let X be a smooth, projective, ge-
ometrically integral variety over k such that X(Ak) 6= ∅. If X(Pic0

XK/K) is
finite for any finite extension K/k, then B(X)/Br0(X) is finite.

(4) Let X be a smooth, projective, geometrically integral variety over a num-
ber field k. Suppose there is a finite field extension K/k such that XK(AK)Br =
∅. Then X(K) = ∅, hence X(k) = ∅. But can one conclude that X(Ak)Br = ∅?
This question is open in general. The answer is positive if Pic(X) is a finitely
generated free abelian group and Br(X) = 0.

We finish this section with a remark about the functoriality of the Brauer–
Manin set.

Proposition 12.3.5 A morphism f : X→Y of varieties over a number field k
induces a continuous map of their Brauer–Manin sets X(Ak)Br→Y (Ak)Br.

Proof. We have a continuous map of topological spaces f : X(Ak)→Y (Ak),
see Section 12.1.3, and a map of Brauer groups f∗ : Br(Y )→Br(X), see Section
3.2. For a point (Pv) ∈ X(Ak) and A ∈ Br(Y ) we have (f∗A)(Pv) = A(f(Pv)),
hence f sends X(Ak)f

∗A to Y (Ak)A. Thus f sends X(Ak)Br ⊂ X(Ak)f
∗Br(Y )

to Y (Ak)Br(Y ) = Y (Ak)Br. �

In particular, for varieties X and Y the Brauer–Manin set of X ×k Y is
contained in X(Ak)Br × Y (Ak)Br. In the crucial case this is an equality.

Theorem 12.3.6 Let X and Y be smooth, projective, geometrically integral
varieties over a number field k. Then we have

(X × Y )(Ak)Br = X(Ak)Br × Y (Ak)Br.

Proof. See [SZ14, Thm. C], which is based on the results of Sections 4.6 and
15.4, and uses torsors and the descent theory. �

12.4 The structure of the Brauer–Manin set

When Br(X) is finite modulo Br0(X), the Brauer–Manin set of X is an open
and closed subset of X(Ak). More precisely, we have the following
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Lemma 12.4.1 Let X be a proper variety over a number field k. Assume that
Br(X)/Br0(X) is finite. Then there exists a finite set S of places of k such that

X(Ak)Br = Z ×
∏
v 6∈S

X(kv)

for an open and closed set Z ⊂
∏
v∈S X(kv).

Proof. There is a finite set B ⊂ Br(X) that generates Br(X) modulo Br0(X).
By Proposition 12.3.1 (iii) there is a finite set of places S such that A(Mv) = 0
for each A ∈ B and any Mv ∈ X(kv), where v /∈ S. Thus for each A ∈ B
the evaluation map evA : X(Ak)→Q/Z is the composition of the projection
X(Ak)→

∏
v∈S X(kv) and a continuous map

∏
v∈S X(kv)→Q/Z. The resulting

map
∏
v∈S X(kv)→(Q/Z)B is continuous with finite image (Proposition 12.3.1

(iv)) thus its kernel Z is an open and closed subset of
∏
v∈S X(kv). �

In this section we discuss how small the set S can be. We essentially follow
the paper [CTS13a].

Question 12.4.2 Let X be a smooth, projective and geometrically integral va-
riety over a number field k. Assume that Br(X)/Br0(X) is finite. Can one
choose S in Lemma 12.4.1 to be the union of the archimedean places of k and
the places of bad reduction for X?

The following result gives sufficient conditions under which the answer is
positive.

Theorem 12.4.3 Let k be a number field. Let S be a finite set of places of k
containing the archimedean places, and let OS be the ring of S-integers of k. Let
π : X→Spec(OS) be a smooth and proper OS-scheme with geometrically integral
fibres. Let X/k be its generic fibre. Assume

(i) H1(X,OX) = 0;
(ii) the Néron–Severi group NS(X) has no torsion;
(iii) the transcendental Brauer group Br(X)/Br1(X) is a finite abelian group

of order invertible in OS.
Then X(Ak)Br = Z ×

∏
v 6∈S X(kv), where Z ⊂

∏
v∈S X(kv) is an open and

closed subset.

Proof. We claim that for any place v /∈ S, the image of Br(X) in Br(Xv) is
contained in the sum of the images of Br(kv) and Br(Xv). It is enough to prove
this statement for the `-primary component, for each prime `.

Let p be the residual characteristic of v. The combination of assumptions
(i) and (ii), Proposition 9.4.2 and Lemma 9.4.1 gives that the image of Br1(X)
in Br(Xv) is contained in the subgroup generated by the images of Br(kv) and
Br(Xv). Assumption (iii) implies Br(X){p} ⊂ Br1(X). Thus the image of
Br(X){p} in Br(Xv) is contained in the subgroup generated by the images of
Br(kv){p} and Br(Xv){p}.
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Let us prove the analogous statement for any prime ` 6= p. By Proposi-
tion 9.4.3 we only need to check that H1

ét(X 0,Z/`) = 0, where X 0 is the closed
geometric fibre of π : Xv→Spec(Ov). By the smooth base change theorem
for étale cohomology (see, e.g. [Mil80], VI, Cor. 4.2) the group H1

ét(X 0,Z/`)
is isomorphic to H1

ét(Xv,Z/`), which in turn is isomorphic to H1
ét(X,Z/`) by

[Mil80], VI, Cor. 4.3. The Kummer exact sequence gives an isomorphism
H1

ét(X,µ`)−̃→Pic(X)[`], and the vanishing of the latter group follows from con-
ditions (i) and (ii).

We now complete the proof of the theorem here under the simplifying as-
sumption X(k) 6= ∅. We refer to [CTS13a, Lemma 1.2] for the (easy) argument
assuming only X(Ak) 6= ∅.

Let thus fix a k-point P . The map Br(k)→Br0(X) is then an isomorphism
and the group Br(X)/Br0(X) = Br(X)/Br(k) is finite. This group Br(X)/Br(k)
is generated by the images of finitely many elements Ai ∈ Br(X) that can be
assumed to satisfy Ai(P ) = 0. For v /∈ S, we have an equality

Ai ⊗k kv = βi + γi ∈ Br(Xv),

where βi ∈ Br(Xv) and γi ∈ Br(kv). We have βi(P ) = 0 since P ∈ X(k) extends
to an Ov-point of Xv by the properness of X/O and Br(Ov) = 0 (Theorem 3.4.2
(ii) and Theorem 1.2.11). It follows that γi = 0. Hence Ai ⊗k kv belongs to
Br(Xv), and so Ai vanishes at every point of X(kv) = Xv(Ov).

Let B ⊂ Br(X) be the finite group generated by the elements Ai ∈ Br(X).
We now conclude that the Brauer–Manin pairing

X(Ak)× Br(X) −→ Q/Z

is induced by the pairing ∏
v∈S

X(kv)×B −→ Q/Z.

This concludes the proof. �

Remark 12.4.4 Conditions (i) and (ii) together are equivalent to the assump-
tion that Pic(X) is a finitely generated torsion-free abelian group. We do not
know if condition (iii) may be dropped from this theorem. The finiteness of
the transcendental Brauer group is closely related to the Tate conjecture for
divisors, see Theorem 15.2.1.

One can give purely geometric conditions under which the assumptions of
Theorem 12.4.3 are satisfied.

Corollary 12.4.5 Let π : X→Spec(OS) be a smooth proper OS-scheme with
geometrically integral fibres. Let X/k be its generic fibre. Assume

(i) Hi(X,OX) = 0 for i = 1, 2;
(ii) the Néron–Severi group NS(X) has no torsion;
(iii) either dimX = 2, or H3

ét(X,Z`) is torsion-free for every prime ` invert-
ible in OS.
Then we have the same conclusion as in Theorem 12.4.3.
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Proof. We only need to verify condition (iii) of Theorem 12.4.3. By Theorem
4.2.6 and Theorem 4.4.2, if H2(X,OX) = 0, then Br(X) is finite and isomor-
phic to the direct sum ⊕`H3

ét(X,Z`)tors. In the surface case, Proposition 4.2.7
shows that NS(X){`} ' H3

ét(X,Z`)tors. Thus under assumptions (ii) and (iii),
Br(X){`} = 0 for ` /∈ S. The group Br(X)/Br1(X) is a subgroup of Br(X).
Thus hypothesis (iii) in Theorem 12.4.3 is satisfied. �

This corollary can be applied to rationally connected varieties. Indeed, over
a field of characteristic 0 such a varietiy X is OX -acyclic, that is, Hi(X,OX) = 0
for all i > 0, and is algebraically simply connected [Deb01, Cor. 4.18], hence
Pic(X)tors = NS(X)tors = 0.

12.5 Examples of Brauer–Manin obstruction

Reducible varieties

The following statements are Brauer group versions of the results of Stoll [Sto07,
Lemma 5.10, Prop. 5.11, Prop. 5.12].

Lemma 12.5.1 Let X = P1tP2 = Spec(k)tSpec(k). Then X(k) = X(AC
k )Br.

Proof. Take any (Qv) ∈ X(AC
k )Br. Let S1 ⊂ ΩrΩC consist of the places v such

that Qv = P1. The complementary set S2 = (ΩrΩC)rS1 consists of the places
v such that Qv = P2. If S1 = ΩrΩC, then {Qv} = P1, and if S2 = ΩrΩC, then
{Qv} = P2. We now suppose that we are not in one of these cases and deduce a
contradiction. Choose v1 ∈ S1 and v2 ∈ S2. Since neither v1 nor v2 is a complex
place, there is an α ∈ Br(k) such that invv1(αv1) = 1/2, invv2(αv2) = 1/2 and
αv = 0 for v 6= v1, v2. Consider the element β = (α, 0) ∈ Br(X) = Br(k)⊕Br(k).
Then

∑
v∈ΩrΩC

invv(β(Qv)) = invv1(αv1) 6= 0. �

Proposition 12.5.2 Let X = X1 t · · · t Xn be a disjoint union of varieties
over k. Then

X(AC
k )Br = X1(AC

k )Br t · · · tXn(AC
k )Br.

Proof. It is enough to prove the statement for n = 2. By functoriality, the
right hand side is included in the left hand side. Let Y = Spec(k) t Spec(k).
Consider the projection p : X1 t X2→Spec(k) t Spec(k). By the functoriality
of the Brauer–Manin set we have p(X(AC

k )Br) ⊂ Y (AC
k )Br. Lemma 12.5.1 says

that Y (AC
k )Br = Y (k). Thus X(AC

k )Br ⊂ X1(AC
k ) t X2(AC

k ). Since Br(X) =
Br(X1)⊕ Br(X2), we have X(Ak)Br ⊂ X1(Ak)Br tX2(Ak)Br. �

As a special example, if X = X1 t X2, X1(Ak) = ∅, X2(Ak) = ∅ and
X(Ak) 6= ∅ then X(Ak)Br = ∅.

Corollary 12.5.3 Let X be a finite k-scheme. Then X(k) = X(AC
k )Br.

Proof. For X of dimension zero we have Br(Xred) = Br(X) (Prop. 7.2.4), so
one may assume that X is reduced. By Proposition 12.5.2 it is enough to prove
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the statement when X = Spec(K), where K is a field. In this case it is a known
consequence of Chebotarev’s theorem (Theorem 12.1.5) that for a non-trivial
extension of number fields K/k there are infinitely many places v such that kv
is not a direct summand of K ⊗k kv. For such places v we have X(kv) = ∅, in
particular X(AC

k ) = ∅. �

Let us discuss the famous counter-example to the Hasse principle over Q

(x2 − 13)(x2 − 17)(x2 − 221) = 0

from another point of view. Let us think of x as a coordinate in A1
Q and define

Z as the closed subset of Gm,Q given by this polynomial. Consider

A = (x, 13) ∈ Br(Gm,Q).

Take any (Mv) ∈ Z(AQ). It is clear that A(Mv) = 0 when Qv = R. Now let p
be a prime. Let v = vp be the p-adic valuation; write p for vp in the subscript.
Let xp ∈ Qp be the coordinate of Mp ∈ Z(Qp). If p is not one of 2, 13 or 17,
then 13 and xp are both in Z∗p, so the Hilbert symbol (xp, 13)p = 1 and thus
A(Mp) = 0 in Br(Qp). Let p = 13. Then x2

13 = 17 in Q13 and x13 = ±2 up to
a square in Q∗13, hence the Hilbert symbol (±2, 13)13 = −1 and so A(M13) 6= 0.
Let p = 17. Then x2

17 = 13 in Q17, hence x17 = ±8 up to a square in Q∗17. Then
(±8, 13)17 = 1 and so A(M17) = 0. Finally, let p = 2. Then x2

2 = 17 in Q2,
hence x2 = ±5 up to a square in Q∗2. Then (±5, 13)2 = 1, as follows from the
reciprocity law since (±5, 13)5 = 1 and (±5, 13)13 = 1. We conclude A(M2) = 0.
This easy calculation shows that there is a Brauer–Manin obstruction attached
to the class in Br(Z) which is the restriction of A ∈ Br(Gm,Q).

Compare with Stoll [Sto07], Liu–Xu [LX15], Jahnel–Loughran [JL15].

Let us now describe some counter-examples to the Hasse principle on geo-
metrically irreducible varieties.

Iskovskikh’s counter-example to the Hasse principle

The following example was explored in [CTCS80, Exemple 5.4]. In a different
guise, the case c = 3 is due to Iskovskikh [Isk71]. Let U = Uc be the variety

y2 + z2 = (c− x2)(x2 − c+ 1) 6= 0,

where c ∈ N is congruent to 3 modulo 4. Using Hensel’s lemma, one easily
checks that U has points in all completions of Q.

Consider the Azumaya algebra on U defined by the quaternion algebra
A = (c−x2,−1). Let X = Xc be a smooth compactification of Uc. As proved in
Example 5.2.10 the class of A comes from a class in Br(X) ⊂ Br(U). By Propo-
sition 9.5.2, for any place v of Q, finite or infinite, the image of the evaluation
map

evA : X(Qv) −→ Br(Qv) ⊂ Q/Z
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coincides with the image of

evA : U(Qv) −→ Br(Qv) ⊂ Q/Z.

Let K = Q(
√
−1). Let v be a place of Q and let w be a place of K over v. For

ρv ∈ Q∗v we have (ρv,−1) = 0 ∈ Br(Qv) if and only if ρv is a norm for the local
extension Kw/Qv. We thus need to compute the images of the maps

φv : U(Qv) −→ Q∗v/N(K∗w) ⊂ Z/2

where φv sends Mv = (xv, yv, zv) ∈ U(Qv) to the class of x2
v − c.

If v splits in K, the target of φv is zero.
For v = v∞ we have (ρv,−1) = 0 ∈ Br(R) if and only if ρv > 0. The

equation

y2
∞ + z2

∞ = (c− x2
∞)(x2

∞ − c+ 1) ∈ R∗

forces c− x2
∞ > 0, hence the image of φv is zero.

Suppose v = p is a finite prime which is inert in K. We have (ρp,−1) = 0 if
and only if v(ρp) is even. If v(xv) < 0, then v(c− x2

v) is even and thus c− x2
v is

a norm. Suppose v(xv) ≥ 0. From the equality

(c− x2
v) + (x2

v − c+ 1) = 1

we deduce that at least one of v(c − x2
v) and v(x2

v − c + 1) vanishes. From the
equality

y2
v + z2

v = (c− x2
v)(x

2
v − c+ 1) ∈ Q∗v,

we deduce that the sum of the valuations of c−x2
v and x2

v − c+ 1 is even. Thus
v(c− x2

v) is even, and the image of φv is zero.
For the unique ramified prime v = 2, an element ρ2 ∈ Q∗2 is a sum of two

squares if and only if it is the product of a power of 2 and a unit in Z∗2 which is
congruent to 1 modulo 4. Write x2 = u/v with u and v in Z2, not both divisible
by 2. Up to multiplication by a square, c − x2 is equal to cv2 − u2, which by
the hypothesis on c is congruent to 3v2 − u2 modulo 4. Up to multiplication
by a square, x2

2 − c + 1 is equal to u2 − (c − 1)v2 which by the hypothesis on
c is congruent to u2 − 2v2 modulo 4. The possible values for (u2, v2) modulo 4
are (0, 1), (1, 0), (1, 1). In the first and second cases, 3v2 − u2 is congruent to 3
modulo 4 hence is not a norm for K2/Q2. In the third case, u2−2v2 is congruent
to 3 modulo 4, hence is not a norm for K2/Q2. Since Q∗2/N(K∗2 ) ∼= Z/2, and
the product (c − x2

2)(x2
2 − c + 1) = y2

2 + z2
2 is a norm, we conclude that c − x2

2

is never a norm for the extension K2/Q2. Thus the image of φ2 is 1 ∈ Z/2.
For any (Mv) ∈ X(AQ), we thus have∑

v∈Ω

invvA(Mv) = 1/2,

hence X(AQ)A = ∅ implying X(Q) = ∅.
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Exercise 12.5.4 [CTCS80, Exemple 5.5], [San82a, §2] Let c ≥ 2 be an integer.
Let Xc be a smooth projective variety over Q birationally equivalent to the affine
surface with equation

y2 + 3z2 = (c− x2)(x2 − c+ 1).

Consider the unramified quaternion algebra A = (c − x2,−3) and prove that
Xc(AQ)A = ∅ if c = 32s+1(3n− 1) for some integers s ≥ 0 and n ≥ 1.

Exercise 12.5.5 [CTCS80, Exemple 5.6] Let c ≥ 3 be an integer. Let Xc be
a smooth projective variety over Q birationally equivalent to the affine surface
with equation

y2 + z2 = (c− x2)(x2 − c+ 2).

Consider the unramified quaternion algebra A = (c − x2,−1) and prove that
Xc(AQ)A = ∅ if c = 4n(8m+ 7) for some integers n ≥ 0 and m ≥ 0.

Swinnerton-Dyer’s counter-example to weak approximation [SwD62]

Let U be the affine surface over Q defined by

y2 + z2 = (4x− 7)(x2 − 2) 6= 0.

Let
A = (4x− 7,−1) ∈ Br(U).

One shows that for any smooth compactification U ⊂ X the class of A belongs
to Br(X) ⊂ Br(U). For any prime p 6= 2 a standard valuation argument based
on the equality

(4x− 7)(4x+ 7)− 16(x2 − 2) = −17

shows that A vanishes on U(Qp) and hence also on X(Qp). For p = 2 one checks
that A also vanishes on U(Q2). The set of real points U(R) has two connected
components: the first one given by −

√
2 < x <

√
2 and the second one given

by x > 7/4. The connected components of X(R) are obtained by taking the
closure of the connected components of U(R) in X(R). It is clear that A takes
the non-zero value in Br(R) on any point of the first component, and the zero
value on any point of the second component. The reciprocity law then implies
that all Q-points of X are contained in the second component.

Principal homogeneous spaces under a specific torus

The following example is discussed in more detail in [CT14].
Let k be a number field, a, b, c ∈ k∗, and let U be the variety over k defined

by the equation
(x2 − ay2)(z2 − bt2)(u2 − abw2) = c.

Let X be a smooth compactification of U . Computing residues, one easily checks
that the class of the quaternion algebra A = (x2 − ay2, b) ∈ Br(U) lies in the
subgroup Br(X), cf. Example 5.2.12.
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Proposition 12.5.6 Assume that a, b, c ∈ k∗ are such that for each place v of
k the field extension kv(

√
a,
√
b) is cyclic, hence of degree at most 2. Then

(i) The class A belongs to B(X).
(ii) For each (Mv) ∈ X(Ak) one has∑

v∈Ω

invvA(Mv) =
∑

v | a∈k∗2v

(c, b)v =
∑

v | a/∈k∗2v

(c, b)v ∈ Z/2.

Proof. (i) Let F be a field extension of k. If a, b or ab is a square in F , then the
left hand side of the equation of U has a linear factor. This easily implies that
UF is rational over F . Then the natural map Br(F )→Br(XF ) is an isomorphism
by Corollary 5.2.6. This proves (i).

(ii) Let v ∈ Ω and let Mv = (xv, yv, zv, tv, uv, wv) be a point of U(kv). Let
us compute (x2

v − ay2
v , b)v ∈ Br(kv). Assume that a is not a square in kv. Then

either b or ab is a square in kv. In the first case (x2
v − ay2

v , b)v = 0, whereas in
the second case (x2

v − ay2
v , b)v = (x2

v − ay2
v , a)v = 0. Now assume that a is a

square in kv. From the equation of U we obtain

(x2
v − ay2

v , b)v = (z2
v − bt2v, b)v + (u2

v − abw2
v, b)v + (c, b)v.

Since a ∈ k∗2v we see that (u2
v−abw2

v, b)v = (u2
v−abw2

v, ab)v = 0. The first term
of the right hand side is zero, hence (x2

v − ay2
v , b)v = (c, b)v. By the continuity

of evA this extends to any point of X(kv). �

Starting from this explicit formula, one easily produces counter-examples to
the Hasse principle. For k = Q take a = 17, b = 13, c = 5.

The Reichardt–Lind counter-example to the Hasse principle

Let X be the smooth compactification of the smooth curve U over Q defined by

2y2 = x4 − 17 6= 0.

One checks that X(AQ) 6= ∅. (For the primes of good reduction this follows
from the Hasse–Weil bound for the number of Fp-points on a curve of genus
1 and the Hensel lemma.) In Example 5.2.11 we checked that the quaternion
algebra A = (y, 17) defines an element of Br(X) ⊂ Br(U). It is obvious that
A(U(R)) = 0, hence by the continuity of evA we have A(X(R)) = 0. One then
checks that A(U(Qp)) = 0 for any prime p 6= 17. By the continuity of evA we
obtain A(X(Qp)) = 0. Next, evA sends U(Q17) to one point 1/2 ∈ Q/Z. This
implies inv17A(X(Q17)) = 1/2. Thus∑

v∈Ω

invvA(Mv) = 1/2

for any (Mv) ∈ X(AQ). We conclude that X(Q) = ∅. (As a matter of fact, A is
contained in the subgroup B(X) ⊂ Br(X), as may be deduced from Corollary
9.5.4.)



12.5. EXAMPLES OF BRAUER–MANIN OBSTRUCTION 261

For the history of this example we quote from Cassels’ survey [Cas66, p.
284]: “... Lind [Lin40] in his dissertation gave examples of curves of genus 1
with points everywhere locally but not globally, including the example later
given by Reichardt. We reproduce Lind’s elegant argument, which has recently
been rediscovered by Mordell, and which does not fall readily into the paradigm
proposed in this paper. One has to prove that there are no solutions of

u4 − 17v4 = 2w2 (∗)

in coprime integers u, v, w. We first show that w is a quadratic residue of 17.
For if p is an odd prime divisor of w, it follows from (∗) that 17 is a quadratic
residue of p, so p is a quadratic residue of 17 by the law of quadratic reciprocity
and 2 is in any case a quadratic residue of 17. Hence u4 and w2 are both quartic
residues of 17. Then (∗) implies that 2 is a quartic residue of 17, which is not the
case.” According to Cassels, Reichardt [Rei42] considered the curve over Q(

√
2),

computed its non-empty set of rational points over that field, then showed there
are no Galois invariants.

Failure of weak approximation

It is delicate to exhibit counter-examples to the Hasse principle or to prove that
for a given place v the set X(k) is not dense in X(kv). It is much easier to give
counter-examples to weak approximation at a finite set of places.

Proposition 12.5.7 Let k be a number field and let X be a projective variety
over k. Assume that X(k) 6= ∅ and that there exist an element α ∈ Br(X)
and a place w of k such that α takes at least two different values on X(kw).
Then there exists a finite set S of places of k such that X(k) is not dense in∏
v∈S X(kv), so that weak approximation fails for X.

Proof. By Proposition 12.3.1, there exists a finite set S of places of k such that
α identically vanishes on each X(kv) for v /∈ S. We thus have w ∈ S. Let
P ∈ X(k) be a rational point. For v ∈ S, v 6= w, let Nv ∈ X(kv) be the image
of P ∈ X(k) ⊂ X(kv). Let Nw ∈ X(kw) be a point such that α(Nw) ∈ Br(kw)
is not equal to reskw/k(α(P )) ∈ Br(kw). By reciprocity (Theorem 12.1.8) and
vanishing of α on X(kv) for v /∈ S, we have

0 =
∑
v∈S

invv(reskv/k(α(P ))).

We then have∑
v∈S

invv(α(Nv)) = invw(α(Nw))− invw(reskw/k(α(P ))) 6= 0 ∈ Q/Z.

This implies that for any choice of Nv ∈ X(kv) for v /∈ S we have∑
v∈Ω

invv(α(Nv)) 6= 0 ∈ Q/Z.
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By reciprocity (Theorem 12.1.8) and continuity of the evaluation map on local
points (Proposition 9.5.2), this implies that {Nv} ∈

∏
v∈S X(kv) is not in the

closure of X(k). �

Other examples

Many more examples have been constructed. In particular, counter-examples to
the Hasse principle and weak approximation have been given for the following
classes of varieties.

• Smooth projective curves of arbitrary genus g ≥ 1.

• Smooth, projective, geometrically rational varieties of dimension at least
2, including smooth del Pezzo surfaces of degree d with 2 ≤ d ≤ 4, in
particular, smooth cubic surfaces (Swinnerton-Dyer; Cassels and Guy).

• Smooth compactifications of homogeneous spaces of connected linear al-
gebraic groups.

• Surfaces with a pencil of curves of genus one.

• K3 surfaces, such as smooth quartics in P3.

Precise references for such examples can be found in the surveys [VA13,
VA17, Witt18].

12.6 Harari’s formal lemma

This section is based on [CT03]. The following result is [Har94, Thm. 2.1.1,
p. 226].

Theorem 12.6.1 (Harari) Let X be a smooth integral variety over a number
field k. Let S be a finite set of places of k and let X→Spec(OS) be a morphism
of finite type with generic fibre X. Let U ⊂ X be a non-empty open subset of X
and let α ∈ Br(U)rBr(X). There exist infinitely many places v of k for which
there is a point Mv ∈ U(kv) ∩ X (Ov) with α(Mv) 6= 0.

Proof. The first part of the proof is a reduction to the case when X is a curve.
There is an irreducible divisor Z ⊂ X such that the residue of α at the

generic point of Z is a non-zero element ∂Z(α) ∈ H1(k(Z),Q/Z). Let n be the
order of ∂Z(α). Then ∂Z(α) is an element of the subgroup H1(k(Z),Z/n) of
H1(k(Z),Q/Z). After replacing X by an open subset we can assume that Z
is smooth and U = X r Z. Then the exact sequence (3.16) shows that ∂Z(α)
comes from a non-zero element ρ ∈ H1(Z,Z/n). Let Z1→Z be the finite cyclic
cover defined by ρ, or, equivalently, the torsor over Z under Z/n with class ρ.
The scheme Z1 is connected. Indeed, the invariant subfield K of the kernel
of the homomorphism Gal(k(Z)/k(Z))→Q/Z corresponding to ∂Z(α) is a field
extension of k(Z) of degree n, so Spec(K) must be the generic point of Z1.
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Replacing X by an open subset, we may assume that there is a generically
finite morphism Z→Adk. Since Z1 is connected, Hilbert’s irreducibility theorem
shows the existence of infinitely many k-points M of Adk such that the fibre of
the composite morphism Z1→Z→Adk at M is integral. Let us pick one such
point M . The inverse image of M under the morphism Z→Adk is a closed point
P ∈ Z such that ρ(P ) 6= 0 ∈ H1(k(P ),Q/Z).

A local equation of Z ⊂ X at P can be extended to a regular system of
parameters of the regular local ring OX,P . One thus finds a closed integral
curve C ⊂ X containing P as a smooth closed point, which is transversal to Z
at P . Shrinking X even more, we may assume that C is smooth and Z∩C = P .
Let αC ∈ Br(C r P ) be the restriction of α ∈ Br(X r Z). Since C and Z are
transversal at P , by Theorem 3.7.4 the residue of αC at P is

∂P (αC) = ρ(P ) ∈ H1(k(P ),Q/Z),

thus ∂P (αC) 6= 0. The embedding C ⊂ X extends to an embedding of integral
models over a suitable open subset of Spec(OS). Therefore, it is enough to prove
the statement of the theorem for the smooth connected curve C.

So let C be a connected integral curve over k with a closed point P . Write
U = C r {P}. Let α ∈ Br(U) be an element with a non-zero residue

χ = ∂P (α) ∈ H1(k(P ),Q/Z)

of order n. Thus χ ∈ H1(k(P ),Z/n) ⊂ H1(k(P ),Q/Z). Replacing C by an
open set, we may assume that C is affine, C = Spec(A), and P is defined be
the vanishing of some f ∈ A. Let Ah be the henselisation of A at P . The
natural restriction map H1(Ah,Z/n)→H1(k(P ),Z/n) is an isomorphism. Thus
there exists a connected affine curve D = Spec(B) over k and an étale morphism
q : D→C such that q induces an isomorphism Q = q−1(P )−̃→P and, moreover,
χ is the restriction of some ξ ∈ H1(D,Z/n).

Let V = DrQ. Consider the cup-product (f, ξ) ∈ Br(V ) of the class of f in
k[V ]

∗
/k[V ]

∗n ⊂ H1(V, µn) with ξ ∈ H1(D,Z/n). The difference β = αD − (f, ξ)
is an element of Br(V ) with trivial residue at Q, hence β ∈ Br(D).

Replacing S by a larger finite set of places we can assume the existence of
affine curves C and D, each of them flat and of finite type over Spec(O), such
that D→C extends to an OS-morphism D→C. Let P be the Zariski closure of
P in D. By increasing S further we can ensure the following properties:

f ∈ A comes from an element f ∈ OS [C];
ξ ∈ H1(D,Z/n) is the restriction of an element ξ ∈ H1(D,Z/n);
β ∈ Br(D) is the restriction of an element β ∈ Br(D);
the natural morphism P→Spec(OS) is finite and étale;
P is integral and maps isomorphically onto its image in C.
By a version of Chebotarev’s theorem (Theorem 12.1.6), there exist infinitely

many places v of k for which there is a place w of k(P ) over v with kv ∼= k(P )w
(i.e., w has degree 1 over v) and w is inert in the cyclic extension k(P )(χ)/k(P )
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defined by χ ∈ H1(k(P ),Z/n). For such a place v there exists a point N0
v ∈

P(Ov) which maps isomorphically to a point M0
v ∈ C(Ov).

Let Nv ∈ D(Ov) be such that f(Nv) 6= 0 and let Mv ∈ C(Ov) be the image
of Nv. Then one has

α(Mv) = α(Nv) = β(Nv) + (f(Nv), ξ(Nv)) ∈ Br(kv)−̃→Q/Z.

We have β(Nv) ∈ Br(Ov) = 0. The place w of k(P ) is inert in the cyclic
extension k(P )(χ), so if Nv is close enough to N0

v for the v-adic topology on
D(Ov), the class ξ(Nv) ∈ H1(k(P )w,Z/n) = H1(kv,Z/n) has order n. From the
standard formula for the tame symbol we then get that α(Mv) ∈ Z/n ⊂ Q/Z is
equal to the class of the valuation v(f(Nv)) modulo n. The closed set P ×OS

Ov ⊂ D×OS
Ov contains the Ov-section of D×OS

Ov→Spec(Ov) defined by N0
v ,

and is finite and étale over Ov. Thus there exists Nv ∈ D(Ov) arbitrarily close
to N0

v such that v(f(Nv)) ≡ 1 mod n, hence its image Mv ∈ C(Ov) ⊂ C(kv)
satisfies α(Mv) 6= 0. �

Remark 12.6.2 (i) Here is the simplest case at which the reader might want to
look before reading the proof above. Let X = A1

k = Spec(k[t]) and let U = Gm,k
be given by t 6= 0. Let a ∈ k∗ r k∗2. Consider α = (a, t) ∈ Br(U). There exist
infinitely many places v for which there exists tv ∈ k∗v with (a, tv) 6= 0 ∈ Br(kv).

(ii) In this example there also exist infinitely many places v such that α
identically vanishes on U(kv). The analogous property holds more generally
for any smooth connected curve X, but does not extend to higher dimension.
Suppose X is a smooth and geometrically integral variety over k of dimension
at least 2, U ⊂ X is an open set, α ∈ Br(U) and there exists a codimension 1
subvariety Z ⊂ X such that ∂(α) ∈ H1(k(Z),Q/Z) defines a cyclic extension
L/k(Z) with the property that k is algebraically closed in L. Then for almost
all places v of k, the class α takes at least one non-zero value on U(kv).

Starting from Theorem 12.6.1, a combinatorial argument leads to the follow-
ing extremely useful result. This version of D. Harari’s “formal lemma” [Har94,
Cor. 2.6.1, p. 233] was stated in [CTS00].

Theorem 12.6.3 (Harari) Let X be a smooth, geometrically integral variety
over a number field k. Let U ⊂ X be a non-empty open set and let B ⊂ Br(U)
be a finite subgroup. Let (Pv) ∈ U(Ak)B∩Br(X). For any finite set S of places
of k there exists an adelic point (Mv) ∈ U(Ak), where Mv = Pv for v ∈ S, such
that for any β ∈ B we have ∑

v∈Ω

invv β(Mv) = 0.

Proof. Replacing S by a bigger finite set of places we can find OS-schemes X and
U of finite type, together with an open immersion of OS-schemes U→X which
gives us back the open immersion U→X after restricting to the generic point
Spec(k) of Spec(OS). In doing so we can ensure that Pv ∈ U(Ov) for v /∈ S.
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Since B is finite, by increasing S further, we may assume that B ⊂ Br(U) and
B ∩ Br(X) ⊂ Br(X ). Since Br(Ov) = 0, this implies that β(Pv) = 0 for any
β ∈ B and any v /∈ S. Likewise, β(Mv) = 0 for any β ∈ B ∩ Br(X) and any
point Mv ∈ X (Ov), where v /∈ S.

Let α ∈ B, α /∈ Br(X). According to Theorem 12.6.1, there exist an infinite
set Tα of places of k disjoint from S and a point Nv ∈ U(kv) ∩ X (Ov) for each
v ∈ Tα such that α(Nv) 6= 0. The elements of B ∩ Br(X) take the zero value
on the points Nv, thus the evaluation of the elements of B at Nv defines a
homomorphism

ϕα,v : B/(B ∩ Br(X)) −→ Br(kv)−̃→Q/Z

such that ϕα,v(α) 6= 0. Since B/(B ∩ Br(X)) is a finite group, the group
Hom(B/(B ∩Br(X)),Q/Z) is finite too. There thus exists an infinite subset of
Tα such that the attached homomorphisms ϕα,v are all equal. Replacing Tα by
this subset, we may thus assume that there exists a homomorphism

ϕα : B/(B ∩ Br(X)) −→ Q/Z

with the property ϕα(α) 6= 0, such that for any β ∈ B/(B ∩ Br(X)) and any
v ∈ Tα we have

ϕα(β) = β(Nv) ∈ Q/Z. (12.6)

Let C be the subgroup of Hom(B/(B ∩ Br(X)),Q/Z) generated by the ϕα for
α ∈ B. Consider the natural bilinear pairing

B/(B ∩ Br(X))× C −→ Q/Z.

Since ϕα(α) 6= 0, the left kernel of this pairing is zero. We thus obtain an
injective map of B/(B ∩ Br(X)) into Hom(C,Q/Z). Comparing the orders of
these finite groups we conclude that C = Hom(B/(B ∩ Br(X)),Q/Z).

The assumption in the theorem ensures that the linear map B→Q/Z which
sends β to −

∑
v∈S β(Pv) descends to a linear map B/(B ∩ Br(X))→Q/Z. We

have just seen that this map can be written as a sum of maps ϕα (possibly with
repetitions). By (12.6) each of the ϕα involved in this sum can be written as
β 7→ β(Nv), this time without repeating v – since for each α we have an infinite
set of places Tα at our disposal. We have thus found a finite set T of places
v /∈ S and points Nv ∈ U(kv) ∩ X (Ov) for v ∈ T such that∑

v∈S
invvβ(Pv) +

∑
v∈T

invvβ(Nv) = 0

for each β ∈ B/(B ∩ Br(X)). This implies∑
v∈S

invvβ(Pv) +
∑
v∈T

invvβ(Nv) = 0

for each β ∈ B. We then have∑
v∈S

invvβ(Pv) +
∑
v∈T

invvβ(Nv) +
∑

v/∈S∪T

invvβ(Pv) = 0



266CHAPTER 12. THE BRAUER–MANIN SET AND THE FORMAL LEMMA

for each β ∈ B. This completes the proof once we take S1 = S ∪ T , Mv = Nv
for v ∈ T and Mv = Pv for v /∈ S ∪ T . �

Remark 12.6.4 Let X ⊂ Xc be a smooth compactification. Theorem 12.6.3
for U ⊂ Xc implies the same theorem for U ⊂ X since Br(Xc) ⊂ Br(X). Since
Br(Xc) = Brnr(k(U)/k), in the condition of Theorem 12.6.3 we can replace
B∩Br(X) by the smaller subgroup B∩Brnr(k(U)/k), with the same conclusion.

Formal lemma for torsors under a torus

The following statement and its proof are taken from [BMS14, Prop. 3.1].

Theorem 12.6.5 Let U be a smooth and geometrically integral variety over a
number field k. Let T be a k-torus. Let Y→U be a torsor over U under T , and
let θ ∈ H1(U, T ) be its class. Let B ⊂ Br(U) be the finite subgroup consisting
of cup-products θ ∪ γ, where γ is an element of the finite group H1(k, T̂ ). Let
(Mv) ∈ U(Ak) be a point orthogonal to B∩Brnr(k(U)/k). Let S ⊂ Ω be a finite
set of places. Then there exists an α ∈ H1(k, T ) such that the twisted torsor Y α

has points in all completions of k and such that for each v ∈ S, the point Mv

lies in the image of Y α(kv)→U(kv).

Proof. By Theorem 12.6.3 and Remark 12.6.4 there exists an adelic point (Pv) ∈
U(Ak) with Mv = Pv for v ∈ S such that∑

v∈Ω

invv [θ(Pv) ∪ γ] = 0 ∈ Q/Z for all γ ∈ H1(k, T̂ ).

Thus (θ(Pv)) ∈ ⊕v∈ΩH1(kv, T ) is orthogonal to H1(k, T̂ ). From the exact se-
quence (12.4) we obtain that (θ(Pv)) is the image of an element α ∈ H1(k, T )
under the diagonal map H1(k, T )→⊕v∈Ω H1(kv, T ). Twisting Y by α gives a
torsor over Y under T which has a kv-point over Pv for each v ∈ Ω. �

Remark 12.6.6 In the proof of [CTHS03, Thm. 3.1] there is a similar ar-
gument with a stronger hypothesis and a stronger conclusion. There we have
an additional condition k̄[U ]∗ = k̄∗. Starting from an element of X(Ak)Br, in
the situation described in loc. cit. one produces an adelic point on a suitable
twist Y α with the additional property that this adelic point is orthogonal to (a
suitable subgroup) of the unramified Brauer group of Y α.



Chapter 13

Are rational points dense in
the Brauer–Manin set?

Let X be a smooth, projective and geometrically integral variety over a number
field k. When X(k) is dense in X(Ak), weak approximation holds for X. In the
previous chapter we have seen that this is impossible if the Brauer–Manin set
X(Ak)Br is smaller thanX(Ak). Thus a natural question is this: isX(k) a dense
subset of X(Ak)Br? Write X(k)cl for the closure of X(k) in X(Ak). If X(k)cl =
X(Ak)Br we shall say that weak approximation holds for the Brauer–Manin set
of X. Roughly speaking, one asks whether the Brauer–Manin obstruction is
the only obstruction to weak approximation – and, in particular, to the Hasse
principle – in the sense that weak approximation holds for those adelic points
which are not obstructed by the Brauer group. In particular, one would like to
produce geometric classes of varieties such that weak approximation holds for
their Brauer–Manin sets. One would also like to construct examples when this
is not so.

In Section 13.1 we discuss Colliot-Thélène’s conjecture that weak approx-
imation holds for the Brauer–Manin set of rationally connected varieties. In
Section 13.2 we look at Schinzel’s Hypothesis (H), its consequences for rational
points, and results of Green, Tao and Ziegler from additive combinatorics that
in some cases can be used instead of Schinzel’s Hypothesis. We state a conjec-
ture of Harpaz and Wittenberg which allows one to establish Colliot-Thélène’s
conjecture for the total space of a fibration over P1

k if this conjecture holds for
the smooth k-fibres. We explain the idea in an important particular case. In
Section 13.3 we give an overview of the theory of obstructions to the local-to-
global principle, in other words, various canonically defined subsets of X(Ak)
that contain X(k). We discuss relations between them and give several examples
to demonstrate insufficiency of these obstructions.

267
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13.1 Rationally connected varieties: a conjec-
ture

Rationally connected varieties

Let k be a field of characteristic 0. As usual, we denote an algebraic closure of
k by k̄ . Unless otherwise mentioned, a geometrically rational variety X over k
is a smooth, projective, geometrically integral variety such that X = X ×k k̄ is
birationally equivalent to the projective space of the same dimension.

Concrete examples of such varieties whose arithmetic is already difficult to
understand are smooth projective models of affine hypersurfaces in Ad+1

k with
equation

NK/k(Ξ) = P (t),

where K/k is a finite extension of number fields of degree [K : k] = d, the
variable Ξ takes values in K (hence represents d variables with values in k) and
P (t) ∈ k[t] is a separable polynomial of degree at least 2.

Definition 13.1.1 A rationally connected variety over a field k is a smooth,
projective and geometrically integral variety X such that over any algebraically
closed field K containing k, any two K-points of X are connected by a rational
curve, i.e. lie in the image of a morphism P1

K→XK .

Rationally connected varieties have been studied by Kollár, Miyaoka and
Mori, and by Campana. They can be characterised by many equivalent proper-
ties. In particular, in the above definition one may simply assume that any two
points are connected by a chain of rational curves, or even that two ‘general’
points are connected by such a chain. A standard reference is Kollár’s book
[Kol99] to which we refer for these equivalences and for the following properties.

(1) A rationally connected variety of dimension 1 is a smooth conic.
(2) A rationally connected variety of dimension 2 is a geometrically rational

surface.
(3) Any geometrically unirational variety is rationally connected. (The con-

verse is an open question.)
(4) By a theorem of Campana and Kollár–Miyaoka–Mori, any Fano variety

(that is, a smooth projective variety with ample anticanonical bundle) is ratio-
nally connected. In particular, smooth hypersurfaces in Pn of degree d ≤ n are
rationally connected.

(5) If f : X→C is a dominant morphism of smooth, projective, geometrically
integral varieties such that C is a curve and the generic geometric fibre of f is
rationally connected, then f has a section over k̄. This is a deep theorem,
proved by Graber, Harris and Starr [GHS03] in characteristic 0, and by de Jong
and Starr in arbitrary characteristic [deJS03]. It implies that every closed fibre
of f has an irreducible component of multiplicity 1. As a consequence of the
existence of sections over rational curves one obtains that if X→Y is a dominant
morphism of smooth, projective, geometrically integral varieties such that Y
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and the generic geometric fibre are rationally connected, then X is rationally
connected.

(6) If X is a rationally connected variety over k, then Hi(X,OX) = 0 for
i ≥ 1 and Pic(X) is a free abelian group of finite type [Deb01, Cor. 4.18]. In
particular, Br(X) is finite and Br(X)/Br0(X) is finite (Theorem 4.4.2).

(7) By a theorem of Enriques, Manin, Iskovskikh, and Mori, any geometri-
cally rational surface is birationally equivalent to a surface of at least one of the
following families:

(i) A smooth del Pezzo surface of degree d, where 1 ≤ d ≤ 9.
(ii) A conic bundle over a conic (possibly with degenerate fibres).

A del Pezzo surface is a smooth, projective, geometrically integral surface X
such that the anticanonical bundle ω−1

X is ample. The integer d = (ωX .ωX) is
called the degree of X; it satisfies 1 ≤ d ≤ 9. Del Pezzo surfaces of degree 4 are
smooth complete intersections of two quadrics in P4, and del Pezzo surfaces of
degree 3 are smooth cubic surfaces in P3, see [Man74] and [Kol99].

Geometrically rational surfaces X with d = (ωX .ωX) ≥ 5 are arithmetically
simple: they are rational over k when X(k) 6= ∅. If k is a number field, the
property X(k)cl = X(Ak) holds for such surfaces. In particular, they satisfy
the Hasse principle.

Colliot-Thélène’s conjecture

In the case of surfaces, the following conjecture was put forward as an open
question by Colliot-Thélène and Sansuc in 1979, see [CTS80]. The general
question was raised in Colliot-Thélène’s lectures at the Institut Henri Poincaré
in 1999 and mentioned again in [CT03].

Conjecture 13.1.2 If X is a rationally connected variety over a number field
k, then X(k)cl = X(Ak)Br.

In other words, the Brauer–Manin set of a rationally connected variety is
conjectured to satisfy weak approximation.

This conjecture is birationally invariant.
Since Br(X)/Br0(X) is finite when X is rationally connected, the closed set

X(Ak)Br ⊂ X(Ak) is open. In particular, if the conjecture holds, and X(k) 6= ∅,
then weak weak approximation (Definition 12.2.4) holds for X.

A partial converse is due to Harari: if a smooth, projective and geometrically
integral variety X over a number field k satisfies weak weak approximation over
any finite extension of k, then the geometric fundamental group of X is trivial,
see [Har00, Cor. 2.4] and the remark after it. This implies H1(X,OX) = 0.

Here are some of the consequences of conjectural weak weak approxima-
tion for rationally connected varieties. In particular, these are consequences of
Conjecture 13.1.2.

(1) For any rationally connected variety X over a number field k with a
k-point the set X(k) is Zariski dense in X. Already in dimension 2, i.e. for
geometrically rational surfaces, this is not known.
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(2) Any finite group G is the Galois group of a Galois field extension of k
(see [Eke90]). The case k = Q is the inverse Galois problem, a well known old
open problem.

(3) Let X be a geometrically rational surface over a number field k such
that the Brauer–Manin obstruction is the only obstruction to the existence of
a rational point on X over any finite extension of k. Then X contains a point
defined over some abelian extension of k [Kan87, Thm. 3, Remark].

There is theoretical evidence for Conjecture 13.1.2 for geometrically rational
conic bundle surfaces. Indeed, in this case it follows from Schinzel’s Hypothesis
(H), see Section 13.2.1.

For conic bundles over the projective line with r ≤ 5 geometric degenerate
fibres, Conjecture 13.1.2 is known. The case r ≤ 3 is easy: in this case the Hasse
principle and weak approximation hold. For Châtelet surfaces, a particular kind
of conic bundles with r = 4, the conjecture was proved by Colliot-Thélène,
Sansuc and Swinnerton-Dyer [CTSS87]. The general case with r = 4 is due to
Salberger (unpublished) and to Colliot-Thélène [CT90]. The case r = 5 is due
to Salberger and Skorobogatov [SSk91]. Swinnerton-Dyer also discusses this
case as well as some specific cases with r = 6. Short proofs of these results can
be found in [Sko01, Ch. 7].

For del Pezzo surfaces of degree 4 with a k-point Conjecture 13.1.2 is known
(Salberger and Skorobogatov [SSk91]). This is one case where theorems about
zero-cycles ultimately lead to results on rational points. For general del Pezzo
surfaces of degree 4, Wittenberg in his thesis [Witt07] develops a method of
Swinnerton-Dyer [SwD95, CTSS98b] to produce strong evidence – conditional
on Schinzel’s Hypothesis (H) and the finiteness of Tate–Shafarevich groups of
elliptic curves.

In higher dimension, the case of intersections of two quadrics has been much
discussed (Mordell; Swinnerton-Dyer; Colliot-Thélène, Sansuc and Swinnerton-
Dyer [CTSS87]; Heath-Brown [HB18]). Let us quote the results for arbitrary
smooth complete intersections of two quadrics in Pnk . For n ≥ 5, if there is
a k-point, then weak approximation holds. For n ≥ 7, the Hasse principle is
known. For n ≥ 5, this is also conjectured to hold, and is proved conditionally
on Schinzel’s Hypothesis (H) and the finiteness of Tate–Shafarevich groups of
elliptic curves in [Witt07].

For diagonal cubic surfaces X over Q, there is numerical evidence [CTKS87]
that X(AQ)Br 6= ∅ implies X(Q) 6= ∅. For diagonal cubic hypersurfaces of di-
mension at least 3 over Q, Swinnerton-Dyer [SwD01] proves the Hasse principle
conditionally on the finiteness of Tate–Shafarevich groups of elliptic curves over
number fields.

When the number of variables is large with respect to the degree, the cir-
cle method can be applied. This method also gives good results in relatively
low dimension for cubic hypersurfaces: smooth cubic hypersurfaces in PnQ have
rational points when n ≥ 9 (Heath-Brown) and satisfy the Hasse principle for
n = 8 (Hooley).

If X is birationally equivalent to a homogeneous space of a connected linear
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algebraic group with connected geometric stabilisers, then X(k)cl = X(Ak)Br.
The case when the stabilisers are trivial is a theorem of Sansuc [San81, Cor.
8.7]. Using [San81, Lemme 6.1] (a special case of Harari’s formal lemma) as in
the proof of [San81, Cor. 8.7], one immediately deduces the case of connected
stabilizers from a theorem of Borovoi [Bor96, Cor. 2.5]. For such X, one has
the refined statement that X(k) is not empty as soon as X(Ak)B(X) 6= ∅, with
B(X) ⊂ Br(X) as defined after Remark 12.3.3.

13.2 Schinzel’s Hypothesis (H) and additive num-
ber theory

13.2.1 Applications of Schinzel’s hypothesis

Let us recall the statement of Schinzel’s Hypothesis (H) (1958) which is an elab-
oration of qualitative conjectures of Bouniakowsky (1857) and Dickson (1904),
and of quantitative conjectures of Hardy and Littlewood (1922) generalised by
Bateman and Horn (1962).

Conjecture 13.2.1 Schinzel’s Hypothesis (H) Let Pi(x) ∈ Z[x], for i =
1, . . . , r, be irreducible polynomials with positive leading coefficients. Assume
that no prime divides all the numbers

∏n
i=1 Pi(m), where m ∈ Z. Then there

exist infinitely many positive integers n such that each Pi(n) is a prime number,
for i = 1, . . . , r.

Note that only primes p with p ≤
∑
i deg(Pi) could divide all the numbers∏n

i=1 Pi(m). The only known case of this conjecture is the case of one poly-
nomial of degree one: this is Dirichlet’s theorem on primes in an arithmetic
progression. That theorem was used by Hasse (1924) to prove the Hasse prin-
ciple for zeros of quadratic forms in 4 variables once the case of 3 variables is
known. In 1979, it was noticed [CTS82] that Hypothesis (H) can be used to
give conditional proofs of the Hasse principle for other diophantine equations.
Here is one of the simplest cases, taken directly from [CTS82, §5].

Theorem 13.2.2 (Colliot-Thélène–Sansuc) Let P (x) ∈ Q[x] be an irre-
ducible polynomial, and let a ∈ Q∗. Assume Schinzel’s Hypothesis (H). Then
the Hasse principle and weak approximation hold for any smooth model of the
affine variety

y2 − az2 = P (x) 6= 0.

Proof. Let us denote this affine variety by U . It is enough to prove the theorem
for U . We shall here make two simplifying hypotheses. We shall assume a > 0
and shall prove weak approximation only at the finite places. We refer the reader
to [CTS82, §5] for the technical arguments required to handle the real place.
(Such extra efforts are often needed when handling the archimedean places.)

Assume that we are given points

(yp, zp, xp) ∈ U(Qp)
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for all primes p. Let S be a finite set of primes containing p = 2, the primes
p such that vp(a) 6= 0, the primes p such that P (x) /∈ Zp[x], the primes for
which the reduction of P (x) modulo p has degree less than degP (x) or is not
separable, and the primes p ≤ deg(P ).

Using the irreducibility of P (x), Hensel’s lemma and Schinzel’s Hypothesis
(H), one finds λ ∈ Q very close to each xp ∈ Qp for p ∈ S and such that

P (λ) = q
∏
p∈S

pnp ∈ Q,

where np ∈ Z and q is a prime not in S (“the Schinzel prime”). A flexible
version of this part of the argument was stated by Serre over any number field,
see [CTS94, Prop. 4.1].

Then the rational number P (λ) 6= 0 is represented by the quadratic form
y2− az2 in each completion of Q (including the reals, since we assumed a > 0),
except possibly in Qq. By Corollary 12.1.10, P (λ) is represented by this form
over Qq and over Q. Using weak approximation on the affine conic y2 − az2 =
P (λ) and the implicit function theorem (Theorem 9.5.1), one concludes that
weak approximation away from the reals holds for U . �

In the above theorem, the hypothesis that the polynomial P (t) is irreducible
implies that for any smooth projective model X of U , we have Br(X)/Br0(X) =
0 (see Proposition 10.2.3, ensuing exercises, and Remark 10.2.8). If one allows
the separable polynomial P (x) to be reducible, then one may have Br(X)/Br0(X) 6=
0 and one may produce counter-examples to the Hasse principle, e.g. Iskovskikh
counter-example (§12.5). Using a descent argument [CTS82] or Harari’s formal
lemma for elements of the Brauer group (Theorem 12.6.3) or for torsors under
suitable tori (Theorem 12.6.5) on the open variety U , one may more generally
prove that under Schinzel’s hypothesis, X(Q) is dense in X(AQ)Br.

To prove general theorems along these lines, it is convenient to use the follow-
ing Hypothesis (H1). As noted by Serre, this general statement is a consequence
of Hypothesis (H). The proof of this implication is given in [CTS94, Prop. 4.1].

Conjecture 13.2.3 Hypothesis (H1) Let k be a number field and let Pi(t),
for i = 1, · · · , n, be irreducible polynomials in k[t]. Let S be a finite set of places
of k containing all infinite places, all finite places v where the coefficients of
some Pi(t) are either all contained in the maximal ideal of Ov or one of the
coefficients is not in Ov, and all finite places above a prime p less than or equal
to the degree of the polynomial Nk/Q(

∏n
i=1 Pi(t)). Given λv ∈ kv for v ∈ S, one

can find λ ∈ k, integral away from S, arbitrarily close to each λv in the v-adic
topology for finite v ∈ S, arbitrarily big in the archimedean completions kv, and
such that for each i = 1, · · · , n, Pi(λ) ∈ k is a unit in kw for all places w /∈ S
except perhaps one place wi, where it is a uniformising parameter.

Using the formal lemma, one proves the following general result.
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Theorem 13.2.4 Let X be a smooth, projective and geometrically integral vari-
ety over a number field k and let X→P1

k be a dominant morphism. Assume that
the generic fibre is geometrically integral and that each closed fibre Xm/k(m)
contains a component of multiplicity one Y such that the integral closure of
k(m) in the function field of Y is an abelian extension. Assuming Schinzel’s

Hypothesis (H), if X(Ak)Brvert(X/P1
k) 6= ∅, then there exists c ∈ P1(k) such that

Xc is smooth and Xc(Ak) 6= ∅. Moreover, given a finite set S of places of k,
and a point (Mv) ∈ X(Ak)Brvert , one can find a point c ∈ P1(k) such that Xc

contain a kv-point close to Mv for each v ∈ S.

Proof. This is [CTSS98, Thm. 1.1]. �

Here the same reciprocity argument as in Hasse’s proof is used: the abelian
extensions mentioned in the theorem give rise to a cyclic extension L/K of
number fields together with an element in K∗ which is a local norm at all places
of K except possibly one; then one concludes that the element is a global norm.

The following special case was proved in [CTS94].

Theorem 13.2.5 Let X be a smooth, projective and geometrically integral va-
riety over a number field k and let X→P1

k be a dominant morphism. Assume
that the generic fibre is a smooth quadric of dimension 1 or 2. Then Br(X) =
Brvert(X/P1

k). Assuming Schinzel’s hypothesis H, we have X(k)cl = X(Ak)Br.

In relative dimension at least 3, that theorem holds unconditionally, and is
easy to prove.

13.2.2 Enters additive combinatorics

Over the rationals, a breakthrough happened in 2010. Work of B. Green and
T. Tao, followed by further work with T. Ziegler (2012), proves something which
is essentially a two variable version of Schinzel’s Hypothesis (H), when restricted
to a system of polynomials with integral coefficients each of total degree one.
The initial results of Green and Tao, together with further work by L. Matthie-
sen on additive combinatorics, first led to unconditional results in the spirit
of “Schinzel implies Hasse”. This is the work of Browning, Matthiesen and
Skorobogatov [BMS14]. A typical result is the unconditional proof of weak
approximation for the Brauer–Manin set of a conic bundle over P1

Q when all

the singular fibres are above Q-rational points of P1
Q. They also prove a similar

result for the total space of quadric bundles of relative dimension 2 over P1
Q.

Until then, for most such Q-varieties, we did not know that existence of one
rational point implies that rational points are Zariski dense – unless one was
willing to accept Schinzel’s Hypothesis (H).

The work of Green, Tao and Ziegler led to further progress. Here is the exact
result used, reproduced from [HSW14].

Theorem 13.2.6 (Green–Tao–Ziegler) Let L1(x, y), . . . , Lr(x, y) ∈ Z[x, y]
be pairwise non-proportional linear forms, and let c1, . . . , cr ∈ Z. Assume that
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for each prime p there exists (m,n) ∈ Z2 such that p does not divide Li(m,n)+ci
for any i = 1, . . . , r. Let K ⊂ R2 be an open convex cone containing a point
(m,n) ∈ Z2 such that Li(m,n) > 0 for i = 1, . . . , r. Then there exist infinitely
many pairs (m,n) ∈ K ∩ Z2 such that each Li(m,n) + ci is a prime.

From this theorem, Harpaz, Skorobogatov and Wittenberg [HSW14] deduced
a number of results on weak approximation for the Brauer–Manin set. Let
us describe the argument in a simple case. For simplicity, we do not consider
approximation at the real place. We start with an easy consequence of Theorem
13.2.6. Since we are ignoring the real place, in Theorem 13.2.6, one may ignore
the cone K. This shortens the proof of the following lemma.

Lemma 13.2.7 [HSW14, Prop. 1.2] Let ei, for i = 1, . . . ,m, be distinct in-
tegers. Let S be a finite set of primes containing all the primes which divide
some ei − ej for i 6= j. For each p ∈ S, suppose we are given (up, vp) ∈ Q2

p

with up − eivp 6= 0 for each i = 1, . . . ,m. Let ε > 0. Then there exist a
pair (u0, v0) ∈ Q2 which is ε-close to each (up, vp) for the p-adic topology, and
distinct primes pi outside of S such that for each i,

u0 − eiv0 = piqi ∈ Q∗,

where qi ∈ Q∗ is a unit outside of S ∪ {pi}. �

Theorem 13.2.8 Let k = Q. Let U be the surface

y2 − az2 = b

2n∏
i=1

(t− ei) 6= 0,

where a, b ∈ Q∗ and e1, . . . , e2n are distinct elements of Q. Assume a > 0. Let
X be a smooth projective variety containing U as a dense open subset and let
(Mp) ∈ X(AQ)Br. Then there are Q-points of U arbitrarily close to (Mp) at
the finite primes. In particular, Q-points are Zariski dense in U and weak weak
approximation holds.

Proof. A linear change of variables allows us to assume ei ∈ Z for each i.
The argument used to prove Theorem 13.2.4 would lead to use of Schinzel’s
Hypothesis (H) for the system of polynomials t − ei, and that is a wide open
conjecture.

We shall instead use a simple but slightly mysterious trick to replace the
unique variable t by two variables (u, v). We set t = u/v. Consider the variety
V given by

Y 2 − aZ2 = b

2n∏
i=1

(u− eiv) 6= 0, v 6= 0.

The formulas y = Y/vn, z = Z/vn, t = u/v give an isomorphism V ∼= U ×Gm,
where the coordinate on Gm is v. Let V ⊂ Vc be a smooth compactification.
Then Vc is birationally equivalent to X × P1

Q. By Corollary 5.2.6 the Brauer
group is a stable birational invariant, so Br(X) ∼= Br(Vc).
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Since X is geometrically rational, Br(X)/Br0(X) is finite (Cor. 4.4.4). Since
any element of Br(X) vanishes on almost all X(Qp), this allows us to move (Mp)
in an adelic neighbourhood while staying in X(AQ)Br. We may thus assume
that each Mp is in U and we may find an adelic point (Np) ∈ Vc(AQ)Br such
that for each place p the point Np is in V (Qp) and projects to Mp ∈ U(Qp).

We are given a finite set S of places and a neighbourhood of Mp ∈ U(Qp)
for each p ∈ S. We produce neighbourhoods of the points Np which map into
the given neighbourhoods of Mp.

One then uses Harari’s formal lemma (Theorem 12.6.3) for the finite family
of quaternion algebras αi = (a, u− eiv) ∈ Br(V ); these classes need not belong
to Br(Vc). This produces a new element (Pp) ∈ V (AQ) with Pp = Np for
p ∈ S, with coordinates Yp, Zp, up, vp and such that

∑
v invv(αi(Pp)) = 0. Let

K = Q(
√
a). From the exact sequence of class field theory (12.3)

1 −→ Q∗/N(K∗) −→
⊕
p

Q∗p/N(Kp)
∗ −→ Z/2,

we conclude that for each i there exists ci ∈ k∗ such that for each place p, the
map Br(Q)→Br(Qp) sends the quaternion class (a, ci) to (a, up−eivp). We thus
have elements ci ∈ Q∗ and an adelic point (Rp) on the variety given by the
system {

Y 2 − aZ2 = b
∏2n
i=1(u− eiv) 6= 0,

y2
i − az2

i = ci(u− eiv) 6= 0, i = 1, . . . , 2n,

such that Rp projects to Pp. The variety given by this system is isomorphic to

the product of the conic Y 2 − aZ2 = b
∏2n
i=1 ci and the variety W given by

y2
i − az2

i = ci(u− eiv) 6= 0, i = 1, . . . , 2n.

The conic given by Y 2−aZ2 = b
∏2n
i=1 ci satisfies weak approximation. Now we

apply Lemma 13.2.7 to a finite set S of primes containing the primes p dividing
some ei − ej , i 6= j, the prime 2 and the primes p such that a or some ci is not
a unit in Q∗p. This produces a pair (u0, v0) ∈ Q2 close to each (up, vp) at each
place p ∈ S, such that each equation

y2
i − az2

i = ci(u0 − eiv0) 6= 0

has solutions in all completions of Q, except possibly in Qpi . Since each of these
equations is the equation of a conic, it has a solution over Q, and satisfies weak
approximation. �

Theorem 13.2.8 is a special case of the following result from [HSW14].

Theorem 13.2.9 Let X be a smooth, proper, geometrically integral variety over
Q equipped with a dominant morphism f : X→P1

Q such that
(i) the generic fibre of f is geometrically integral;
(ii) the only non-split fibres Xm are above Q-rational points m of P1

Q and
each such fibre contains a component Y of multiplicity one such that the integral
closure of Q in Q(Y ) is an abelian extension of Q;
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(iii) the Hasse principle and weak approximation hold for the smooth fibres.
Then X(Q)cl = X(AQ)Br.

See Definition 9.1.3 for the definition of a split scheme over a field. The
fibre Xm over the residue field k(m) at a closed point m is split if and only if it
contains a multiplicity one component which is geometrically integral.

Here are some concrete examples.

Corollary 13.2.10 Let Ki/Q, for i = 1, . . . , r, be cyclic extensions. Let Pi(t),
for i = 1, . . . , r, be non-zero polynomials that are products of linear factors over
Q. Let X be a smooth projective variety over Q that contains the variety given
by the system of equations

NKi/Q(Ξi) = Pi(t) 6= 0, i = 1, . . . , r,

as a dense open subset. Then X(Q)cl = X(AQ)Br.

Corollary 13.2.11 Let Ki/Q, for i = 1, . . . , r, be cyclic extensions. Let bi ∈
Q∗ and ei ∈ Q, for i = 1, . . . , r. Then the variety over Q given by the system
of equations

NKi/Q(Ξi) = bi(t− ei) 6= 0, i = 1, . . . , r,

satisfies weak approximation.

To put this last result in perspective, here is what was known before 2010.
Corollary 13.2.11 is obvious when r = 1. The case r = 2 and K1 and K2 both
of degree 2 is easy, as it reduces to quadrics. An old result of Birch, Davenport
and Lewis obtained by the circle method gives the statement for r = 2 and
K1 = K2 of arbitrary degree over Q. The case r = 3 and K1 = K2 = K3 of
degree 2 over Q was covered by Colliot-Thélène, Sansuc and Swinnerton-Dyer
in [CTSS87]. Not much else was known.

The results above concern the total space of a 1-parameter family X→P1
k

with the following properties:

(i) The smooth fibres satisfy weak approximation.
(ii) Each non-split fibre Xm over a closed point m contains a component of

multiplicity one Y such that the algebraic closure of k(m) in k(Y ) is abelian.
(iii) k = Q and the non-split fibres are over Q-rational points (this last

hypothesis is needed to use the results of Green, Tao and Ziegler).

It took time to get results where hypothesis (i) or (ii) could be relaxed.
Unconditional results without the abelianity conditions were obtained under
the stringent condition: all fibres of the morphism X→P1

k except one above a
k-point contain a geometrically integral component of multiplicity one (Harari
[Har94, Har97]).

A few, delicate results were obtained for birational models of varieties given
by an equation

NK/k(Ξ) = P (t)
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under no condition on the field extension K/k but under the condition that the
polynomial P (t) has at most two roots over k [HBS02, CTHS03, BH12, DSW12].

First interesting cases where the abelianity condition, was relaxed while
allowing an arbitrary number of bad fibres were given by D. Wei [Wei12]. Under
Schinzel’s hypothesis H, he obtained results for varieties given by an equation

NK/k(Ξ) = P (t)

where K/k is an arbitrary field extension of degree 3.

In [HW15] Harpaz and Wittenberg propose a conjecture. Under this conjec-
ture, they establish a result which requires neither condition (i) nor condition
(ii). Work of Browning and Matthiesen has established this conjecture in situ-
ations analogous to those treated by Green, Tao and Ziegler.

13.2.3 Conjecture of Harpaz and Wittenberg

The following is [HW15, Conjecture 9.1].

Conjecture 13.2.12 (HW) Let k be a number field. Let n ≥ 1 be an integer
and let P1(t), . . . , Pn(t) ∈ k[t] be pairwise distinct irreducible monic polynomials.
Write ki = k[t]/(Pi(t)) and let ai ∈ ki denote the class of t. Suppose that for
each i = 1, . . . , n we are given a finite extension Li of ki and an element bi ∈ k∗i .
Let S be a finite set of places of k containing the real places of k and the finite
places above which, for some i, bi is not a unit or Li/ki is ramified. Finally,
for each v ∈ S, fix an element tv ∈ kv. Assume that for each i = 1, . . . , n and
each v ∈ S, there exists xi,v ∈ (Li ⊗k kv)∗ such that

tv − ai = biNLi⊗kkv/ki⊗kkv (xi,v) ∈ ki ⊗k kv.

Then there exists t0 ∈ k satisfying the following conditions:
(1) t0 is arbitrarily close to tv for v ∈ S;
(2) for every i = 1, ..., n and every finite place w of ki with w(t0 − ai) > 0,

either w lies above a place of S or the field Li has a place of degree 1 over w.

It is convenient to introduce

ε =

n∑
i=1

[ki : k].

For an arbitrary number field k, Conjecture HW is known in the following cases.

(i) ε ≤ 2 (see [HW15, Thm. 9.11 (i)]). The essential ingredient is strong
approximation. In the case k1 = k2 = k, one may also give a proof using
Dirichlet’s theorem in a suitable field extension of the ground field. If one wants
to control the situation at the real places, this method requires the use of a
theorem of Waldschmidt.

(ii) ε = 3 and [Li : ki] = 2 for each i (see [HW15, Thm. 9.11 (ii)]).
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When k = Q, Conjecture HW is also known in these cases:

(iii) Any ε = n ≥ 1, ki = Q for each i = 1, . . . , n, and arbitrary number
fields L1, . . . , Ln. This important case is due to L. Matthiesen [Mat18], who
used the results by Green, Tao and Ziegler, as well as her joint work with T.
Browning [BM17]. See [HW15, Theorem 9.14].

(iv) ε = 3, n = 2, k1 = Q and [k2 : Q] = 2. This case was established by
T. Browning and D. Schindler [BS] who used [Mat18] to strengthen the sieve
method approach of T. Browning and R. Heath-Brown in [BH12].

(v) ε = 3, n = 1, [k1 : Q] = 3 and the extension L1/k1 is “almost abelian”
[HW15, Definition 9.4], for example, L1/k1 is abelian or [L1 : k1] = 3. As
noticed in [HW15, Remark 9.7], this follows from the work of Heath-Brown and
Moroz on primes represented by cubic forms in two variables.

In [HW15, Prop. 9.9, Cor. 9.10], we find closely related conjectures which
are possibly more appealing than Conjecture HW. The authors produce specific
quasi-affine varieties W with the property that if strong approximation off any
finite place v0 holds for these varieties, then Conjecture HW holds. (Note that
this hypothesis on strong approximation implies that these varieties satisfy the
Hasse principle.) In the particular case where each ki = k, each variety W is an
open subset of a variety given by the system of equations

u− aiv = biNLi/k(Ξi), i = 1 . . . , r.

Here ai ∈ k and bi ∈ k∗ are such that ai 6= aj for i 6= j. The open set W is the
complement to the union of the subset F0 given by u = v = 0 and the subsets
Fi, i = 1, . . . , n, given by the condition that the projection to the coordinate
Ξi belongs to the singular locus of RLi/k(A1

Li
) r RLi/k(Gm,Li

) (which implies
u− aiv = 0).

Harpaz and Wittenberg prove the following main result [HW15, Thm. 9.17,
Cor. 9.23].

Theorem 13.2.13 Let X be a smooth, projective and geometrically integral
variety over a number field k and let X→P1

k be a dominant morphism. Assume
that the generic fibre is a rationally connected variety. Assuming Conjecture
HW, if X(Ak)Br 6= ∅, then there exists t0 ∈ P1(k) with smooth fibre Xt0 such
that Xt0(Ak)Br is non-empty. Moreover, given a finite set S of places of k and
a point (Mv) ∈ X(Ak)Br, one can choose t0 such that Xt0 contains kv-points
close to Mv for v ∈ S.

Using Borovoi’s theorem [Bor96] quoted at the end of Section 13.1 we obtain

Corollary 13.2.14 Let X be a smooth, projective and geometrically integral
variety over a number field k and let X→P1

k be a dominant morphism. Assume
that the generic fibre is birationally equivalent to a homogeneous space of a
connected linear algebraic group over k(P1) with connected geometric stabilizers.
Assuming Conjecture HW, we have X(k)cl = X(Ak)Br.
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This result applies in particular to any smooth projective model X of a
variety given by a system of equations

NKi/k(Ξi) = Pi(t) 6= 0, i = 1, . . . , n.

Such systems have been considered in many special situations.

Remark 13.2.15 It is a non-trivial algebraic problem to decide when such a
variety X satisfies Br(X) = Br0(X). For instance, if the polynomials Pi(t)
are all of degree 1 and no two of them are proportional, do we have Br(X) =
Br0(X)?

13.2.4 Main steps of the proof of Theorem 13.2.13

We denote the ring of integers of kv by Ov, the maximal ideal of Ov by mv, and
the residue field Ov/mv by κ(v).

As mentioned in [HW15, Remark 9.18 (i)], if one assumes Conjecture HW for
arbitrary irreducible monic polynomials P1(t), . . . , Pn(t), one can give a proof
of Theorem 13.2.13 which is shorter than the proof in [HW15]. This is what we
do here, under some simplifying assumptions. Unlike the proof in [HW15], the
proof below uses Severi–Brauer schemes.

Two important steps are Theorems 13.2.16 and 13.2.20, leading to the proof
of Theorem 13.2.13. The first of them addresses the following question: given
a dominant morphism X→P1

k for which the vertical Brauer–Manin obstruction
is trivial, is there a k-point in P1

k such that the fibre over this point is smooth
and everywhere locally soluble?

Theorem 13.2.16 Let X be a smooth, projective and geometrically integral va-
riety over a number field k and let X→P1

k be a dominant morphism. Assume
that the generic fibre is geometrically integral and that every closed geomet-
ric fibre contains a component of multiplicity 1. Assuming Conjecture HW, if
X(Ak)Brvert 6= ∅, then there exists a t0 ∈ k = A1

k(k) such that Xt0 is smooth
and has points in all completions of k. Moreover, given a finite set S of places
of k, and a point (Mv) ∈ X(Ak)Brvert , one can choose t0 such that Xt0 contains
kv-points close to Mv for v ∈ S.

Proof. For simplicity of notation let us only consider the case where all the
non-split fibres are above k-points of A1

k = Spec(k[t]) ⊂ P1
k. Let a1 . . . , an be

the coordinates of these points. So we assume that all the other fibres, including
the fibre at infinity, are smooth and geometrically integral. We concentrate on
the existence of a k-point with everywhere locally soluble fibre and omit the
proof of the last claim of the theorem.

Let Ei be an irreducible component of multiplicity 1 in the fibre above ai
and let Li be the integral closure of k in the function field k(Ei). Let U ⊂ X
be the complement to the union of the fibre at infinity and the fibres above ai.
Consider the product of corresponding norm 1 tori T =

∏n
i=1R

1
Li/k

Gm,Li
and

the torsor over U under T given by the equations

t− ai = NLi/k(Ξi) 6= 0, i = 1, . . . , n.
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This torsor over U ⊂ X is the inverse image of a torsor under T over the comple-
ment to {a1, . . . , an} in P1

k. Thus in this particular case the group B introduced
in the proof of the formal lemma for torsors (Theorem 12.6.5) consists of ele-
ments coming from Br(k(P1)), which are therefore vertical elements. Applying
this theorem, under the hypothesis X(Ak)Brvert 6= ∅, we find elements bi ∈ k∗
and a family (Mv) ∈ U(Ak), with projections tv ∈ kv for v ∈ Ω, such that for
each v ∈ Ω the system

0 6= tv − ai = biNLi/k(Ξi), i = 1, . . . , n,

has solutions over kv.
Choose a finite set S of places of k, large enough for various purposes. Firstly,

we include into S all archimedean places and all non-archimedean places v for
which v(ai) < 0 for some i. Next, we require that

each Li/k is unramified at any v /∈ S;
each bi is a unit at any v /∈ S;
the fibre at infinity X∞ has good reduction at any v /∈ S and has points in

all kv for v /∈ S (this is possible by the Lang–Weil–Nisnevich inequality [LW54],
[Po18, Thm. 7.7.1] as this fibre is smooth and geometrically integral);

each Ei,smooth (which is geometrically integral over Li) has points in all
completions Li,w, where w is a place of Li not lying above a place of S.

We fix a connected, regular proper model X/P1
OS

of X/P1
k. Given a place

v /∈ S and a point in tv ∈ kv one can then consider the reduction of Xtv at v.
Namely, tv extends to a unique point of P1(Ov), we consider the restriction of
X/P1

OS
to Ov, and then the reduction modulo mv.

Now we appeal to Conjecture HW. It produces a point t0 ∈ k very close to
tv for v ∈ S, and such that for any i and any v /∈ S either v(t0 − ai) ≤ 0 or
there exists a place of Li of degree 1 over v.

Claim: Xt0(Ak) 6= ∅.
For v ∈ S this is a consequence of the implicit function theorem (Theorem

9.5.1).
If v is not in S and v(t0− ai) < 0 for some i, then v(t0) < 0 and so the fibre

Xt0 reduces modulo mv to the same smooth κ(v)-variety as the fibre X∞, hence
has kv-points.

If v is not in S and v(t0 − ai) = 0 for each i, then t0 does not reduce to
the same point as any of the ai. Thus, provided S has been chosen big enough
at the beginning, the fibre Xt0 reduces to a smooth and geometrically integral
variety over the finite field κ(v) with a fixed Hilbert polynomial. This allows
one to apply the Lang–Weil–Nisnevich inequality [LW54], [Po18, Thm. 7.7.1]
which guarantees that the reduction of Xt0 modulo mv has a κ(v)-point. By
Hensel’s lemma, Xt0 has a kv-point.

Finally, suppose that v /∈ S is such that v(t0 − ai) > 0 for some i. On
the one hand, this implies that Xt0 reduces to the same variety over κ(v) as
Xai . On the other hand, by Conjecture HW, this implies that there is a place
w of Li of degree 1 over v such that Ei ×Li Li,w is geometrically integral over
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Li,w. Again, provided S was chosen big enough, the reduction of Ei ×Li Li,w
over the field κ(w) = κ(v) is geometrically integral and by Lang–Weil–Nisnevich
[LW54], [Po18, Thm. 7.7.1]. has a smooth κ(v)-point. Using Hensel’s lemma,
we conclude that Xt0 contains a kv-point. �

Assume that the smooth fibres of X→P1
k satisfy the Hasse principle and

weak approximation. Then, assuming Conjecture HW, the proof of Theorem
13.2.16 easily implies that X(k) is dense in X(Ak)Brvert , hence also in X(Ak)Br

– which then coincides with X(Ak)Brvert . Such a general result was out of reach
of the theorems based on Hypothesis (H).

The following (unconditional) corollary was originally obtained by the de-
scent method, see [CTS00, Theorem A] which is an improvement of an earlier
result [CTSS98, §2.2].

Corollary 13.2.17 Let k be a number field and let X be a smooth, projective
and geometrically integral variety over k. Let f : X→P1

k be a dominant mor-
phism. Assume that the generic fibre is geometrically integral and that each
closed fibre contains an irreducible component of multiplicity one. Assume that
the sum of the degrees of the closed points of P1

k with a non-split fibre is at most
2. If X(Ak)Brvert 6= ∅, then there exists a t0 ∈ k = A1(k) such that Xt0 is
smooth and has points in all completions of k. Moreover, given a finite set S of
places of k, and a point {Mv} ∈ X(Ak)Brvert , one can find a t0 such that Xt0

contains kv-points close to Mv for v ∈ S.

Proof. The case when the non-split fibres are above two k-points corresponds
to the case n ≤ 2 in the proof of Theorem 13.2.16. In general, we have ε ≤ 2,
where ε is defined after the statement of Conjecture HW in Section 13.2.3. As
recalled there, Conjecture HW is known for ε ≤ 2. �

In what follows we use resolution of singularities in characteric 0 (Hironaka’s
theorem) without further mention.

Lemma 13.2.18 Let X be a smooth, projective and geometrically integral va-
riety over k. Let Y and Z be smooth projective varieties with dominant mor-
phisms Y→X and Z→X. Assume that the generic fibre of each of these mor-
phisms is a Severi–Brauer variety, with associated classes αY ∈ Br(k(X)) and
αZ ∈ Br(k(X)). Suppose that αY − αZ ∈ Br(k(X)) is the image of some
ρ ∈ Br(k). For a class ζ ∈ Br(k(X)), the following statements are equivalent:

(i) The image of ζ in Br(k(Y )) belongs to Br(Y );
(ii) The image of ζ in Br(k(Z)) belongs to Br(Z).

Proof. Recall that if U is a Severi–Brauer variety over a field F , then the class
of U in Br(F ) goes to zero under the natural map Br(F )→Br(F (U)).

Let P be a Severi–Brauer variety over k with class ρ ∈ Br(k).
Let W be a desingularisation of Y ×X Z, that is, a smooth, projective and

geometrically integral variety equipped with a birational morphism W→Y ×XZ.
We can choose W so that the generic fibre of W→Z is isomorphic to the pullback
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of the generic fibre of Y→X. We thus have a commutative diagram of smooth,
projective and geometrically integral varieties

P ×k W //

��

W

��

// Y

��
P ×k Z // Z // X

The generic fibre Yk(X) of Y→X is a Severi–Brauer variety over k(X) with class
αY . Extending the ground field from k(X) to k(Z) we obtain a Severi–Brauer
variety Yk(Z) over k(Z). Since αY − αZ ∈ Br(k(X)) is the image of ρ ∈ Br(k),
the class of Yk(Z) in Br(k(Z)) is equal to the image of ρ. Thus the generic fibre of
each of the morphisms P ×kW→W and P ×kW→P ×k Z is a projective space.
This implies that the natural map Br(k(P ×k Z))→Br(k(P ×k W )) induces an
isomorphism Br(P ×k Z)−̃→Br(P ×k W ).

Suppose that (i) holds. Then the image of ζ ∈ Br(k(X)) in Br(k(Y )) belongs
to the subgroup Br(Y ). Hence the image of ζ in Br(k(P ×k W )) belongs to
Br(P ×k W ). Then the image of ζ in Br(k(P ×k Z)) lies in the subgroup
Br(P ×k Z).

But then already the image of ζ in Br(k(Z)) is contained in Br(Z). Indeed,
by the functoriality of residues (Theorem 3.7.4) this follows from the fact that
all fibres of the projection P ×k Z→Z are geometrically integral. �

We actually need a more general lemma.

Lemma 13.2.19 Let X be a smooth, projective and geometrically integral va-
riety over k. Let Yi and Zi be smooth projective varieties with dominant mor-
phisms Yi→X and Zi→X, for i = 1, . . . , n, whose generic fibres are Severi–
Brauer varieties with classes αi ∈ Br(k(X)) and βi ∈ Br(k(X)), respectively.
Suppose that for i = 1, . . . , n the difference αi − βi is in the image of the re-
striction map Br(k)→Br(k(X)). Let Y/X be the fibred product of the Yi→X
over X and let Z/X be the fibred product of the Zi→X over X. For a class
ζ ∈ Br(k(X)), the following statements are equivalent:

(i) the image of ζ in Br(k(Y )) belongs to Brnr(k(Y ));
(ii) the image of ζ in Br(k(Z)) belongs to Brnr(k(Z)).

Proof. Let W be a good desingularisation of Y ×X Z as above. For each i, let
Pi be a Severi–Brauer variety over k with class ρi ∈ Br(k) such that αi − βi is
the image of ρi in Br(k(X)). Let P =

∏
i Pi. For any field F such that each

ρi,F ∈ Br(F ) vanishes, PF is F -isomorphic to a product of projective spaces.
The above proof extends mutatis mutandis. �

Theorem 13.2.20 Let X be a smooth, projective and geometrically integral
variety over a number field k and let f : X→P1

k be a dominant morphism.
Assume that the generic fibre is geometrically integral and that each closed fibre
contains a component of multiplicity one. Let U ⊂ P1

k be a non-empty open
set such that XU = f−1(U)→U is a smooth morphism. Let B ⊂ Br(XU ) be
a finite subgroup and let (Mv) ∈ X(Ak) be an adelic point orthogonal to the
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intersection of Br(X) with B + f∗(Br(k(P1))) ⊂ Br(k(X)). Then, assuming
Conjecture HW, for any finite set of places S there exists t0 ∈ U(k) such that
Xt0(Ak)B is non-empty and contains an adelic point (Pv), where Pv is close to
Mv for each v ∈ S.

Proof. By Gabber’s theorem (Theorem 3.3.2) the cohomological Brauer–Gro-
thendieck group of a smooth variety coincides with its Brauer–Azumaya group.
Thus we can assume that B ⊂ Br(XU ) is generated by the classes of Azumaya
algebras Ai over XU , for i = 1, . . . , n. Let YU→XU be the fibre product of
the corresponding Severi–Brauer schemes. Using resolution of singularities, the
morphism YU→XU can be completed to a morphism g : Y→X, where Y is a
smooth and projective variety over k.

Let us prove that each closed fibre of the composition h : Y→X→P1
k contains

an irreducible component of multiplicity 1. Indeed, this condition is equivalent to
the condition that h is locally split for étale topology on P1

k. To check it we can
assume k = k̄. Since the morphism X→P1

k is locally split by assumption, for any
closed point m ∈ P1

k there exists a connected étale neighbourhood V→P1
k whose

image contains m and such that XV→V has a section V→XV . The image of
this section is an integral curve W ⊂ XV which is étale over P1

k. The morphism
Y→X gives rise to a morphism YV→XV . Let YW→W be the restriction of
YV→XV to the curve W . The generic fibre of YW→W is a product of Severi–
Brauer varieties. Applying Tsen’s theorem (Theorem 1.2.12 (i)) to k(W ) shows
that YW→W has a rational section, which must be a morphism since W is a
regular curve and YW→W is proper. This proves that h is locally split for the
étale topology.

We now go back to the case of a number field k.
Since each closed fibre of h : Y→X→P1

k contains an irreducible component
of multiplicity 1, from Remark 10.1.6 (see also Theorem 3.7.4) we see that
the subgroup of Br(U), which consists of the elements α such that f∗(α) ∈
Br(YU ) belongs to the subgroup Br(Y ) ⊂ Br(YU ), is finite modulo Br(k). Let
γ1, . . . , γm ∈ Br(U) be elements generating this group modulo Br(k).

Write B′ for the intersection of Br(X) with B + f∗(Br(k(P1))) ⊂ Br(k(X)).
Since B is a finite group, an application of Theorem 3.7.4 shows that B′ is also
finite modulo Br(k).

By assumption, we have an adelic point (Mv) ∈ X(Ak)B
′
. Since B′ is finite

modulo Br(k), there is an adelic point (M ′v) ∈ XU (Ak)B
′

such that M ′v is very
close to Mv for each v ∈ S. We now rename M ′v and call it Mv.

By Harari’s formal lemma (Theorem 12.6.3) we may assume that∑
v∈Ω

invvAi(Mv) =
∑
v∈Ω

invvγj(Mv) = 0,

for each i = 1, . . . , n and j = 1, . . . ,m. By class field theory (Theorem 12.1.8
(iii)) it follows that there exists ρi ∈ Br(k) whose image in Br(kv) is Ai(Mv) for
each place v ∈ Ω.

Let A′i = Ai − ρi ∈ Br(XU ), for i = 1, . . . , n. We can choose Azumaya
algebras over XU representing these classes and consider the associated Severi–
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Brauer schemes. Let Y ′U be the fibred product of these schemes over XU . As
above, we extend Y ′U→XU to a morphism Y ′→X, where Y ′ is a smooth, pro-
jective and geometrically integral variety over k.

Since A′i(Mv) = 0, there is a kv-point Nv in the fibre of Y ′U→XU above Mv.
Thus we have an adelic point (Nv) ∈ Y ′U (Ak) above (Mv) ∈ XU (Ak).

We claim that (Nv) ∈ Y ′U (Ak) is orthogonal to Brvert(Y
′), where the vertical

part of the Brauer group is taken with respect to the morphism Y ′→P1
k. In-

deed, Brvert(Y
′) consists of the images of the elements of Br(U) which become

unramified on Y ′. By Lemma 13.2.19, these elements of Br(U) are exactly those
which become unramified on Y . Modulo Br(k), this group is spanned by the
classes γj , for j = 1, . . . ,m, and we have∑

v∈Ω

invvγj(Nv) = 0,

since Nv is over Mv.
If we now assume Conjecture HW and apply1 Theorem 13.2.16 to the fi-

bration Y ′→P1
k, we find that there exists a t0 ∈ U(k) such that the fibre Y ′t0

has an adelic point (Rv), with Rv close to Nv for v ∈ S. Let Qv ∈ Xt0(kv) be
the image of Rv under the morphism Y ′t0→Xt0 . For each i = 1, . . . , n and each
v ∈ Ω we have A′i(Qv) = 0, hence Ai(Qv) is the image of ρi in Br(kv). Thus∑

v∈Ω

invvAi(Qv) = 0,

with Qv close to Mv for v ∈ S. �

Now we are ready to sketch the proof of the main theorem of Harpaz and
Wittenberg.

Proof of Theorem 13.2.13. (Sketch) The generic fibre is is a rationally connected
variety. By the theorem of Graber–Harris–Starr [GHS03] it implies that each
special fibre of f : X→P1

k contains an irreducible component of multiplicity one.
By Corollary 4.4.4, it also implies that the group Br(Xη) is finite modulo the
image of Br(k(t)). Thus we can choose an open subset U ⊂ P1

k such that XU→U
is smooth and there is a finite group B ⊂ Br(XU ) that spans Br(Xη) modulo
the image of Br(k(t)). Then one looks for a t0 as in the previous theorem, with
the extra condition that the image of B spans the finite group Br(Xt0)/Br(k).
By Harari’s specialisation result ([Har94, §3] and [Har97, Thm. 2.3.1], see also
[HW15, Prop. 4.1]), the set of k-points such that the last condition is fulfilled
is a Hilbert set. The question is thus to show that in the previous theorem one
may require t0 to lie in a Hilbert set. We refer here to [HW15, Thm. 9.22] (see
also [Sme15, Prop. 6.1]. �

Building upon the results in additive combinatorics one then obtains the
following unconditional statement, first proved by Skorobogatov [Sko13]. His

1Here we cannot restrict to the case where we have the simplifying assumption (non-split
fibres only at rational points) made in our proof of Theorem 13.2.16.
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proof (of a slightly more general statement) uses the result of Browning and
Matthiesen [BM17] on systems of equations

u− aiv = biNLi/k(Ξi), i = 1 . . . , r,

obtained using additive combinatorics, but his argument looks somewhat differ-
ent as it uses descent and universal torsors [CTS87a, Sko01]. In the proof we
give here, descent has been replaced by the use of the formal lemma for torsors
in the proof of Theorem 13.2.16.

Theorem 13.2.21 (Skorobogatov) Let U ⊂ A1
Q be the open subset given by

P1(t) . . . Pn(t) 6= 0, where each polynomial Pi(t) is a product of linear factors
over Q. Let X0 be the smooth quasi-affine variety over Q defined by

NKi/Q(Ξi) = Pi(t) 6= 0, i = 1, . . . , n,

where K1, . . . ,Kn are arbitrary number fields, and let g : X0→U be the pro-
jection to the coordinate t. Let X0 ⊂ X be an open embedding into a smooth,
projective and geometrically integral variety over Q equipped with a dominant
morphism f : X→P1

Q extending the map X0→U . Then X(Q)cl = X(AQ)Br. In
particular, if X(Q) is not empty, then X(Q) is Zariski dense in X and weak
weak approximation holds for X.

Proof. The statement of the theorem does not depend on the choice of X. A
convenient way to construct X is as follows. Let T be the product of norm 1
tori given by

NKi/Q(Ξi) = 1, i = 1, . . . , n.

Choose a smooth T -equivariant compactification T ⊂ Y , which exists as proven
in [CTHS03]. The contracted product X0×T Y has a natural proper morphism
to U such that all fibres are smooth compactifications of torsors under T , in
particular, they are geometrically integral. Extending X0×T Y→U we produce
a smooth, projective and geometrically integral variety X over Q together with
a proper morphism f : X→P1

Q such that XU→U is smooth and X0 ⊂ XU is an
open subset.

Let m ∈ U be a closed point and let Xm be the closed fibre at m. We
have arranged that Xm is smooth and geometrically integral; moreover, Xm is
geometrically rational. The residue of β ∈ Br(Xη) at the generic point of Xm

lies in
H1

ét(Xm,Q/Z) ⊂ H1(k(m)(Xm),Q/Z).

Using the fact that smooth, projective, rational varieties over an algebraically
closed field of characteristic 0 have no non-trivial finite étale covers, one shows
that the natural map

H1(k(m),Q/Z)−̃→H1
ét(Xm,Q/Z)

is an isomorphism. Thus the above residue is an element of H1(k(m),Q/Z).
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Using the Faddeev exact sequence (Theorem 1.25) one sees that

Br(Xη) ⊂ f∗Br(Q(P1)) + Br(XU ).

From this one deduces that there exists a finite subgroup B ⊂ Br(XU ) which sur-
jects onto the (finite) group Br(Xη)/f∗Br(Q(P1)). Then one proceeds as in the
proofs of Theorems 13.2.20 and 13.2.13. The composite fibration Y ′U→XU→U
is smooth, the complement of U consists of Q-points. Since k = Q, Matthiesen’s
theorem (see Section 13.2.3) guarantees the validity of Conjecture HW in the
present situation. The proof of Theorem 13.2.13, via Theorem 13.2.20, thus
specialises to an unconditional proof in the present case. �

Harpaz and Wittenberg [HW15], using more elaborate arguments, some of
them coming from Harari’s thesis [Har94], actually prove the following more
general, unconditional result. (For this, just like Harari in [Har94], they have to
discuss what happens when representatives of Br(Xη) have non-trivial residues
at split fibres.)

Theorem 13.2.22 Let X be a smooth, projective, geometrically integral variety
over Q and let X→P1

Q be a morphism with rationally connected generic fibre.

Assume that all non-split fibres are above Q-points of P1
Q. If XP (Q) is dense in

XP (AQ)Br(XP ) for smooth fibres XP over rational points of P1
Q, then X(Q) is

dense in X(AQ)Br.

The theorem also holds if X→P1
Q has exactly exactly two non-split fibres,

one above a Q-point and another one above a closed point of degree 2. Indeed,
in this case Conjecture HW was proved by Browning and Schindler in [BS]. This
subsumes the earlier result of Derenthal–Smeets–Wei [DSW12] for the equation

NK/Q(Ξ) = P (t),

where P (t) is irreducible of degree 2 and K is an arbitrary number field. Both
proofs are based on the work of Browning and Heath-Brown [BH12] who used
sieve methods.

13.2.5 Fibrations with two non-split fibres and ramified
descent

A very special example for Corollary 13.2.17 is the Hasse principle for quadratic
forms in four variables. Consider the system

0 6= t = b1(x2
1 − a1y

2
1) = b2(x2

2 − a2y
2
2), (13.1)

where a1, a2, b1, b2 are non-zero elements of a number field k, and assume that
it has solutions everywhere locally. Let S be the set of places of k containing
the infinite places, the places above 2, and the primes where at least one of
a1, a2, b1, b2 is not a unit. Hasse’s method is to apply Dirichlet’s theorem on
primes in an arithmetic progression to find a t0 ∈ k which is a unit away from
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S ∪ {v0}, where v0 is a finite place where t0 has valuation 1, and such that
t0 is close to the t-coordinate of given kv-points for v ∈ S. Then each conic
t0 = bi(x

2
i − aiy2

i ), i = 1, 2, has points in all completions of k except possibly in
kv0 . The reciprocity law (Corollary 12.1.10) then implies that it has a solution
also in kv0 and in k. The proof of this result given here is different. The argument
based on the Tate–Nakayama duality and the formal lemma for torsors directly
produces a point t0 such that each of the two equations t0 = bi(x

2
i − aiy2

i ) has
solutions in all completions.

The proof of Theorem 13.2.16 given above is arranged in such a way that
the fibre at infinity is smooth. For the equation (13.1) the fibre at infinity is not
smooth. Let us give a simple direct argument instead of referring to Theorem
13.2.16. Let U be the quasi-affine variety given by (13.1). Assume that U is
everywhere locally soluble. Let L = k(

√
a1,
√
a2). The equation

0 6= t = NL/k(Ξ)

defines a torsor over Gm,k under the norm torus T = R1
L/k(Gm,L). Let Y→U

be the torsor obtained by pulling it back to U via the projection U→Gm,k given
by the coordinate t. We have Brnr(k(U)/k) = Im(Br(k)), since U is birationally
equivalent to the product of P1

k and a quadric, hence the Brauer group of a
smooth projective model of U is reduced to the image of Br(k). The formal
lemma for torsors (Theorem 12.6.5) now gives an element c ∈ k∗ such that the
system

0 6= t = b1(x2
1 − a1y

2
1) = b2(x2

2 − a2y
2
2) = cNL/k(Ξ)

is everywhere locally soluble. This implies that the system

b1(x2
1 − a1y

2
1) = c = b2(x2

2 − a2y
2
2)

is everywhere locally soluble too. In other words, the fibre of U→Gm,k over
c ∈ k∗ is everywhere locally soluble. It is the product of two conics, so we use
the Hasse principle for conics to conclude that U(k) 6= ∅.

If one considers a system of equations

0 6= t = biNki/k(Ξi), i = 1, . . . , r,

with arbitrary number fields k1, . . . , kr, and with no vertical Brauer–Manin
obstruction to the existence of a rational point, the same argument will produce
a c ∈ k∗ such that the system

c = biNki/k(Ξi), i = 1, . . . , r,

is everywhere locally soluble. However, in the case of arbitrary number fields
k1, . . . , kr one cannot ensure that this system has solutions in k: here the ob-
struction coming from the vertical Brauer group is not enough. As in Theorem
13.2.13, the whole Brauer group of (a smooth projective model) of the variety
has to be taken into account.



288 CHAPTER 13. RATIONAL POINTS IN THE BRAUER–MANIN SET

Note that in Theorem 13.2.16 there is no geometric assumption on the
generic fibre of X→P1

k other that it is geometrically integral. This theorem
can be applied to the problem of lifting an adelic point to some twist of a
ramified cyclic cover, as discussed in Section 10.4.

Theorem 13.2.23 Let k be a number field. Let X and Y be smooth, projective
and geometrically integral varieties over k. Assume that µn acts on X, and Y is
birationally equivalent to X/µn. Let F ∈ k(Y )∗ be a rational function such that
the generic fibre of X→X/µn is given by tn = F . Write div(F ) =

∑
mDD,

where D are irreducible divisors in Y . Let kD be the algebraic closure of k in
the function field k(D). Assume that (n,mD) = 1 for some D. Let B ⊂ Br(Y )
be the subgroup consisting of the classes (χ, F ), where χ is an element of the
finite group ⋂

D

Ker[mD reskD/k : H1(k,Z/n)→H1(kD,Z/n)].

If Y (Ak)B 6= ∅, then there exists a c ∈ k∗ such that the twisted cover Xc with
generic fibre ctn = F has points in all completions of k. Moreover, given a finite
set S of places of k and a point {Mv} ∈ Y (Ak)B, where Mv /∈ Supp(div(F ))
for v ∈ S, one can choose c close to F (Mv) for v ∈ S.

Proof. In the notation of Section 10.4 consider the morphism W→P1
k. Recall

that W is stably birationally equivalent to Y and that at most two closed fibres
of W→P1

k, namely the k-fibres above 0 and ∞, are non-split. The k-fibres of
W→P1

k other than the fibres at 0 and ∞ are cyclic twists of X. By Proposition
10.4.1 (i) the vertical Brauer group Brvert(W/P1

k) is generated by B modulo
the image of Br(k). By Proposition 10.4.1 (iii), the assumption (n,mD) = 1
implies that each closed fibre of W→P1

k contains an irreducible component of
multiplicity 1. It remains to apply Corollary 13.2.17. �

Let n be a positive integer. Let a, b, c, d ∈ k∗ and let S ⊂ P3
k be the smooth

surface given by
axn + byn = czn + dwn.

We assume that S is everywhere locally soluble and there is no Brauer–Manin
obstruction with respect to the finite subgroup B ⊂ Br(S) consisting of the
classes (a(x/y)n + b, χ). Here χ belongs to the kernel of the restriction map

H1(k,Z/n) −→ H1(L,Z/n),

where L is the étale k-algebra

L =
(
k[t]/(tn + b/a)

)
⊗k
(
k[t]/(tn + d/c)

)
.

Then, by Theorem 13.2.23, there exists a ρ ∈ k∗ such that each of the smooth
plane curves

axn + byn = ρvn, czn + dwn = ρvn (13.2)
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is everywhere locally soluble. When n = p is a prime, we have B = 0, hence
the relevant vertical Brauer group is reduced to the image of Br(k) (Proposition
10.4.2).

For n = 3 this statement is a starting point in Swinnerton-Dyer’s paper
[SwD01, Lemma 2, p. 901], see also a similar situation in [SkS05] and [HS16].
The challenge here, assuming S(Ak)Br 6= ∅, is to produce a ρ such that for each
of the two curves (13.2) there is no Brauer–Manin obstruction to the existence
of a k-point, or at least to the existence of a 0-cycle of degree 1.

13.3 Beyond the Brauer–Manin obstruction

13.3.1 Insufficiency of the Brauer–Manin obstruction

For n ≥ 4 any smooth hypersurface X ⊂ Pn satisfies Br(k) = Br(X) (Corollary
4.4.5). Thus X(Ak)Br = X(Ak). If d > n, where d is the degree of X, then
the Bombieri–Lang conjecture states that X(k) is not Zariski dense in X. A re-
finement of this conjecture predicts that a ‘hyperbolic’ hypersurface has finitely
many rational points. Thus for any such X with X(k) 6= ∅, the set X(k) cannot
be dense in X(Ak)Br = X(Ak). It is also very unlikely that the Hasse princi-
ple holds for rational points of smooth, projective hypersurfaces of dimension
at least 3 of arbitrary degree. Conditional examples with X(Ak)Br 6= ∅ and
X(k) = ∅ can be found in [SW95, Po01].

In 1999, Skorobogatov [Sko99] gave the first unconditional example of a
smooth, geometrically connected, projective variety X over a number field k
such that X(Ak)Br 6= ∅ but nevertheless X(k) = ∅. In this example k = Q
and the variety X is a surface of Kodaira dimension 0, which geometrically is a
bielliptic surface. See also [Sko01, Ch. 8].

The following, more elementary example was constructed in [CTPS16]. The
idea to use a curve with a unique rational point is due to Poonen [Po10].

Let C be a smooth, projective, geometrically integral curve over a number
field k ⊂ R such that C(k) consists of just one point, C(k) = {P}. (Poonen
showed that such a curve exists for any number field k; moreover, Mazur and
Rubin proved that C can be chosen to be an elliptic curve.) Let us write v0 for
the given real place k ⊂ R. Let Π ⊂ C(R) be an open interval containing P .
Let f : C→P1

k be a surjective morphism unramified at P . Choose a coordinate
function t on A1

k = P1
k r f(P ) such that f is unramified above t = 0. We have

f(P ) =∞. Take any a > 0 in k such that a is an interior point of the interval
f(Π) and f is unramified above t = a.

Let v 6= v0 be a place of k. There exists a quadratic form Q(x0, x1, x2)
over k of rank 3 that represents zero in all completions of k other than kv
and kv0 , but not in kv or kv0 . We can assume that Q is positive definite at
v0. Choose n ∈ k with n > 0 and −nQ(1, 0, 0) ∈ k∗2v . Let Y1 ⊂ P3

k × A1
k be

given by Q(x0, x1, x2) + nt(t − a)x2
3 = 0, and let Y2 ⊂ P3

k × A1
k be given by

Q(X0, X1, X2) + n(1− aT )X2
3 = 0. We glue Y1 and Y2 by identifying T = t−1,

X3 = tx3, and Xi = xi for i = 0, 1, 2. This produces a quadric bundle Y→P1
k
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with exactly two degenerate fibres (over t = a and t = 0), each given by the
quadratic form Q(x0, x1, x2) of rank 3. It is straightforward to check that Y is
smooth over k.

Define X = Y ×P1
k
C. This is a flat, surjective, proper morphism X→C whose

fibres are geometrically integral quadrics. The assumption that f is unramified
at t = 0 and t = a implies that X is also smooth.

For example, we can take k = Q, Qv = Q2 and consider Y defined by

x2
0 + x2

1 + x2
2 + 7t(t− a)x2

3 = 0.

Proposition 13.3.1 In the above notation we have X(Ak)Br 6= ∅ whereas
X(k) = ∅.

Proof. Since C(k) = {P} we have X(k) ⊂ XP . The fibre XP is the smooth
quadric Q(x0, x1, x2)+nx2

3 = 0. This quadratic form is positive definite thus XP

has no points in kv0 = R and so X(k) = ∅. By assumption XP has local points
in all completions of k other than kv and kv0 . The condition −nQ(1, 0, 0) ∈ k∗2v
implies that XP contains kv-points, so XP has local points in all completions
of k but one. Choose Nu ∈ XP (ku) for each place u 6= v0. Let M ∈ Π be such
that f(M) = a. Then the singular point of the real fibre XM (the vertex of the
quadratic cone) is a smooth real point of X. Take it as the v0-component of the
adelic point (Nu) of X.

We claim that (Nu) ∈ X(Ak)Br.
Indeed, the fibres of X→C are geometrically integral. By Proposition 10.2.7

the natural map Br(C)→Br(X) is surjective. Thus it is enough to show that
the adelic point on C such that its components at all places other than v0 are
equal to P and its component at v0 is M , is orthogonal to Br(C). The real point
M is path-connected to P , so this adelic point is in the connected component
of the diagonal image of the k-point P in C(Ak). By the continuity of the real
evaluation map it is contained in C(Ak)Br, so the proposition follows. �

13.3.2 Distinguished subsets of the adelic space

Let G be a linear k-group scheme. Let X and Y be varieties over k and let
f : Y→X be a G-torsor. Such torsors are classified by the pointed set H1(X,G).
For a number field k, we have a natural map

θ : H1(k,G) −→
∏
v

H1(kv, G).

By a theorem of Borel and Serre, the fibres of θ are finite, see [SerCG, III.4.6].
For any ring R containing k, the pullback of f : Y→X induces a map

X(R) −→ H1(R,G).

When R is the ring of adèles Ak we obtain a map

X(Ak) −→
∏
v

H1(kv, G).
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Define X(Ak)f ⊂ X(Ak) as the inverse image of θ(H1(k,G)) under this map.
To a 1-cocycle σ : Γ = Gal(k̄/k)→G(k̄) one associates a twisted group

Gσ defined with respect to the action of G on itself by conjugations. The
isomorphism class of Gσ depends only on the class [σ] ∈ H1(k,G). Twisting the
G-torsor f : Y→X one obtains a Gσ-torsor fσ : Y σ→X; its isomorphism class
depends only on [σ]. See [Sko01, Ch. 2] for more details.

The class [σ] is the image of a k-point P ∈ X(k) under the mapX(k)→H1(k,G)
if and only if there exists a k-point M ∈ Y σ(k) such that fσ(M) = P . This
implies

X(k) =
∐

[σ]∈H1(k,G)

fσ(Y σ(k)).

Similarly, by the definition of X(Ak)f we have

X(Ak)f =
⋃

[σ]∈H1(k,G)

fσ(Y σ(Ak)).

Combining these formulae shows that the diagonal map X(k) ↪→ X(Ak) gives
rise to an embedding X(k) ⊂ X(Ak)f .

Proposition 13.3.2 Let X be a variety over a number field k. Then X(Ak)f

is a closed subset of X(Ak).

Proof. See [Sko09, Cor. 2.7] in the case when X is proper, and [CDX, Prop.
6.4] in general. Let us sketch this proof.

Let S0 be a finite subset of the set of places Ω of k containing all the
archimedean places, and let X be a separated scheme of finite type over Ok,S0

with generic fibre X. For finite subsets S ⊂ Ω containing S0 the sets X (Ak,S)
form an open covering of X(Ak), see Section 12.1.3. Thus it is enough to check
that X(Ak)f ∩X (Ak,S) is closed in X (Ak,S). Using Lang’s theorem about the
triviality of torsors for a connected group over a finite field, and Hensel’s lemma,
one shows

f(Y (Ak)) = X(Ak) ∩
∏
v∈Ω

f(Y (kv)) ⊂
∏
v∈Ω

X(kv).

As f(Y (kv)) is closed in X(kv) for every v ∈ Ω, one concludes that f(Y (Ak))
is a closed subset of X(Ak). In particular, f(Y (Ak)) ∩ X (Ak,S) is closed in
X (Ak,S). Finally, using the Borel–Serre theorem, one shows that there are
only finitely many twisted forms fσ : Y σ→X (up to isomorphism) such that
fσ(Y σ(Ak)) meets X (Ak,S). It follows that X(Ak)f ∩ X (Ak,S) is a union of
finitely many closed subsets of X (Ak,S) and so is closed. �

Let us define
X(Ak)H1(X,G) =

⋂
f

X(Ak)f ,

where f ranges over all G-torsors f : Y→X.
When G is a torus, a close relation between X(Ak)H1(X,G) and X(Ak)Br

was established by Colliot-Thélène and Sansuc [CTS87a]. This was extended
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by Skorobogatov [Sko99] to groups of multiplicative type, see [Sko01, §6.1].
The set X(Ak)f attached to a torsor f : Y→X for a finite, non-commutative
group k-scheme was used by Harari [Har00] to construct examples where weak
approximation fails and this failure is not accounted for by the Brauer–Manin
obstruction. The general definition of X(Ak)f was spelled out in [HS02, §4],
see also [Sko01, §5.3].

For various classes of linear groups we define closed subsets of X(Ak) con-
taining X(k), as follows:

X(Ak)desc =
⋂

linear G

X(Ak)H1(X,G),

X(Ak)ét =
⋂

finite G

X(Ak)H1(X,G),

X(Ak)conn =
⋂

connected linear G

X(Ak)H1(X,G).

If X is a quasi-projective variety over a field k, then BrAz(X) = Br(X) by
Gabber’s theorem (Theorem 3.3.2). So, if X is smooth and quasi-projective
over a number field k, the connection between torsors for PGLn and Azumaya
algebras, gives X(Ak)Br =

⋂
nX(Ak)H1(X,PGLn), see [HS02, Thm. 4.10]. One

concludes that
X(Ak)desc ⊂ X(Ak)Br. (13.3)

A theorem of Harari [Har02] gives

X(Ak)Br ⊂ X(Ak)conn

for any geometrically integral X.
Allowing f : Y→X to be a torsor for any finite group k-scheme G, we define

more subsets of X(Ak) containing X(k):

X(Ak)ét,Br =
⋂
f

⋃
[σ]∈H1(k,G)

fσ(Y σ(Ak)Br);

X(Ak)ét,desc =
⋂
f

⋃
[σ]∈H1(k,G)

fσ(Y σ(Ak)desc).

Next, allowing f : Y→X to be a torsor for any linear group k-scheme G, define

X(Ak)desc,desc =
⋂
f

⋃
[σ]∈H1(k,G)

fσ(Y σ(Ak)desc).

Skorobogatov’s example was first interpreted in [Sko99] as an example of a
smooth and projective variety such that X(Ak)Br 6= ∅ but X(Ak)ét,Br = ∅. It

was then interpreted in [HS02] as an example with X(Ak)H1(X,G) = ∅ for a
suitable finite k-group G, hence with X(Ak)desc = ∅. This raised the question
of the relation between these various obstructions.
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Theorem 13.3.3 Let k be a number field. Let X be a smooth, quasi-projective,
geometrically integral variety over k. Then

X(Ak)desc = X(Ak)ét,desc = X(Ak)ét,Br.

In particular, the following two conditions are equivalent:
(i) any G-torsor Y→X, where G is a linear group k-scheme, has a twisted

form Y σ→X such that Y σ(Ak) 6= ∅;
(ii) any G-torsor Y→X, where G is a finite group k-scheme, has a twisted

form Y σ→X such that Y σ(Ak)Br 6= ∅.

This theorem is a consequence of the following inclusions

X(Ak)desc ⊂ X(Ak)ét,desc ⊂ X(Ak)ét,Br ⊂ X(Ak)desc.

The second inclusion is (13.3). In the case when X is projective, the first
inclusion is a theorem of Skorobogatov [Sko09, Thm. 1.1], who extends results
of Stoll [Sto07], and the third inclusion is a theorem of Demarche [Dem09],
who extends results of Harari [Har02]. The general case of quasi-projective
varieties is due to Cao, Demarche, and Xu, see [CDX, Thm. 7.5]. Among
the ingredients of their proof is the result that with suitable modifications and
isotropy conditions at the archimedean places, the Brauer–Manin obstruction
to strong approximation for homogeneous spaces of connected linear algebraic
groups with connected stabilisers is the only obstruction (Borovoi–Demarche
[BD13], after work of Colliot-Thélène–Xu [CTX09], Harari [Har08], Demarche
[Dem11]).

This theorem is complemented by the following result of Y. Cao [Cao], which
answers a question that was asked by Poonen in the case when X is projective.

Theorem 13.3.4 (Y. Cao) Let X be a smooth, quasi-projective, geometrically
integral variety over a number field k. Then

X(Ak)desc,desc = X(Ak)desc,

hence
X(Ak)desc,desc = X(Ak)desc = X(Ak)ét,desc = X(Ak)ét,Br.

As an immediate corollary, we obtain X(Ak)desc,...,desc = X(Ak)desc.

Y. Harpaz and T. Schlank [HSc13] used étale homotopy theory of Artin and
Mazur to produce a subset X(Ak)h ⊂ X(Ak) which contains X(k). (See also
[Pál15].) For any smooth and geometrically connected varietyX (not necessarily
proper) they prove that X(Ak)h = X(Ak)ét,Br. In the case of curves, there are
interesting connections with Grothendieck’s section conjecture, for which we
refer to the book by J. Stix [Stix].

The above results raise the question: is the étale Brauer–Manin obstruction
the only obstruction to the existsence of rational points, that is, if the set X(k)
is empty, then is the set X(Ak)ét,Br empty too? This seems to be unlikely
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already in the case of smooth hypersurfaces of dimension at least 3, which have
trivial geometric fundamental group and trivial Brauer group Br(X) = Br0(X).

Unconditional examples of smooth, projective, geometrically integral vari-
eties X over a number field k with X(Ak)ét,Br 6= ∅ but with X(k) = ∅ have
been found. Poonen [Po10] uses a threefold with a dominant morphism to a
curve with finitely many rational points such that the generic fibre is a Châtelet
surface. Over k̄ such a variety becomes birationally equivalent to the product
of a curve and a projective space. Harpaz and Skorobogatov [HS14] construct
surfaces with a dominant morphism to a curve with finitely many rational points
such that the fibres over rational points are singular unions of curves of genus 0.
Colliot-Thélène, Pál and Skorobogatov [CTPS16] construct such varieties X
with a dominant map to a curve with finitely many rational points, such that
the generic fibre is a quadric of dimension d ≥ 1. Such varieties are geometri-
cally birationally equivalent to the product of a curve (of genus at least one)
and a projective space.

The proof uses the following lemma.

Lemma 13.3.5 Let f : X→B be a surjective flat morphism of smooth, proper,
geometrically integral varieties over a field k of characteristic 0, the generic fibre
of which is a smooth quadric of dimension at least 1 and all geometric fibres are
reduced. Then for any torsor X ′→X for a finite k-group scheme G there exists
a G-torsor B′→B such that there is an isomorphism X ′ ∼= X×BB′ of G-torsors
over X.

Proof. The geometric fibres of f are connected and reduced, and the generic
geometric fibre of f is simply connected. By [SGA1, X, Cor. 2.4] this implies
that each geometric fibre is simply connected. The result then follows from
[SGA1, IX, Cor. 6.8]. �

It is easy to construct examples over k = Q with d ≥ 2: in fact, the threefold
from Section 13.3.1 is such an example (also reproduced in [Po18, §8.6.2]).

Proposition 13.3.6 The threefold X considered in Proposition 13.3.1 is such
that X(Ak)ét,Br 6= ∅ whereas X(k) = ∅.

Proof. We keep the notation of the proof of Proposition 13.3.1. There we con-
structed an adelic point (Nu) ∈ X(Ak)Br. Let us show that (Nu) ∈ X(Ak)ét,Br.

Let G be a finite k-group scheme. Lemma 13.3.5 implies that any G-torsor
X ′/X is isomorphic to X ×C C ′→X for some G-torsor C ′/C. Let σ ∈ Z1(k,G)
be a 1-cocycle defining the k-torsor which is the fibre of C ′→C at P . Twisting
X ′/X and C ′/C by σ and replacing the group G by the twisted group Gσ and
changing notation, we can assume that C ′ contains a k-point P ′ that maps to P
in C. The irreducible component C ′′ of C ′ that contains P ′ is a geometrically
integral curve over k. Let X ′′ ⊂ X ′ denote the inverse image of C ′′ in X ′. The
fibres of the morphism X→C are geometrically integral, hence such are also
the fibres of X ′→C ′ and X ′′→C ′′. Thus X ′′ is a geometrically integral variety
over k.
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There are natural isomorphisms X ′′P ′
∼= X ′P ′

∼= XP , so we can define N ′u ∈
X ′′(ku) as the point that maps to Nu ∈ X(ku) for each u 6= v. The map
C ′′→C is finite and étale. The image of C ′′(R) in C(R) is thus closed and open.
The image of the connected component of P ′ ∈ C ′′(R) is the whole connected
component of P ∈ C(R), hence contains Π. The inverse image of the interval
Π in C ′′(R) is a disjoint union of intervals, one of which contains P ′ and maps
bijectively onto Π. Let us call this interval Π′. Let M ′ be the unique point
of Π′ over M . Let N ′v ∈ X ′′M ′(R) be the point that maps to Nv ∈ XM (R).
Thus the adelic point (N ′u) ∈ X ′′(Ak) ⊂ X ′(Ak) projects to the adelic point
(Nu) ∈ X(Ak). By the definition of the étale Brauer–Manin obstruction, to
prove that (Nu) ∈ X(Ak)ét,Br it suffices to show that (N ′u) ∈ X ′(Ak)Br. This
follows by the argument in the last paragraph of Proposition 13.3.1. �

It is more delicate to give examples with d = 1, that is, conic bundles.

Theorem 13.3.7 There exist a real quadratic field k, an elliptic curve E and a
smooth, projective and geometrically integral surface X over k with a surjective
morphism f : X→E satisfying the following properties:

(i) the fibres of f : X→E are conics;

(ii) there exists a closed point P ∈ E such that the field k(P ) is a totally real
biquadratic extension of Q and the restriction X \ f−1(P )→E \ P is a smooth
morphism;

(iii) X(Ak)ét,Br 6= ∅ and X(k) = ∅.

Here one can take k = Q(
√

10) and take E to be the elliptic curve

y2 + y = x3 + x2 − 12x− 21

of conductor 67 and discriminant −67. We refer to [CTPS16, §5] for the con-
struction of the conic bundle f : X→E and the proof of Theorem 13.3.7. Note
that in this theorem we cannot take the ground field to be Q, see Proposition
13.3.10. The construction given in [CTPS16] works over a number field with at
least two real places, and requires good control of the Galois representation on
the torsion points of E over k.

In all these unconditional examples, the varieties have a non-constant map
to a curve of genus at least one, hence have a non-trivial Albanese variety.
A. Smeets [Sme17] has given examples with trivial Albanese varieties. Under the
abc conjecture, he even produces examples with trivial geometric fundamental
group.

13.3.3 Open questions about the closure of X(k)

Let X be a smooth, projective, geometrically integral variety. Define the topo-
logical space X(Ak)Br

• by replacing X(kv) for each archimedean place v by
π0(X(kv)), i.e., by the set of connected components of X(kv).

Here are some complements to Proposition 13.3.6 and Theorem 13.3.7.
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Proposition 13.3.8 Let E be an elliptic curve over a number field k such that
the Tate–Shafarevich group X(E) is finite. Let f : X→E be a Severi–Brauer
scheme over E. Then X(Ak)Br 6= ∅ implies X(k) 6= ∅. Moreover, X(k) is dense
in X(Ak)Br

• .

Proof. Since f : X→E is a projective morphism with smooth geometrically
integral fibres, there exists a finite set of places Σ such that E(kv) = f(X(kv))
for v /∈ Σ. We may assume that Σ contains the archimedean places of k.
At an arbitrary place v the set f(X(kv)) is open and closed in E(kv). Let
(Mv) ∈ X(Ak)Br. By functoriality we then have (f(Mv)) ∈ E(Ak)Br. The
finiteness of X(E) implies [Sko01, Prop. 6.2.4] the exactness of the Cassels–
Tate dual sequence

0 −→ E(k)⊗ Ẑ −→
∏

E(kv)• −→ Hom(Br(E),Q/Z), (13.4)

where E(kv)• = E(kv) if v is a finite place of k, and E(kv)• = π0(E(kv)) if v

is an archimedean place. By a theorem of Serre, the image of E(k)⊗ Ẑ in that
product coincides with the topological closure of E(k), see [Ser64], [Wan96].
Approximating at the places of Σ, we find a k-point M ∈ E(k) such that the
fibre XM = f−1(M) is a Severi–Brauer variety with points in all kv for v ∈ Σ,
hence also for all places v. SinceXM is a Severi–Brauer variety over k, it contains
a k-point, hence X(k) 6= ∅. For the last statement of the theorem we include
into Σ the places where we want to approximate. If kv ' R, each connected
component X(kv) maps surjectively onto a connected component of E(kv). The
Severi–Brauer varieties satisfy the Hasse principle and weak approximation, so
an application of the implicit function theorem finishes the proof. �

Remark 13.3.9 The same argument works more generally for any projective
morphism f : X→E with split fibres, provided that the smooth k-fibres satisfy
the Hasse principle. For the last statement to hold, the smooth k-fibres also
need to satisfy weak approximation.

The following proposition explains why a counterexample similar to that of
Theorem 13.3.7 cannot be constructed over Q.

Proposition 13.3.10 Let E be an elliptic curve over a number field k such
that both E(k) and X(E) are finite. Let f : X→E be a conic bundle. Suppose
that there exists a real place v0 of k such that for each real place v 6= v0 no
singular fibre of f : X→E is over a kv-point of E. Then X(Ak)Br 6= ∅ implies
X(k) 6= ∅.

Proof. If a k-fibre of f is not smooth, then this fibre contains a k-point. We
may thus assume that the fibres above E(k) are smooth. Let (Mv) ∈ X(Ak)Br.
Then (f(Mv)) ∈ E(Ak)Br. Set Nv = f(Mv) for each place v. The finiteness
of X(E) implies the exactness of (13.4). Hence there exists N ∈ E(k) such
that N = Nv for each finite place v and such that N lies in the same connected
component as Nv for v archimedean. The fibre XN is a smooth conic with
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points in all finite completions of k. For an archimedean place v 6= v0, the
map X(kv)→E(kv) sends each connected component of X(kv) onto a connected
component of E(kv). Since N and Nv are in the same connected component of
E(kv), this impliesXN (kv) 6= ∅. Thus the conicXN has points in all completions
of k except possibly kv0 . By the reciprocity law it has points in all completions
of k and hence in k. �

Let us finally mention some open problems concerning X(k)cl.

Curves

When X is a curve, it is an open question whether the image of X(k) is dense in
X(Ak)Br

• . If the genus of X is 1, this is the case if the Tate–Shafarevich group
of the Jacobian of X is finite [Sko01, Thm. 6.2.3, Cor. 6.2.4]. These results
hold more generally when X is a torsor for an abelian variety. If X is a curve
of higher genus with Jacobian J such that X(J) is finite (which is expected
to be always true) and also J(k) is finite, it is a theorem of Scharashkin and
(independently) Skorobogatov [Sko01, Cor. 6.2.6] that X(k) = X(Ak)Br

• . Stoll
has shown that the same statement remains true under the weaker assumption
that J is isogenous to an abelian variety which has a direct factor A of positive
dimension such that X(A) and A(k) are both finite [Sto07].

K3 surfaces

For K3 surfaces Skorobogatov conjectured thatX(k) should be dense inX(Ak)Br.
There are conditional results in this direction, particularly, but not exclusively,
for surfaces which are geometrically Kummer. See [CTSS98b, SkS05, HS16].

Enriques surfaces

Enriques surfaces with interesting X(Ak)ét,Br were studied by Harari and Sko-
robogatov in [HS05], where the following example was constructed. Let Y be
the Kummer surface over Q with affine equation

z2 = (x2 − a)(x2 − ab2)(y2 − a)(y2 − ac2),

where a = 5, b = 13, c = 2. Let X be the quotient of Y by the involution that
changes the signes of all the coordinates. Then X is an Enriques surface such
that X(Q) is not dense in X(AQ)Br. Following work of Várilly-Alvarado and
Viray [VV11], an Enriques surface such that X(Ak)ét,Br = ∅, hence X(k) = ∅,
whereas X(Ak)Br 6= ∅, was constructed in [BBMPV].

One may ask if X(k)cl = X(Ak)ét,Br for any Enriques surface X. See [Sko09,
§3] for a discussion of this question for arbitrary surfaces of Kodaira dimension 0.

Remark 13.3.11 The property “X(Ak)Br 6= ∅ implies X(k) 6= ∅” is preserved
by birational equivalence of smooth projective varieties over k. If Br(X)/Br(k)
is finite, then the property X(k)cl = X(Ak)Br is also preserved by birational
equivalence of smooth projective varieties over k. When Br(X)/Br(k) is infinite,
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the situation with weak approximation is not clear, but a similar statement
concerning the density of X(k) in X(Ak)Br

• is wrong [CTPS16, Remark 6.2 (2)].



Chapter 14

The Brauer–Manin
obstruction for zero-cycles

The Brauer–Manin obstruction for rational points has an analogue for zero-
cycles, which conjecturally governs the local-to-global principle for zero-cycles
on an arbitrary smooth projective variety X – unlike the original version for
rational points! For example, one expects that if X has a family of local 0-
cycles of degree 1 for each completion of k, which is orthogonal to Br(X) with
respect to the Brauer–Manin pairing, then X has a global 0-cycle of degree 1.
This is the subject of Section 14.1. In Section 14.2 we discuss the simplest case
of Salberger’s trick which sometimes allows one to prove these conjectures; this
trick can be interpreted as an accessible analogue of Schinzel’s Hypothesis (H).
If one knows that the Brauer–Manin obstruction is the only obstruction to the
Hasse principle for rational points, then in some cases one can conclude that
the Brauer–Manin obstruction controls the existence of 0-cycles of degree 1 as
well. This work of Y. Liang is presented in Section 14.3. Finally, in Section
14.4 we explain a fibration theorem of Harpaz and Wittenberg, which says that
the Brauer–Manin obstruction controls the existence of 0-cycles of degree 1 on
a variety fibred over P1

k if this property is known for the smooth fibres.

14.1 Local-to-global principles for zero-cycles

The Brauer–Manin pairing for zero-cycles

Let k be a number field. We denote by Ω the set of places of k. For a place
v ∈ Ω we always identify Br(kv) with a subgroup of Q/Z via the local invariant
invv, see Definition 12.1.7.

Let X be a smooth, projective, geometrically integral variety over k. For
each place v ∈ Ω, we have the pairing from Chapter 5.3:

CH0(Xkv )× Br(Xkv ) −→ Br(kv) ⊂ Q/Z. (14.1)

299
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For an archimedean place v, this pairing vanishes on Nv(CH0(Xk′v
)), where k′v is

an algebraic closure of kv and Nv is the natural norm map CH0(Xk′v
)→CH0(Xkv ).

Define
CH′0(Xkv ) = CH0(Xkv )/Nv(CH0(Xk′v

))

if v is archimedean, and CH′0(Xkv ) = CH0(Xkv ) otherwise.
Given an element α ∈ Br(X), there exists a finite set S ⊂ Ω and a smooth

projective model X over the ring of S-integers OS ⊂ k such that α belongs to the
image of Br(X )→Br(X), see Proposition 12.3.1. Let v /∈ S be a non-archime-
dean place. Let Mv be a closed point of Xkv with residue field L = kv(Mv), and
let OL be the ring of integers of the local field L. Since X/OS is projective, the
map X (OL)→X(L) is a bijection by the valuative criterion of properness. Let
M̃v be the point of X (OL) whose image in X(L) is Mv. Then α(Mv) ∈ Br(L)
is equal to the image of α(M̃v) ∈ Br(OL). But Br(OL) = 0 by Theorem 3.4.2
(ii). Thus each α ∈ Br(X) pairs trivially with the local Chow groups CH0(Xkv )
for almost all places v ∈ Ω. Therefore we have a well-defined map∏

v∈Ω

CH′0(Xkv ) −→ Hom(Br(X),Q/Z).

Class field theory gives an exact sequence (12.1)

0 −→ Br(k) −→
⊕
v∈Ω

Br(kv) −→ Q/Z −→ 0.

The mere fact that this is a complex at the middle term implies that the following
sequence is a complex too:

CH0(X) −→
∏
v∈Ω

CH′0(Xkv ) −→ Hom(Br(X),Q/Z).

Here the first map is the diagonal map and the second map is induced by the
local pairings (14.1).

For an abelian group A, write Â = lim←−A/n. Since Br(Xkv ) is a torsion
group, the local pairing (14.1) gives rise to a pairing

̂CH0(Xkv )× Br(Xkv ) −→ Q/Z.

From this we obtain a complex

̂CH0(X) −→
∏
v∈Ω

̂CH′0(Xkv ) −→ Hom(Br(X),Q/Z). (14.2)

By [CT95b, Thm. 1.3 (b)], if v is an archimedean place, then Nv(A0(Xk′v
))

is the divisible subgroup of A0(Xkv ). Thus restricting (14.2) to the degree 0
subgroups we obtain a complex

Â0(X) −→
∏
v∈Ω

̂A0(Xkv ) −→ Hom(Br(X),Q/Z). (14.3)
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Conjectures

Work of Cassels and Tate on elliptic curves (the Cassels–Tate dual exact se-
quence), of Colliot-Thélène and Sansuc on geometrically rational surfaces [CTS81],
and of Kato and Saito [KS86] on higher class field theory has led to the following
general conjecture, which encompasses a number of its predecessors.

Conjecture 14.1.1 (E) For any smooth, projective variety X over a number
field k, the complex (14.2) is exact.

It subsumes the following two conjectures.

Conjecture 14.1.2 (E1) For any smooth, projective variety X over a number
field k, if there exists a family {zv} of local 0-cycles of degree 1 on X such that,
for all A ∈ Br(X), we have∑

v∈Ω

invvA(zv) = 0 ∈ Q/Z,

then there exists a 0-cycle of degree 1 on X.

Conjecture 14.1.3 (E0) For any smooth, projective variety X over a number
field k, the complex (14.3) is exact.

For the history of these conjectures, see [CTS81], [KS86, p. 303], [Sai89, §8],
[CT95b], [CT99], [vHa03], and the introduction to [Witt12]. Note that these
conjectures are about all smooth, projective, geometrically connected varieties
over number fields. The groups involved are rather mysterious. Indeed, it is a
conjecture of Bloch and Beilinson that for a smooth and projective variety X
over a number field k, the group CH0(X) is finitely generated. The Chow group
CH0(Xkv ) over a local field kv, for v ∈ Ω, is often a huge group.

In the case X = Spec(k), conjecture (E) follows from the exact sequence
(12.1) of class field theory.

For curves, classical results of Cassels and Tate imply the conjecture – mod-
ulo finiteness of Tate–Shafarevich groups. See [Man66] (curves of genus 1),
[Sai89], [CT99], [Witt12, Remark 1.1 (iv), p. 2121].

For Châtelet surfaces, i.e. smooth projective models X of surfaces given by
an affine equation y2−az2 = P (x), where a ∈ k∗ and P (x) ∈ k[x] is a separable
polynomial of degree 3 or 4, conjectures (E0) and (E1) were proved in [CTSS87]
by reduction to the theoremX(k)cl = X(Ak)Br, also proved there. Indeed, these
surfaces have the very special property that any 0-cycle of degree 1 is rationally
equivalent to a k-point. Then Salberger [Salb88], by a very innovative method,
to be discussed in Section 14.2, proved the conjectures for arbitrary conic bun-
dles over P1

k. For varieties fibred over P1
k, with generic fibre a Severi–Brauer

variety, further progress was achieved in papers by Colliot-Thélène, Swinnerton-
Dyer, Skorobogatov [CTS94, CTSS98], and Salberger [Salb03].

A series of papers by Colliot-Thélène [CT00], Frossard [Fro03], van Hamel
[vHa03], Wittenberg [Witt12] and Y. Liang [Lia12, Lia13a, Lia13b, Lia14, Lia15]
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established cases of conjecture (E) for fibrations over an arbitrary curve C, when
the Tate–Shavarevich group of the Jacobian of C is finite, and the generic fibre
is birationally equivalent to a Severi–Brauer variety or to a homogeneous space
of a connected linear algebraic group, with various restrictions.

Most of these results are now covered by the work of Harpaz and Wittenberg
[HW15].

The smooth projective surface X over Q with the property X(AQ)Br 6= ∅ but
X(Q) = ∅ discovered by Skorobogatov in [Sko99] does not belong to the class
of varieties handled in [HW15] (it is not geometrically uniruled). B. Creutz has
recently shown that it contains a zero-cycle of degree one [Cr17], as predicted
by the conjecture.

14.2 Salberger’s trick

Here is a simple case of Salberger’s argument [Salb88], as streamlined in [CTS94]
and in [CTSS98].

Theorem 14.2.1 Let k be a number field, a ∈ k∗, c ∈ k∗, and let P (t) ∈ k[t]
be a monic irreducible polynomial of degree d. Assume that the equation

y2 − az2 = c P (t) 6= 0

is solvable in kv for all v ∈ Ω. Then we have the following statements.
(i) For any integer N ≥ d the equation has a solution in a field extension of

k of degree N .
(ii) There exists a zero-cycle of degree 1 on X.

Proof. Statement (ii) follows from (i) by considering N and N +1. Let us prove
(i). For simplicity, we shall here assume that a is totally positive, i.e. positive
in each real completion of k. Let U be the k-variety defined by

y2 − az2 = c P (t) 6= 0.

We can find a finite set of places S containing all the non-archimedean and
dyadic places of k, such that at a place w /∈ S we have the following properties:
c ∈ O∗w; the coefficients of P (t) are in Ow; the reduction of P modulo the
maximal ideal of Ow is a separable polynomial.

For each v ∈ S pick a monic separable polynomial Gv(t) ∈ kv[t] of degree N
with all its roots in kv, each of them corresponding to the image of a point of
U(kv). In particular, Gv(t) is coprime to P (t).

Pick a place v0 /∈ S such that a is a square in kv0 . Then choose a monic
irreducible polynomial Gv0(t) ∈ kv0 [t] of degree N over kv0 .

For each v ∈ S ∪ {v0} Euclid’s algorithm gives polynomials Qv(t) and Rv(t)
in kv[t], with deg(Rv(t)) < d ≤ N such that

Gv(t) = P (t)Qv(t) +Rv(t).
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Hence each Qv(t) is monic and deg(Qv(t)) = N − d. Each Rv[t] is coprime to
P (t) since Gv(t) is coprime to P (t).

Let K be the field k[t]/P (t). Let ξv ∈ (K ⊗k kv)∗ be the image of Rv(t).
Dirichlet’s theorem 12.1.1 for the field K implies that there is an element

ξ ∈ K∗ which is arbitrarily close to each ξv for v ∈ S ∪ {v0} and such that its
prime decomposition in K involves only primes above the primes in S ∪ {v0}
and a prime w such that w(ξ) = 1 and w has degree 1 over k. The element
ξ ∈ k[t]/P (t) lifts to a unique polynomial R(t) of k[t] such that deg(R(t)) < d.

Choose a place v1 /∈ S ∪ {v0} such that a is a square at v1. If N > d we use
strong approximation in k away from v1 to produce a monic polynomial Q(t) ∈
k[t] whose coefficients are integral away from v1 and very close to respective
coefficients of Qv(t) for v ∈ S ∪ {v0}. If N = d, take Q(t) = 1.

One then defines
G(t) := P (t)Q(t) +R(t).

By Krasner’s lemma [Po18, Prop. 3.5.74] this polynomial is irreducible, since
it is close to the irreducible polynomial Gv0(t). It is monic and has integral
coefficients away from S ∪ {v0, v1}.

Let L = k[t]/G(t). This is a field extension of degree N of k. Let θ ∈ L be
the class of t. The element θ is integral outside S ∪ {v0, v1}.
Claim: The conic over L with equation y2 − az2 = c P (θ) has an L-point.

If w is a place of L above S, then the conic has an Lw-point because G(t)
is very close to Gv(t). If w is a place above v0, then the conic has an Lw-point
because a is a square in kv0 . The same applies to v1. The same also holds for
the archimedean places of L by our simplifying assumption.

The formula for the resultant of two polynomials shows that the product of
the conjugates of P (θ) is an element of k∗ which is equal, up to sign, to the
product of the conjugates of G(α), where α is the class of t in K = k[t]/P (t).
Since P (α) = 0, the definition of G(t) implies that G(α) = R(α) = ξ. The
degree 1 condition on the Dirichlet prime w implies that NK/k(ξ) ∈ k∗, away
from S ∪ {v0}, has in its factorisation only one prime, and that its valuation at
this prime is 1. Since P (θ) ∈ L is integral away from S ∪ {v0, v1}, this implies
that the prime decomposition of P (θ) ∈ L involves only one prime w′ of L not
dividing a prime of S ∪ {v0, v1}. Thus our conic has points in all completions
of L except possibly at the prime w′. Corollary 12.1.10 then implies that it has
an L-point. �

Remark 14.2.2 In the above theorem we assumed U(Ak) 6= ∅ but we did
not assume the existence of an adelic point orthogonal to the unramified Brauer
group of U . But this is automatic. Indeed, the hypothesis that P (t) is irreducible
implies that the Brauer group of a smooth projective model of y2 − az2 = P (t)
is reduced to the image of Br(k), see Section 10.2.

Remark 14.2.3 Salberger’s trick may be interpreted as a successful substitute
for Schinzel’s hypothesisH. Given an irreducible polynomial P (t) over a number
field k, it is hard to find an almost integral element α ∈ k such that P (α) is
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almost a prime. However, for any N ≥ deg(P (t)) one may produce a field
extension L of k of degree N and an almost integral element β ∈ L such that
P (β) is almost a prime in L. There is a similar comparison in the case of a
finite set of polynomials (see [CT98, Prop. 17] for the example of twin primes).
The above proof then becomes parallel to the proof of Theorem 13.2.2.

14.3 From rational points to zero-cycles

The following proposition is a baby case.

Proposition 14.3.1 [Lia13b, Prop. 3.2.3] Let k be a number field and let X
be a smooth, proper, geometrically integral variety over k. Assume that for any
finite field extension K/k, the Hasse principle holds for rational points of XK .
Then the Hasse principle holds for 0-cycles of degree 1 on X.

Proof. By the Lang–Weil–Nisnevich estimates, there exists a finite set S of
places of k such that for any place v /∈ S, one has X(kv) 6= ∅. Fix a closed point
m of some degree N over X. For each v ∈ S, let zv = z+

v − z−v be a local 0-cycle
of degree 1 where z+

v and z−v are effective 0-cycles. Let z1
v = z+

v + (N − 1)z−v .
This is an effective 0-cycle of degree congruent to 1 modulo N . Since S is finite,
we can add to each z1

v a suitable positive multiple nvm of the closed point m
and ensure that all the effective cycles z2

v = z1
v +nvm, for v ∈ S, have the same

common degree d congruent to 1 modulo N .
Here comes the basic trick. Let Y = X ×k P1

k and let f : Y→P1
k be the

natural projection. Fix a rational point q ∈ P1(k). On Y we have the effective
0-cycles z2

v × q of degree d.
A moving lemma based on the implicit function theorem (Theorem 9.5.1,

see also [Po18, Prop. 3.5.73]) ensures that there exists an effective 0-cycle z3
v on

Y very close to z2
v × q and such that z3

v and f∗(z
3
v) are “reduced”. This means

that z3
v =

∑
j Rj with distinct closed points Rj on Ykv and f : Rj→f(Rj) is an

isomorphism for each j. We may assume that for each v ∈ S, the support of the
0-cycle f∗(z

3
v) lies in Spec k[t] = A1

k ⊂ P1
k. Each f∗(zv) is defined by a separable

monic polynomial Pv(t) ∈ kv[t]. We pick a finite place v0 outside S and an
arbitrary monic irreducible polynomial Pv0(t) ∈ kv0 [t]. By weak approximation
on the coefficients, we then approximate the Pv(t), for v ∈ S ∪ v0, by a monic
polynomial P (t) ∈ k[t]. The polynomial P (t) is irreducible, hence it defines a
closed point M ∈ A1

k of degree d.
If the approximation is close enough, Krasner’s lemma [Po18, Prop. 3.5.74]

and the implicit function theorem (Theorem 9.5.1, [Po18, Prop. 3.5.73]) imply
that the fibre f−1(M) = X ×k k(M) has points in all completions of k(M) at
the places above v ∈ S. By the choice of S, X ×k k(M) has points in all the
other completions. By assumption, X×k k(M) satisfies the Hasse principle over
k(M), hence it has a k(M)-point. Thus X has a point in an extension of degree
d. As d is congruent to 1 mod N , and the closed point m has degree N , we
conclude that the k-variety X has a 0-cycle of degree 1. �
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Theorem 14.3.2 (Y. Liang) Let k be a number field and X a smooth, pro-
jective, geometrically integral variety over k. Assume that Hi(X,OX) = 0 for
i = 1, 2 and that the geometric Picard group Pic(X) is torsion-free. For any
finite field extension K of k, assume that the Brauer–Manin obstruction is the
only obstruction to the Hasse principle for rational points of XK . Then the
Brauer–Manin obstruction to the existence of a 0-cycle of degree 1 on X is the
only obstruction: conjecture (E1) holds for X.

Proof. Over any field k of characteristic 0, the assumptions on the geometry
of X imply that Br(X)/Br0(X) is finite (Theorem 4.4.2). Let A1, . . . , An be
elements of Br(X) whose images generate Br(X)/Br0(X).

Let S be a finite set of places containing the archimedean places, such that
X has a good projective model X over the ring OS of S-integers, the elements
Ai extend to elements of the Brauer group of X , and X(kv) 6= ∅ for v /∈ S. In
particular, for each v /∈ S, each Ai vanishes when evaluated on any 0-cycle of
Xkv .

Suppose that we have a family of 0-cycles zv of degree 1 on Xkv , where
v ∈ Ω, which is orthogonal to Br(X) with respect to the Brauer–Manin pairing.
This is equivalent to the condition∑

v∈Ω

invvAi(zv) = 0 ∈ Q/Z, for all i = 1, . . . , n.

Let N be an integer which is a multiple of the degree of a closed point of X and
also annihilates each Ai ∈ Br(X).

Let Y = X ×k P1
k and f : Y→P1

k be the projection. Proceeding as in the
previous proof, we replace the original 0-cycles zv, v ∈ S, by reduced effective
0-cycles z′v on Y each of the same degree d congruent to 1 modulo N , with the
property that f∗(z

′
v) is reduced. We may choose coordinates so that the support

of f∗(z
′
v) lies in Spec k[t] = A1

k ⊂ P1
k. They are then defined by the vanishing

of separable, monic polynomials Pv(t) of degree d. One then approximates the
Pv(t) for v ∈ S and an irreducible monic polynomial Pv0 ∈ kv0 [t] at another
place v0 by a monic polynomial P (t) ∈ k[t]. Just as before, P (t) defines a closed
point M ∈ P1

k.
For each place v ∈ S, we have the effective zero-cycle z′v close to zv on

XM ⊗k kv. This gives rise to k(M)w-rational points Rw of the k(M)-variety
Xk(M) over the completions of k(M) at the places w above the places in S.

At each place w of k(M) above a place v /∈ S, we take an arbitrary k(M)w-
point, for instance, a point coming from a kv-point on X.

Then we have∑
w∈Ωk(M)

invwAi(Rw) = 0 ∈ Q/Z, for all i = 1, . . . , n.

This is enough to ensure that the adelic point {Rw} ∈ Xk(M)(Ak(M)) is orthog-
onal to Br(Xk(M)) provided we can choose the point M , i.e. the polynomial
P (t), in such a way that the map

Br(X)/Br(k) −→ Br(Xk(M))/Br(k(M))
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is surjective. By [Lia13b, Prop. 3.1.1] (an easy special case of a more general
theorem of Harari [Har97, Thm. 2.3.1]), the geometric assumptions on X imply
that there exists a finite Galois extension L of k such that the above surjectivity
holds for any closed point M as long as the tensor product L⊗k k(M) is a field.
But this last condition is easy to ensure. Indeed, it is enough to require from
the very beginning that N is also a multiple of [L : k]. Then d = [k(M) : k],
being congruent to 1 modulo N , is prime to [L : k]. �

Liang [Lia13b, Thm. A and Thm. B] proves the following general result.

Theorem 14.3.3 Let k be a number field. Let X be a smooth, projective, ge-
ometrically integral, rationally connected variety over k. Assume that for any
finite field extension K of k, the set X(K) is dense in X(AK)Br. Then conjec-
ture (E) holds for X.

To prove this, Liang first proves a version of the previous theorem for 0-cycles
of degree 1, keeping track of “approximation” modulo a positive integer. Here z
is said to be close to zv modulo n if z and zv have the same image in CH0(Xkv )/n.
This uses work of Wittenberg [Witt12]. Using that X is a rationally connected
variety, one then proceeds from this statement to the exact sequence (E). This
uses results of Kato–Saito and Saito–Sato on the Chow groups of 0-cycles of
rationally connected varieties over local fields in the good reduction case.

The results of Liang thus establish Conjecture (E) for smooth projective
varieties which are birationally equivalent to a homogeneous space of a con-
nected linear algebraic group with connected stabilisers, since the conjecture
X(k)cl = X(Ak)Br is known for such varieties (Sansuc [San81] when the sta-
bilisers are trivial, Borovoi [Bor96] in general). Until [Lia13b] the validity of (E)
was unknown even for smooth compactifications of 3-dimensional tori.

14.4 Fibration theorem for zero-cycles

The various papers quoted at the very end of Section 14.1 were inspired by
Salberger’s paper [Salb88]. In a manner parallel to the case of rational points,
Salberger’s method allowed one to obtain unconditional results for 0-cycles on
fibrations X→P1

k under the following assumptions:

• for any closed point m ∈ P1
k, the fibre Xm contains an irreducible compo-

nent Y of multiplicity 1 such that the integral closure of k(m) in k(Y ) is
abelian;

• the Hasse principle and weak approximation hold for the smooth closed
fibres of X→P1

k.

If all fibres over closed points of A1
k ⊂ P1

k are split, the second assumption can
be weakened [CT10, Lia12] using arguments similar to those of Harari [Har94,
Har07] in the case of rational points.

These restrictions on the algebra and arithmetic of fibres have now been
removed. In fact, we have the following unconditional result [HW15].
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Theorem 14.4.1 (Harpaz–Wittenberg) Let X be a smooth, projective, ge-
ometrically integral variety over a number field k, and let f : X→P1

k be a
dominant morphism. Assume that the geometric generic fibre is a rationally
connected variety. If the smooth fibres satisfy Conjecture (E), then X satisfies
Conjecture (E).

Corollary 14.4.2 Let X be a smooth, projective, geometrically integral variety
over a number field k, and let f : X→P1

k be a dominant morphism. Assume that
the generic fibre is birationally equivalent to a homogeneous space of a connected
linear algebraic group over k(P1) with connected geometric stabilizers. Then
Conjecture (E) holds for X.

This corollary can be applied to smooth projective models of varieties given
by a system of equations

NKi/k(Ξi) = Pi(t), i = 1, . . . , n,

where Ki is a finite étale k-algebra (for example, a finite field extension) and
Pi(t) ∈ k[t], for each i = 1, . . . , n.

Harpaz and Wittenberg actually prove their result for varieties fibred over
a smooth projective curve C of arbitrary genus, under the assumption that
Conjecture (E) holds for C, for instance when the Tate–Shafarevich group of
the Jacobian of C is finite.

We shall only describe one idea in the proof of Theorem 14.4.1. This is a
0-cycle analogue of Theorem 13.2.16.

Theorem 14.4.3 Let X be a smooth, projective, geometrically integral variety
over a number field k, and let f : X→P1

k be a dominant morphism. Assume
that all non-split fibres of f are above k-points of A1

k, say given by t = ei ∈ k,
where i = 1, . . . , n and t is a coordinate in A1

k = Spec(k[t]). Assume that each
non-split fibre contains an irreducible component of multiplicity 1. If there exists
an adelic point {Pv} ∈ X(Ak) which is orthogonal to Brvert(X), then for any
integer N ≥ n there exists a closed point m ∈ P1

k of degree N such that the fibre
Xm has points in all the completions of k(m).

Proof. Write P (t) =
∏n
i=1(t − ei). Let U ⊂ A1

k be the open set given by
P (t) 6= 0, and let V = f−1(U). Fix an irreducible component Ei ⊂ Xei of
multiplicity 1, and let ki be the integral closure of k in k(Ei). The smooth locus
Ei,smooth is a geometrically integral variety over ki.

Since X(Ak) 6= ∅, the natural map Br(k)→Brvert(X) ⊂ Br(X) is injec-
tive. By Corollary 10.1.5, the assumption on the multiplicity of Ei implies that
Brvert(X)/Br(k) is a finite group. Using this, by a small deformation argument
we can assume that {Pv} ∈ V (Ak).

Let T be the product of norm 1 k-tori attached to the extensions ki/k, for
i = 1, . . . , n. Consider the T -torsor over U given by the system of equations

t− ei = Nki/k(Ξi), i = 1, . . . , n.
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Its pullback to V is a T -torsor over V . Since there is no vertical Brauer–Manin
obstruction for rational points, by the formal lemma for torsors and rational
points (Theorem 12.6.5) applied to this torsor over V , there exist bi ∈ k∗, for
i = 1, . . . , n, and for each v ∈ Ω, αv ∈ f(V (kv)) ⊂ U(kv) ⊂ kv, such that the
system of equations

αv − ei = biNki/k(Ξi) 6= 0, i = 1, . . . , n,

has solutions with Ξi ∈ (ki ⊗k kv)∗. Let S ⊂ Ω be a finite set of places con-
taining the infinite places, the primes where at least one of the extensions ki/k
is ramified, the primes of bad reduction for X, the primes where at least one
ei is not integral, then the primes v dividing some ei − ej , where i 6= j, and
the primes where bi is not a unit. Then f : X→P1

k extends to a dominant mor-
phism X→P1

OS
, where X is proper over OS . Using the Lang–Weil–Nisnevich

estimates, we arrange that for any closed point s ∈ P1
OS

such that the fibre Xs is
split, Xs has a smooth rational point over the residue field of s. This is achieved
by including in S enough places with small residue characteristic.

By Chebotarev’s theorem (Theorem 12.1.3), there are infinitely many primes
outside S that completely split in each of the extensions ki/k. Let v0 and v1 be
such primes.

By the implicit function theorem (Theorem 9.5.1, [Po18, Prop. 3.5.73]) for
each v ∈ S we can find pairwise distinct elements αvr ∈ f(V (kv)) ⊂ U(kv) ⊂ kv,
for r = 1, . . . , N , that are close to αv. In particular, we can arrange that for
any v ∈ S and i = 1, . . . , n we have

b−1
i (αvr − ei) ∈ Nki/k((ki ⊗k kv)∗) ⊂ k∗v .

For each place v ∈ S, we define

Gv(t) =

N∏
r=1

(t− αvr).

We note that Gv(ei) is the product of a global element (−1)NbNi ∈ k and an
element of Nki/k((ki ⊗k kv)∗) ⊂ k∗v . Let Gv1(t) ∈ Ov1 [t] be a monic irreducible
polynomial of degree N with integral coefficients. Dividing Gv(t) by P (t) in
kv[t], for v ∈ S ∪ {v1}, and using Lagrange interpolation, we obtain

Gv(t) = P (t)Qv(t) +

n∑
i=1

Gv(ei)

∏
j 6=i(t− ej)∏
j 6=i(ei − ej)

,

where the polynomials Qv(t) are monic of degree N − n.
Applying Proposition 12.1.4, for each i = 1, . . . , n we find an element ci ∈ k

close to Gv(ei) for v ∈ S ∪{v1} and such that for any v /∈ S ∪{v1} either ci is a
unit at v, or ki has a place of degree 1 over v. Moreover, we choose ci integral
away from S ∪ {v0, v1}.

Using strong approximation in k away from v0 for the coefficients of polyno-
mials, we find Q(t) ∈ k[t] with coefficients integral away from S ∪ {v0, v1} and
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close to each Qv(t) for v ∈ S ∪ {v1} coefficient-wise. Consider the polynomial

G(t) = P (t)Q(t) +

n∑
i=1

ci

∏
j 6=i(t− ej)∏
j 6=i(ei − ej)

.

By construction, G(ei) = ci for i = 1, . . . , n. Also, the coefficients of G(t)
are integral away from S ∪ {v0, v1}. Moreover, in the v-adic topology, where
v ∈ S ∪ {v1}, the element ci is close to Gv(ei) and Q(t) is close to Qv(t), hence
G(t) is close to Gv(t). Since Gv1(t) is irreducible in kv1 [t], we see that G(t) is
irreducible in k[t].

Write F = k[t]/(G(t)), so that m = Spec(F ) is the closed point of U ⊂ A1
k

defined by G(t) = 0. We claim that Xm has points in all completions of F .
If w is a place of F over v ∈ S, then G(t) is v-adically close to Gv(t) =∏N

r=1(t− αvr). But each αvr ∈ kv lifts to V (kv), proving the claim for such w.
The primes of F not above S are closed points of P1

OS
. We only need to

consider the finitely many closed points in P1
OS

where the closure of m in P1
OS

meets the closure of one of the ei’s. Indeed, S was chosen big enough so that
the fibre of X→P1

OS
above any other closed point is split, and then by the

Lang–Weil–Nisnevich estimates has a smooth rational point over the residue
field.

Let w be a closed point of P1
OS

contained in the closure of m and in the
closure of ei. The degree of w is 1 since the degree of ei is 1. This closed point
w lies above a prime v /∈ S dividing ci = G(ei). Let us first consider the case
v 6= v0, v1. By the construction of ci, the field ki has a place of degree 1 over v.
This implies that the fibre Xw is split. By the choice of S, we have that Xw has
a smooth rational point over the residue field. As Xw is the reduction of Xm at
the place w of F = k(m), we can apply Hensel’s lemma to deduce that Xm has
a point in the completion Fw.

It remains to deal with v0 and v1. Recall that these primes are split in all
extensions ki/k. This implies that all the fibres of X ×k kv0→P1

v0 are split. The
same argument works for v1. �

Remark 14.4.4 The argument in Theorem 14.2.1 only shows the existence of
a fibre XM over a closed point M which has points in all completions of k(M)
except, possibly, one. In the above theorem, whose proof uses Proposition 12.1.4,
we get a fibre with points in all completions of k(M).
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Chapter 15

Abelian varieties and K3
surfaces

Let k be a field finitely generated over its prime subfield and let X be a smooth
and proper variety over k. Recall that Γ = Gal(ks/k). This section is moti-
vated by the question: is the group Br(Xs)Γ finite? A more accessible question
concerns the finiteness of the subgroup of Br(Xs)Γ formed by the elements of
order prime to char(k). The first main result of this chapter says that this holds
when X is an abelian variety. This is proved in Section 15.3, after a preliminary
discussion of the Galois action on cohomology in Section 15.1 and an observa-
tion in Section 15.2 that the `-adic Tate conjecture for divisors is equivalent
to the finiteness of Br(Xs){`}Γ. In Section 15.4 we discuss the Brauer group
of a product of varieties, and deduce finiteness results for the Brauer group of
a variety dominated by a product of curves. We recall the basic properties of
K3 surfaces such as their Hodge structure and the period map in Section 15.5.
Section 15.6 introduces the original Kuga–Satake construction [KS67] and its
interpretation by Deligne [Del72]. A modern incarnation of this construction in
terms of Shimura varieties carrying universal families is given in Section 15.7.
Finally, the last section contains the proofs of the main results in the case of
K3 surfaces: the Tate conjecture for divisors and the finiteness of the subgroup
of Br(Xs)Γ consisting of the elements of order prime to char(k).

15.1 The Tate module of the Brauer group as a
Galois representation

Let k be a field with separable closure ks and absolute Galois group Γ =
Gal(ks/k). Let X be a smooth, proper, geometrically integral variety over k.
Let ` be a prime not equal to the characteristic of k. From Theorem 4.2.6 we
know that Br(Xs){`} is an abelian group of cofinite type. More precisely, it is

311
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an extension of a finite abelian group by the divisible subgroup

Br0(Xs){`} = T`(Br(Xs))⊗Z`
Q`/Z` ∼= (Q`/Z`)b2−ρ.

Let V`(Br(Xs)) = T`(Br(Xs))⊗Z`
Q`. This is a vector space over Q` of dimen-

sion b2 − ρ. Write cl` for the `-adic cycle class map NS(Xs)→H2
ét(X

s,Z`(1)).
Tensoring the terms of (4.6) with Q` we obtain an exact sequence of Γ-modules

0 −→ NS(Xs)⊗Z Q`
cl`−→ H2

ét(X
s,Q`(1)) −→ V`(Br(Xs)) −→ 0. (15.1)

We write ν = NS(Xs)tors and write ν` for the `-primary subgroup of ν. As was
pointed out in the discussion following (4.6) we have canonical isomorphisms

ν` = NS(Xs)tors ⊗ Z` = NS(Xs){`} = H2
ét(X

s,Z`(1))tors.

Proposition 15.1.1 Let X be a smooth, projective, geometrically integral va-
riety over a field k. For a prime ` 6= char(k) we have the following statements.

(i) The exact sequence of Γ-modules (15.1) splits, and so gives a direct sum
decomposition of Γ-modules

H2
ét(X

s,Q`(1)) ∼= (NS(Xs)⊗Z Q`)⊕ V`(Br(Xs)). (15.2)

(ii) For almost all primes ` the Γ-module NS(Xs)⊗ Z` is a direct summand
of H2

ét(X
s,Z`(1)).

(iii) For almost all primes ` and all positive integers n the Γ-module NS(Xs)/`n

is a direct summand of H2
ét(X

s, µ`n).

(iv) For almost all primes ` and all positive integers n there is an exact
sequence of abelian groups

0 −→ (NS(Xs)/`n)Γ −→ H2
ét(X

s, µ`n)Γ −→ Br(Xs)[`n]Γ −→ 0. (15.3)

The proof is based on the following general fact.

Lemma 15.1.2 Let X be a smooth, projective, geometrically integral variety
over a field k such that d = dim(X) ≥ 2. Let L ∈ NS(Xs) be the class of a
very ample line bundle on X. Then the integral symmetric bilinear form on
NS(Xs)/ν given by

(x, y) 7→ x ∪ y ∪ Ld−2

is non-degenerate, i.e. its kernel is trivial.

Proof. Let NS(Xs)L ⊂ NS(Xs) be the kernel of the map NS(Xs)→Z given by
x 7→ x ∪ Ld−1. It is clear that ν ⊂ NS(Xs)L. Since Ld > 0 and NS(Xs)L

is the orthogonal complement to L, it is enough to show that the restriction
of our form to NS(Xs)L/ν is negative definite. If d = 2 this statement is a
consequence of the Hodge index theorem when char(k) = 0, but is actually true
in all characteristics [Gro58].
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The case d ≥ 3 is reduced to the case d = 2 as follows. Consider the
symmetric bilinear form on H2

ét(X
s,Z`(1)) with values in Z` defined by

(x, y) 7→ x ∪ y ∪ cl`(L)d−2.

This form is compatible with the form x ∪ y ∪ Ld−2 on NS(Xs) under cl`.
The field ks is infinite, so by the Bertini theorem there is a smooth hyperplane

section Y ⊂ Xs defined over ks. By the hyperplane (weak) Lefschetz theorem,
the restriction map

r : H2
ét(X

s,Z`(1)) −→ H2
ét(Y,Z`(1))

is an isomorphism for d ≥ 4 and an injection for d = 3, see [Kat04, Thm. B.4].
For any x, y ∈ H2

ét(X
s,Z`(1)) we have

x ∪ y ∪ cl`(L)d−2 = r(x) ∪ r(y) ∪ cl`(L|Y )d−3 ∈ Z`.

Similarly, for x, y ∈ NS(Xs) we have

x ∪ y ∪ Ld−2 = r(x) ∪ r(y) ∪ (L|Y )d−3 ∈ Z.

The natural restriction map NS(Xs) ⊗ Z`→NS(Y ) ⊗ Z` is identified with the
map r : cl`(NS(Xs)) ⊗ Z`→cl`(NS(Y )) ⊗ Z`, which is injective since d ≥ 3.
Applying this argument d−2 times we obtain a smooth ks-surface S ⊂ Xs such
that the natural map NS(Xs) ⊗ Z` ⊂ NS(S) ⊗ Z` is injective. This gives rise
to an injective map NS(Xs)/ν ⊂ NS(S)/NS(S)tors. Moreover, the restriction of
the integral bilinear form x∪ y on NS(S)/NS(S)tors to NS(Xs)/ν is our original
form x ∪ y ∪ Ld−2.

Define NS(S)L ⊂ NS(S) as the orthogonal complement to the restriction of
L to S with respect to x∪ y. Then NS(Xs)L/ν ⊂ NS(S)L/NS(S)tors. The form
x ∪ y is negative definite on NS(S)L/NS(S)tors, hence the form x ∪ y ∪ Ld−2 is
negative definite, hence non-degenerate, on NS(Xs)L/ν. �

Proof of Proposition 15.1.1. Let d = dim(X). For d = 1 all statements are
trivial, so we can assume d ≥ 2. Let L ∈ NS(Xs) be the class of a very ample
divisor defined over k. Thus L ∈ NS(Xs)Γ.

Let us prove (i). Deligne’s hard Lefschetz theorem [Del80] (valid in all char-
acteristics) says that the map

H2
ét(X

s,Q`(1)) −→ H2d−2
ét (Xs,Q`(d− 1))

sending x to x ∪ cl`(L)d−1 is an isomorphism. Now Poincaré duality implies
that the symmetric bilinear form x ∪ y ∪ cl`(L)d−2 on H2

ét(X
s,Q`(1)) is non-

degenerate. Since L is Γ-invariant, the above form is Γ-invariant too. Its restric-
tion to NS(Xs)⊗Q` is non-degenerate by Lemma 15.1.2. Hence H2

ét(X
s,Q`(1))

is the direct sum of the Γ-module NS(Xs) ⊗ Q` and its orthogonal comple-
ment with respect to x ∪ y ∪ cl`(L)d−2, which is isomorphic to the Γ-module
V`(Br(Xs)). This gives (15.2).
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Let us prove (ii). Let δ ∈ Z be the discriminant of the integral symmetric
bilinear form x ∪ y ∪ Ld−2 on NS(Xs)/ν. By Lemma 15.1.2 we have δ 6= 0.
Suppose that ` does not divide the order of ν, then ν` = 0 and both NS(Xs)⊗Z`
and H2

ét(X
s,Z`(1)) are free Z`-modules. Suppose also that (`, δ) = 1. The form

x ∪ y ∪ Ld−2 extends to the form x ∪ y ∪ cl`(L)d−2 on H2
ét(X

s,Z`(1)). Since `
does not divide δ, we see that H2

ét(X
s,Z`(1)) is the direct sum of NS(Xs)⊗ Z`

and its orthogonal complement. The form x∪ y ∪ cl`(L)d−2 is Γ-invariant since
L is Γ-invariant, hence we obtain a direct sum of Γ-modules, so (ii) is proved.

Now we prove (iii). By part (ii) we know that the Γ-module NS(Xs)/`n is
a direct summand of the Γ-module H2

ét(X
s,Z`(1))/`n for almost all `. We have

an exact sequence

0 −→ H2
ét(X

s,Z`(1))/`n −→ H2
ét(X

s, µ`n) −→ H3
ét(X

s,Z`(1))[`n] −→ 0.

By a theorem of Gabber [Ga83], the Z`-module H3
ét(X

s,Z`) has no torsion for
almost all `. Since H3

ét(X
s,Z`) and H3

ét(X
s,Z`(1)) are isomorphic as abelian

groups, for almost all ` we have H3
ét(X

s,Z`(1))[`] = 0, hence H2
ét(X

s, µ`n) =
H2

ét(X
s,Z`(1))/`n. This proves (iii).

Finally, (iv) follows directly from (iii). �

15.2 Tate conjecture for divisors

When k is big (for example, k = k̄) and X does not satisfy the conditions of
Theorem 4.4.2, the Brauer group Br(X) can well be infinite. When k is not too
big, there are reasons to hope for some kind of finiteness for the transcendental
Brauer group of X. The fields that are “not too big” include number fields,
but also fields that are finitely generated over a prime subfield. So here is the
motivating question of this chapter.

Question. Let X be a smooth, proper and geometrically integral variety over
a field k that is finitely generated over a prime subfield. Is Br(Xs)Γ finite?

Recall that the Tate conjecture for divisors says that if k is a field finitely
generated over a prime subfield, then for any prime ` 6= char(k) the natural
inclusion

(NS(Xs)⊗Z Q`)Γ ↪→ H2
ét(X

s,Q`(1))Γ

should be an isomorphism.

Theorem 15.2.1 Let X be a smooth, projective and geometrically integral va-
riety over a field k which is finitely generated over a prime subfield. Let ` be
a prime not equal to the characteristic of k. The `-adic Tate conjecture for
divisors holds for X if and only if Br(Xs){`}Γ is finite.

Proof. In Proposition 15.1.1 we proved that there is a direct sum decomposition
of Γ-modules (15.2):

H2
ét(X

s,Q`(1)) ∼= (NS(Xs)⊗Z Q`)⊕ V`(Br(Xs)).
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Therefore the `-adic Tate conjecture is false for X if and only if V`(Br(Xs))
contains a non-zero Γ-invariant element. Thus it is enough to prove that
Br(Xs){`}Γ is infinite if and only if V`(Br(Xs))Γ 6= 0.

Let S(n) be the set of Γ-invariant elements of order `n in Br(Xs). If there
is a positive integer m such that S(m) = ∅, then Br(Xs){`}Γ is contained in
the finite group Br(Xs)[`m−1]. So if Br(Xs){`}Γ is infinite, then S(n) 6= ∅ for
each n ≥ 1. The projective limit of finite non-empty sets is non-empty, hence
lim←−S(n) is a non-empty subset of T`(Br(Xs))Γ which does not contain 0. This

implies that T`(Br(Xs))Γ 6= 0 and hence V`(Br(Xs))Γ 6= 0.
Conversely, if V`(Br(Xs))Γ 6= 0, then T`(Br(Xs))Γ contains a copy of Z`.

But then (
T`(Br(Xs))⊗Z`

Q`/Z`
)Γ

= Br0(Xs){`}Γ ⊂ Br(Xs){`}Γ

contains a copy of Q`/Z`. �

Corollary 15.2.2 Let A be an abelian variety over a field k which is finitely
generated over its prime subfield. Then Br(As){`}Γ is finite for all primes ` not
equal to char(k).

Proof. Theorem 15.2.1 applies because the Tate conjecture for divisors is known
for abelian varieties: it was proved by Zarhin in characteristic p > 2 [Zar75,
Zar76], by Faltings in characteristic zero [Fal83, Fal86], and by Mori in charac-
teristic 2, see [Mor85]. �

In the next sections we will show how to go beyond Theorem 15.2.1 to obtain
a positive answer to our question for abelian varieties and K3 surfaces.

15.3 Abelian varieties

In this section A is an abelian variety over a field k finitely generated over its
prime subfield. By Theorem 15.2.1 we know that Br(As){`}Γ is finite for all
prime numbers ` different from char(k). Our aim now is to prove that this
group is actually zero for almost all `. For this it is enough to prove that the
`-torsion subgroup Br(As)[`] has no non-zero Γ-invariant elements for almost all
`. By Proposition 15.1.1 for almost all ` we have an exact sequence of Γ-modules
(15.3):

0 −→ (NS(As)/`)Γ −→ H2
ét(A

s, µ`)
Γ −→ Br(As)[`]Γ −→ 0,

so our task is to prove that for almost all ` each Γ-invariant class in H2
ét(A

s, µ`)
comes from a divisor on A.

For an abelian variety A the cohomology group H2
ét(A

s, µ`) has a nice inter-
pretation in terms of the torsion subgroup A[`]. Namely, for each n ≥ 1 we have
a canonical isomorphism

Hn
ét(A

s,Z/`) = ∧nZ/`H
1
ét(A

s,Z/`).
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The Kummer sequence gives a canonical isomorphism

H1
ét(A

s, µ`) = Pic(As)[`] = A∨[`],

where A∨ is the dual abelian variety of A. We have (A∨)∨ = A ([Lan83, Ch.
V, §2, Prop. 9], [Mum74, p. 132]). The `-torsion subgroups of A and A∨ are
related by the Weil pairing

e`,A : A[`]×A∨[`] −→ µ`,

which is a perfect Γ-invariant pairing. Thus we obtain a canonical isomorphism
of Γ-modules

H1
ét(A

s, µ`) = Hom(A[`], µ`),

which gives a canonical isomorphism and an injection of Γ-modules

H2
ét(A

s, µ`) = Hom(∧2
Z/`A[`], µ`) ↪→ Hom(A[`], A∨[`]).

Definition 15.3.1 A homomorphism φ : A[`]→A∨[`] is called symmetric if
e`,A(x, φy) = e`,A∨(φx, y) for any x, y ∈ A[`].

Lemma 15.3.2 For ` 6= 2 the injective image of H2
ét(A

s, µ`) in Hom(A[`], A∨[`])
is the subgroup of symmetric homomorphisms Hom(A[`], A∨[`])sym.

Proof. This crucially uses the subtle fact that the Weil pairings for A and A∨

differ by sign [Lan83, Ch. VII, §2, Thm. 5(iii), p. 193], that is,

e`,A∨(y, x) = −e`,A(x, y)

for all x ∈ A[`], y ∈ A∨[`]. Thus φ ∈ Hom(A[`], A∨[`])sym if and only if

e`,A(x, φy) = −e`,A∨(φy, x) = −e`,A(y, φx).

Equivalently, φ is symmetric if and only if the bilinear form e`,A(x, φy) is skew-
symmetric:

e`,A(x, φy) = −e`,A(y, φx), x, y ∈ A[`].

On the other hand, ∧2
Z/`A[`] is by definition the quotient of A[`]⊗Z/`A[`] by the

Z/`-submodule generated by x ⊗ x for x ∈ A[`]. When ` 6= 2, this submodule
is generated by the elements of the form x ⊗ y + y ⊗ x for x, y ∈ A[`]. Using
this and the way our identifications have been set, it is clear that a homomor-
phism φ : A[`]→A∨[`] comes from an element of Hom(∧2

Z/`A[`], µ`) if and only

if e`,A(x, φx) = 0 for all x ∈ A[`]. When ` 6= 2, φ ∈ Hom(A[`], A∨[`]) comes
from an element of Hom(∧2

Z/`A[`], µ`) if and only if e`,A(x, φy)+e`,A(y, φx) = 0

for all x, y ∈ A[`]. �

Let us now recall some basic properties of abelian varieties over an arbitrary
field k. For abelian varieties A and B we write Hom(A,B) for the group of ho-
momorphisms A→B (defined over k). A divisor D on As defines the homomor-
phism As→(A∨)s sending a ∈ A(k) to the linear equivalence class of T ∗a (D)−D
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in Pic0(As), where Ta is the translation by a in As. If L is the class of D in
NS(As), then this map depends only on L, and is denoted by ϕL : As→(A∨)s

[Mum74, §8]. For α ∈ Hom(As, (A∨)s) we denote by α∨ ∈ Hom(As, (A∨)s) the
transpose of α. Then ϕ∨L = ϕL. Moreover, if we define

Hom(As, (A∨)s)sym = {u ∈ Hom(As, (A∨)s) | u = u∨},

then the group homomorphism

NS(As) −→ Hom(As, (A∨)s)sym, L 7→ φL,

is an isomorphism [Lan83], [Mum74, §20, formula (I) and Thm. 1 on p. 186,
Thm. 2 on p. 188 and Remark on p. 189]. For any α ∈ Hom(As, (A∨)s) we
have (α∨)∨ = α, and thus

α+ α∨ ∈ Hom(As, (A∨)s)sym. (15.4)

We have Hom(A,B) = HomΓ(As, Bs) = Hom(As, Bs)Γ. Since Hom(As, Bs)
has no torsion, the group Hom(A,B)/` is a subgroup of Hom(As, Bs)/`.

Let us now assume that ` 6= char(k). The action of homomorphisms on
points of order ` defines a natural map of Γ-modules

Hom(As, Bs) −→ Hom(A[`], B[`]).

A homomorphism that contains A[`] in its kernel factors through the mul-
tiplication by ` map, hence the image of Hom(As, Bs) in Hom(A[`], B[`]) is
Hom(As, Bs)/`. We thus obtain an embedding

Hom(A,B)/` ⊂ HomΓ(A[`], B[`]).

Now let B = A∨. Then for any α ∈ Hom(As, (A∨)s) and any x, y ∈ A[`] we
have

e`,A∨(αx, y) = e`,A(x, α∨y),

see [Lan83, Ch. VII, §2, Thm. 4], [Mum74, p. 186]. Thus Hom(As, (A∨)s)sym/`
is a subgroup of Hom(A[`], A∨[`])sym. Note that if ` 6= 2, then using (15.4) we
see that this subgroup consists precisely of the elements of Hom(As, (A∨)s)/`
that define symmetric homomorphisms on `-torsion subgroups:

Hom(As, (A∨)s)sym/` = Hom(As, (A∨)s)/` ∩ Hom(A[`], A∨[`])sym. (15.5)

(To see that the natural inclusion of the left hand side into the right hand side
is an isomorphism, note that any α in the right hand side lifts to `+1

2 (α+α∨).)
Now we are ready to prove the main result of this section.

Theorem 15.3.3 Let A be an abelian variety over a field k that is finitely
generated over its prime subfield. Then Br(As)[`]Γ = 0 for almost all primes `.
Hence the subgroup of Br(As)Γ, which consists of the elements of order prime
to char(k), is finite.
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Proof. The second statement follows from the first statement and Corollary
15.2.2. The first statement is a consequence of the following variant of the Tate
conjecture on homomorphisms first stated by Zarhin in [Zar77]: for abelian
varieties A and B over k the natural injection

Hom(A,B)/` ↪→ HomΓ(A[`], B[`]) (15.6)

is an isomorphism for almost all `. In the finite characteristic case this is due to
Zarhin [Zar77, Thm. 1.1]. When k is a number field, [Zar85, Cor. 5.4.5] based
on the results of Faltings [Fal83] says that for almost all ` we have

End(A)/` = EndΓ(A`). (15.7)

The same proof works over arbitrary fields that are finitely generated over Q, if
one replaces the reference to [Zar85, Prop. 3.1] by the reference to the corollary
on p. 211 of [Fal86]. Applying (15.7) to the abelian variety A×B, one deduces
that (15.6) is a bijection.

By (15.5) this gives an isomorphism

Hom(A,A∨)sym/`−̃→HomΓ(A[`], A∨[`])sym.

By the discussion before the theorem the left hand side is canonically isomorphic
to HomΓ(As, (A∨)s)sym/` = NS(As)Γ/`, whereas the right hand side is canon-
ically isomorphic to H2

ét(A
s, µ`)

Γ. Since the Néron–Severi group of an abelian
variety is torsion-free and NS(As)Γ is a saturated subgroup of NS(As), the natu-
ral map NS(As)Γ/`→(NS(As)/`)Γ is injective. We conclude that the embedding
(NS(As)/`)Γ ⊂ H2

ét(A
s, µ`)

Γ is actually an equality, because the cardinalities of
these finite groups are the same. As was recalled in the beginning of the section,
this implies that for almost all ` we have Br(As)[`]Γ = 0. �

15.4 Varieties dominated by products

Products of varieties

Theorem 15.4.1 Let k be a field finitely generated over Q. Let X and Y be
smooth, projective and geometrically integral varieties over k. Then(

Br(X × Y )/(Br(X)⊕ Br(Y ))
)Γ

is a finite group.

Proof. By Corollary 4.6.7 the Γ-module Br(X)⊕Br(Y ) is a direct summand of
Br(X ×Y ). Since Br(X ×Y ) is a torsion group such that Br(X ×Y )[n] is finite
for every positive integer n, the same is true for the group in the statement of
the theorem. Thus it is enough to prove the following statements.

(a) For every prime ` we have V`
(
(Br(X × Y )/(Br(X)⊕ Br(Y )))Γ

)
= 0.

(b) For almost all primes ` we have
(
Br(X×Y )[`]/(Br(X)[`]⊕Br(Y )[`])

)Γ
= 0.
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Let us prove (a). We can pass to the limit in the isomorphism of Corollary
4.6.8, taking into account what was said in Remark 4.6.9. This produces an
isomorphism of Γ-modules between

V`(Br(X × Y ))/(V`(Br(X))⊕ V`(Br(Y ))) = V`
(
Br(X × Y )/(Br(X)⊕ Br(Y ))

)
and the quotient of HomQ`

(
V`(B

∨), V`(A)
)

by Hom(B∨, A)⊗Q` (embedded via
a natural map given by the action on torsion points). Hence we obtain

V`
(
(Br(X × Y )/(Br(X)⊕ Br(Y )))Γ

)
=

V`
(
Br(X × Y )/(Br(X)⊕ Br(Y ))

)Γ
=(

HomQ`

(
V`(B

∨), V`(A)
)
/Hom(B∨, A)⊗Q`

)Γ
.

By the fundamental results of Faltings [Fal83, Fal86] Γ-modules V`(B
∨) and

V`(A) are semisimple and

HomΓ(V`(B
∨), V`(A)) = Hom(B∨, A)⊗Q`.

By a theorem of Chevalley [Che54, p. 88] the semisimplicity of Γ-modules
V`(B

∨) and V`(A) implies the semisimplicity of HomQ`
(V`(B

∨), V`(A)). From
this we deduce (a).

Let us prove (b). By Corollary 4.6.8 and Remark 4.6.9 it is enough to show(
Hom(B∨[`], A[`])/(Hom(B∨, A)/`)

)Γ
= 0

for almost all primes `. Since Hom(B∨, A)Γ = Hom(B∨, A), the exact sequence

0 −→ Hom(B∨, A)Γ/` −→
(
Hom(B∨, A)/`

)Γ −→ H1(k,Hom(B∨, A))

implies, in view of the finiteness of H1(k,Hom(B∨, A)), that for all but finitely
many primes ` we have(

Hom(B∨, A)/`
)Γ

= Hom(B∨, A)/`.

If we further assume that ` > 2 dim(A) + 2 dim(B) − 2, then, by a theorem of
Serre [Ser94], the semisimplicity of the Γ-modules B∨[`] and A[`] implies the
semisimplicity of Hom(B∨[`], A[`]). Hence we obtain(

Hom(B∨[`], A[`])/(Hom(B∨, A)/`)
)Γ

=

Hom(B∨[`], A[`])Γ/(Hom(B∨, A)/`)Γ =

HomΓ(B∨[`], A[`])/(Hom(B∨, A)/`) = 0.

This is zero for almost all `, since (15.6) is a bijection for almost all `. �

Corollary 15.4.2 Let k be a field finitely generated over Q such that H3(k, k̄∗) =
0, for example, a number field. Let X and Y be smooth, projective and geomet-
rically integral varieties over k. Then the cokernel of the natural map

Br(X)⊕ Br(Y ) −→ Br(X × Y )

is finite.
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Proof. From the functoriality of the spectral sequence (4.7) and the assumption
H3(k, k̄∗) = 0, we obtain the following commutative diagram with exact rows:

Br(X × Y ) → Br(X × Y )Γ → H2(k,Pic(X × Y ))
↑ ↑ ↑

Br(X)⊕ Br(Y ) → Br(X)Γ ⊕ Br(Y )Γ → H2(k,Pic(X))⊕H2(k,Pic(Y ))

The middle vertical map is clearly injective. Next, the kernel of the right hand
vertical map is finite. Indeed, in view of the exact sequence (4.25) it is enough
to remark that the abelian group Hom(B∨, A) is free and finitely generated,
hence H1(k,Hom(B∨, A)) is finite.

By Theorem 15.4.1 this diagram shows that the subgroup of Br(X × Y )
generated by Br1(X ×Y ) and the images of Br(X) and Br(Y ), has finite index.
By Proposition 4.6.4, Br1(X × Y ) is finite modulo Br1(X)⊕Br1(Y ), so we are
done. �.

Varieties dominated by products of curves

A smooth, projective and geometrically integral variety X over a field k is called
a variety dominated by a product of curves if there is a dominant rational map
from a product of geometrically integral curves to X.

Theorem 15.4.3 Let k be a field finitely generated over Q. Let X be a variety
dominated by a product of curves. Then Br(X)Γ is finite.

Proof. If V and W are smooth, projective and geometrically integral varieties
over a field k which is finitely generated over Q, then the cokernel of the natural
map Br(V )Γ ⊕ Br(W )Γ→Br(V ×W )Γ is finite by Theorem 15.4.1. The Brauer
group of a smooth, projective, integral curve over an algebraically closed field
is zero (Theorem 4.5.1). Thus if Z is a product of smooth, projective and
geometrically integral curves over k, then Br(Z)Γ is finite.

Since char(k) = 0, we can assume that there is a smooth, projective and
geometrically integral variety Y over k, a birational morphism Y→Z, where
Z is a product of smooth, projective and geometrically integral curves, and a
dominant, generically finite morphism f : Y→X. By the birational invariance
of the Brauer group (Corollary 5.2.6) we have Br(Y )Γ = Br(Z)Γ. By Theorem
3.5.4 the natural map Br(X) ↪→ Br(k̄(X)) is injective. The standard restriction-
corestriction argument then gives that the kernel of f∗ : Br(X)→Br(Y ) is killed
by the degree [k̄(Y ) : k̄(X)]. Since Br(X) is a torsion group of cofinite type,
this kernel is finite. Hence Br(X)Γ is finite. �

Corollary 15.4.4 Let k be a field finitely generated over Q. Let f(t) and g(t) be
separable polynomials of degree d ≥ 2. Let F (x, y) and G(x, y) be homogeneous
forms of degree d such that f(t) = F (t, 1) and g(t) = G(t, 1). Let X ⊂ P3

k be the
surface with equation F (x, y) = G(z, w), for example, a diagonal surface. Then
the Brauer group Br(X) is finite modulo Br(k).
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Proof. The surface X is dominated by the product of smooth plane curves of
degree d, namely, the curves zd = F (x, y) and zd = G(x, y). Since Pic(X)
is torsion-free, the group Br1(X)/Br0(X) is finite. The finiteness of Br(X)Γ

follows from Theorem 15.4.3. �

15.5 K3 surfaces

Preliminaries on K3 surfaces

For a detailed introduction to the geometry of K3 surfaces we refer the reader
to Huybrechts’ book [Huy16], see also [Voi02, §7.2]. Here we briefly recall the
definition and the basic geometric properties of K3 surfaces.

A smooth, projective and geometrically integral surface X over a field k is
called a K3 surface if Ω2

X
∼= OX and H1(X,OX) = 0. Standard examples of K3

surfaces are quartic surfaces in P3
k and double covers of P2

k ramified in a smooth
sextic curve.

Let k = C. Using Serre duality and the Riemann–Roch theorem one finds
that the classical (Betti) cohomology group H2(X,Z) is a free abelian group of
rank 22. We have the cup-product

∪ : H2(X,Z)×H2(X,Z) −→ H4(X,Z) ∼= Z,

where the last isomorphism is due to the fact that dim(X) = 2. This is a
symmetric bilinear pairing. The Poincaré duality implies that this pairing is a
perfect duality, that is, it induces an isomorphism

H2(X,Z)−̃→Hom(H2(X,Z),Z).

Thus the determinant of the matrix of this bilinear form with respect to a Z-
basis of H2(X,Z) lies in Z∗ = {±1}. Topological arguments (Wu’s formula,
Thom–Hirzebruch index theorem) give that the associated integral quadratic
form is even, i.e. x ∪ x ∈ 2Z for any x ∈ H2(X,Z), and of signature (3, 19). By
the classification of even integral quadratic forms, this implies that H2(X,Z)
can be written as the orthogonal direct sum L = E8(−1)⊕2 ⊕ U⊕3. Here E8 is
the (positive definite) root lattice of the root system E8; the lattice E8(−1) is
obtained by multiplication of the form on E8 by −1, and U is the hyperbolic
lattice of rank 2 (whose associated quadratic form is q(x1, x2) = x1x2).

Hodge structures of complex tori

Let M be a finitely generated free abelian group. Following Deligne, an inte-
gral Hodge structure on M is a representation of the 2-dimensional real torus
S = ResC/R(Gm,C) in GL(MR). Then we have a Hodge decomposition MC =
⊕p,qMp,q such that z ∈ S(R) = C∗ acts on Mp,q by zpz̄q. The space Mq,p is
the complex conjugate of Mp,q. If p+ q = n for each summand Mp,q, then the
Hodge structure is called pure of weight n.
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A complex torus is Cg/Λ, where Λ ∼= Z2g is a full lattice, i.e. Λ⊗Z R = Cg.
To give a complex torus is the same as to give an integral Hodge structure of type
{(1, 0), (0, 1)} on Λ. (The complex structure on Λ⊗Z R is defined by the action
of i ∈ C∗ = S(R).) An abelian variety is a complex torus with a polarisation,
which is an integral skew-symmetric form on Λ satisfying some conditions. (This
can be also rephrased by saying that the integral Hodge structure is polarisable.)

An example of a complex torus is the Jacobian of a smooth projective curve.
For a curve C of genus g the spaces H1,0 ∼= H0(C,Ω1

C) and H0,1 ∼= H1(C,OC)
have dimension g, so the Hodge decomposition

H1(C,Z)C = H1(C,C) = H1,0 ⊕H0,1

gives rise to a complex torus. Explicitly, integrating g linearly independent
holomorphic 1-forms over 2g elements of a Z-basis of H1(C,Z) produces a full
lattice Λ ⊂ Cg. Then one shows that the complex torus Cg/Λ has a polarisation,
so is an abelian variety. This is the Jacobian of C.

Hodge structures of K3 type

In a very rough analogy to the Jacobian of a curve, one would like to associate
an abelian variety to a polarised K3 surface. The Hodge decomposition on the
second integral cohomology group of a complex K3 surface X is

H2(X,Z)C = H2(X,C) = H2,0 ⊕H1,1 ⊕H0,2,

where H2,0 ∼= H0(X,Ω2
X) and H0,2 ∼= H2(X,OX) are both 1-dimensional vector

spaces over C. This is a Hodge structure of pure weight 2.
Choose a non-zero ω ∈ H2,0. Since H4,0 = 0 we have ω∪ω = 0. The complex

conjugate ω is a non-zero element of H0,2. Since the pairing

H2,0 ×H0,2 −→ H2,2 = H4(X,C) ∼= C

is non-degenerate and the cup-product is symmetric, ω ∪ ω is a non-zero real
number. Actually, ω ∪ ω > 0. Since H3,1 = H1,3 = 0, we have H2,0 ⊥ H1,1

and H0,2 ⊥ H1,1. It is convenient to twist this Hodge structure by 1 in order to
obtain a Hodge structure of weight 0:

H2(X,Z(1))C = H1,−1 ⊕H0,0 ⊕H−1,1.

The advantage of this is that now the image of S lies in SO(H2(X,Z))R. (Twist-
ing by 1 also means rescaling the image of the integral cohomology inside the
complex cohomology by 2πi.)

The Picard group of a complex K3 surface is a free abelian group. Its rank
ρ is called the Picard number. The cycle class map gives an embedding

Pic(X) ↪→ H2(X,Z(1)).

By the Lefschetz theorem Pic(X) = H2(X,Z(1)) ∩ H(0,0). From this we obtain
1 ≤ ρ ≤ 20. The orthogonal complement to Pic(X) in H2(X,Z(1)) is called the
transcendental lattice and is denoted by T (X).
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Definition 15.5.1 Let M be a finitely generated free abelian group with a non-
degenerate integral symmetric bilinear form (x, y). An integral Hodge structure
on M is called a Hodge structure of K3 type, if the Hodge decomposition is

MC = M1,−1 ⊕M0,0 ⊕M−1,1,

where M1,−1 ⊥M0,0, dim(M1,−1) = 1 and for a non-zero ω ∈M1,−1 we have

(ω2) = 0, (ω, ω) > 0.

Take a primitive element λ ∈ L such that (λ2) > 0. Let d = 1
2 (λ2) ∈ Z. It

can be proved that the primitive elements x ∈ L with (x2) = 2d form an orbit
of Aut(L). Hence the isomorphism class of the orthogonal complement λ⊥ ⊂ L
depends only on d. It follows that the lattice λ⊥ is isomorphic to the orthogonal
direct sum

Ld = E8(−1)⊕2 ⊕ U⊕2 ⊕ (−2d). (15.8)

The signature of Ld is (2, 19). This associates to a K3 surface with a primitive
polarisation of degree 2d an integral Hodge structure of K3 type on Ld.

Associating to an integral Hodge structure of K3 type on Ld the 1-dimensional
complex space H1,−1 defines a point in the period domain

Ωd = {x ∈ P(Ld,C) | (x2) = 0, (x, x̄) > 0} = SO(2, 19)(R)/SO(2)(R)×SO(19)(R),

see [Voi02, Thm. 7.18]. One identifies Ωd with the Grassmannian of positive
definite oriented 2-dimensional real subspaces of Ld ⊗R ' R21, by attaching to
x the plane spanned by Re(x), Im(x) in this order. Thus

Ωd = SO(2, 19)(R)/SO(2)(R)× SO(19)(R).

Ωd has two isomorphic connected components that are interchanged by the
complex conjugation (or reversing the orientation).

15.6 The Kuga–Satake variety

Hodge structures of curves and K3 surfaces are quite different, so we cannot con-
struct an analogue of Jacobian for K3 surfaces without more work. Nevertheless,
we have the following very important result. The classical Torelli theorem can be
stated as follows: the isometry class of the integral Hodge structure on H1(C,Z),
where C is a smooth and connected complex curve, uniquely determines C. The
Torelli theorem for K3 surfaces of Piatetskii-Shapiro and Shafarevich [PSS71]
leads to the following result: the isometry class of the integral Hodge structure
on H2(X,Z), where X is a complex K3 surface, uniquely determines X, see
[Huy16, Thm. 7.5.3].

Another obstacle is that the cup-product pairing on H2(X,Z) is symmetric,
whereas for an abelian variety one would need a skew-symmetric pairing, such
as the one given by the cup-product on H1(C,Z). To overcome this issue one
employs the Clifford algebra of the quadratic form on H2(X,Z).
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Clifford algebra and spinor group

Let us recall the general construction of the Clifford algebra and the spinor
group, see [BouIX, §9].

Let M be a finitely generated free abelian group with a non-degenerate
quadratic form q : M→Z. Define the Clifford algebra Cl(M) as the quotient
of the full tensor algebra ⊕n≥0M

⊗n by the two-sided ideal I generated by the
elements x ⊗ x − q(x) for x ∈ M . There is an isomorphism of abelian groups

Cl(M) ' ⊕rk(M)
n=0 ∧nM , hence rk(Cl(M)) = 2rk(M). The multiplication by −1 on

M acts on ⊕n≥0M
⊗n. Since x⊗x−q(x) is invariant, we have I = I+⊕I−, where

I+ is the subgroup of invariant elements and I− is the subgroup of anti-invariant
elements. Thus we can define

Cl+(M) = (⊕n≥0M
⊗2n)/I+, Cl−(M) = (⊕n≥0M

⊗2n+1)/I−,

where the first equality is the quotient of a ring by an ideal, whereas the second
one is the quotient of a (left or right) ⊕n≥0M

⊗2n-module ⊕n≥0M
⊗2n+1 by the

submodule I−. The natural embedding of M into ⊕n≥0M
⊗n gives rise to an

injective map M→Cl−(M). Define the Clifford group

GSpin(M) = {g ∈ Cl+(M)∗|gMg−1 = M}.

The group GSpin(M) acts by conjugation on M preserving the quadratic form.
This gives an exact sequence of algebraic groups over Q:

1 −→ Gm,Q −→ GSpin(M)Q −→ SO(M)Q −→ 1.

The adjoint action of GSpin(M) on Cl+(M), i.e. the action by conjugations,
gives rise to a representation of GSpin(M)Q, which is isomorphic to the direct
sum of ∧2nMQ for n ≥ 0.

The spinor group Spin(M)Q is the algebraic group over Q defined by the
exact sequence

1 −→ Spin(M)Q −→ GSpin(M)Q −→ Gm,Q −→ 1,

where the third arrow is the spinor norm.
It is instructive to consider the case of an orthogonal direct sum of n hy-

perbolic planes U⊕n, i.e. rank 2 lattices with Z-basis ei, fi such that q(ei) =
q(fi) = 0, (ei, fi) = 1, for i = 1, . . . , n, where (a, b) = q(a+b)−q(a)−q(b) is the
associated bilinear form. Let Λ be the full exterior algebra of Ze1 ⊕ . . .⊕ Zen.
Then Cl(U⊕n) is isomorphic to End(Λ), see the proof of [BouIX, §9, no. 4,
Thm. 2]. Next, Cl+(U⊕n) is isomorphic to End(Λ+)⊕End(Λ−), where Λ+ and
Λ− are the even and odd parts of Λ, respectively.

From this it follows that if rk(M) is even, then Cl(MC) is isomorphic to
a matrix algebra. The unique simple module of this simple algebra is called
the spinor representation. We have Cl(MC) = EndC(W ). The restriction of
W to Cl+(MC) splits into the direct sum of two non-isomorphic semi-spinor
representations, so that Cl+(MC) = EndC(W1)⊕ EndC(W2), where W = W1 ⊕
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W2 and dim(W1) = dim(W2). The spaces W1 and W2 are non-isomorphic
representations of Spin(M)C.

If rk(M) is odd, then Cl+(MC) is isomorphic to a matrix algebra EndC(W ),
where W is called the spinor representation. In this case the full Clifford algebra
Cl(MC) is the direct sum of two isomorphic matrix algebras, see [BouIX, §9, no.
4, Thm. 3]. More precisely, if e0, . . . , e2n is an orthonormal basis of q over C,
then one can choose a sign so that τ = ±e0 . . . e2n is in the centre of Cl(MC) and
τ2 = 1. Then Cl(MC) is the direct sum of its two-sided ideals Cl+(MC)(1 + τ)
and Cl+(MC)(1 − τ). Thus Cl(MC) is isomorphic to EndC(W )⊕2, i.e. the two
resulting representations of Spin(M)C are isomorphic to W .

Kuga–Satake construction I

Let us apply this to the second cohomology of a polarised complex K3 surface
X. Fix a primitive ample class λ ∈ H2(X,Z(1)) and define P as the orthogonal
complement to λ in H2(X,Z(1)), so that rk(P ) = 21. We have

PC = P 1,−1 ⊕ P 0,0 ⊕ P−1,1.

Kuga and Satake [KS67] showed how to define a canonical complex structure on
the real vector space Cl+(PR). We can normalise ω ∈ P 1,−1 so that (ω, ω) = 2.
Write ω = ω1 + iω2, where ω1, ω2 ∈ H2(X,R). Then (ω2

1) = (ω2
2) = 1 and

(ω1, ω2) = 0. By the definition of the Clifford algebra, the following holds in
Cl(PR):

ω2
1 = ω2

2 = 1, ω1ω2 = −ω2ω1.

Let I = ω1ω2 ∈ Cl+(PR). (It is immediate to check that I does not depend on
ω.) Then I2 = −1, so the left multiplication by I defines a complex structure on
the real vector space Cl+(PR), thus making Cl+(PR)/Cl+(P ) a complex torus.
It has a polarisation [Huy16, Ch. 4, 2.2], so is an abelian variety.

Kuga–Satake construction II, d’après Deligne

In Deligne’s version [Del72] one equips Cl+(P ) with an integral Hodge structure
of type {(1, 0), (0, 1)} as follows. Since S preserves the quadratic form on PR, we
have a homomorphism h : S→SO(P )R whose kernel is {±1}. For any a, b ∈ R,
not both equal to 0, we have a + bI ∈ GSpin(P )(R). Deligne points out that
this is a canonical lifting of h : S→SO(P )R to h̃ : S ↪→ GSpin(P )R. (Indeed, if
we write z = a+ bi, then a+ bI ∈ Cl+(PR) and x 7→ (a+ bI)x(a+ bI)−1 acts on
ω as multiplication by zz̄−1, on ω as multiplication by z̄z−1, and on P 0,0 ∩ PR
as the identity.) This means that the adjoint action of GSpin(PQ) on P induces
our original Hodge structure of K3 type on P .

Lemma 15.6.1 The left action of GSpin(P )Q on Cl+(PQ) induces an integral
Hodge structure of type {(1, 0), (0, 1)} on Cl+(PQ). The same is true for Cl(PQ).

Proof. The adjoint representation of GSpin(P )Q on Cl+(PQ) is isomorphic
to the direct sum of ∧2nPQ for n ≥ 0. The Hodge structure on P is of
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K3 type, hence the induced Hodge structure on each ∧2nP is of Hodge type
{(1,−1), (0, 0), (−1, 1)}. Thus the Hodge structure on Cl+(P ), is also of Hodge
type {(1,−1), (0, 0), (−1, 1)}.

The action of S ⊂ GSpin(P )R by left multiplication induces an integral
Hodge structure on Cl+(P ). We would like to determine its type. Note that
the C-algebra Cl+(PC) can be identified with a matrix algebra EndC(W ), where
the complex vector space W is the unique simple module of Cl+(PC). Hence
the action of GSpin(P )C on Cl+(PC) by left multiplication is isomorphic to
W dim(W ). The adjoint representation GSpin(P )C on Cl+(PC) is isomorphic
to EndC(W ) = W ⊗C W

∗, where W ∗ = HomC(W,C). Thus the type of the
Hodge structure on Cl+(P ) defined by left multiplication of S ⊂ GSpin(P )R
must be {(a, b), (b, a)} with a − b = ±1, otherwise the Hodge structure on
W ⊗C W

∗ cannot be of type {(1,−1), (0, 0), (−1, 1)}. But R∗ ⊂ C∗ acts on
Cl+(PC) tautologically, so the weight of W is a + b = 1. Thus the type is
{(1, 0), (0, 1)}.

The right multiplication by x ∈M , q(x) 6= 0, is an isomorphism of Q-vector
spaces Cl+(PQ)→Cl−(PQ) which preserves the left action of GSpin(P )Q. This
shows that integral Hodge structure on Cl(PQ) is of type {(1, 0), (0, 1)}. �

It can be shown that the integral Hodge structures on Cl+(P ) and Cl(P )
are polarisable, so we actually obtain abelian varieties and not just complex
tori. The complex abelian variety Cl+(PR)/Cl+(P ) is sometimes called the
even Kuga–Satake variety of (X,λ). The complex abelian variety Cl(PR)/Cl(P )
is usually called the Kuga–Satake variety of (X,λ).

15.7 Moduli spaces of K3 surfaces and Shimura
varieties

Moduli spaces of polarised K3 surfaces

Let O(Ld) be the orthogonal group of the lattice Ld defined in (15.8) with
associated period domain Ωd. Write L∗d = Hom(Ld,Z). We have a natural
injective map Ld→L∗d. Its cokernel is the discriminant group of Ld. Define

Õ(Ld) = {g ∈ O(Ld) | g acts trivially on L∗d/Ld ' Z/2d}.

Equivalently, Õ(Ld) is the stabiliser of λ in O(L). The key (difficult) facts are:

(1) Õ(Ld)\Ωd is a quasi-projective irreducible variety over C (Baily–Borel);
(2) there is a coarse moduli space Md of K3 surfaces with a primitive polar-

isation of degree 2d;
(3) Md is a Zariski open subscheme of Õ(Ld)\Ωd.

Note that Md is not smooth, though it is smooth as an orbifold (or as a Deligne–
Mumford stack). It is constructed as a categorical quotient of the open sub-
scheme of the relevant Hilbert scheme parameterising K3 surfaces in a given
projective space by the action of the projective linear group. Fact (3) uses local



15.7. MODULI SPACES OF K3 SURFACES AND SHIMURA VARIETIES327

and global Torelli theorems, and surjectivity of the period map, see [Huy16, Cor.
6.4.3]. This description is a K3 analogue of the coarse moduli space of ellip-
tic curves SL(2,Z)\H or the moduli space of dimension g principally polarised
abelian varieties Ag = Sp(2g,Z)\Hg, where H is the usual upper half-plane and
Hg is the Siegel upper half-plane. Here Ωd, H, Hg are Hermitian symmetric
domains, so property (1) follows from the Baily–Borel theorem about quotients
of Hermitian symmetric domains by torsion-free arithmetic sugroups of their
automorphism groups. (One needs to first apply the Baily–Borel theorem to a

torsion-free finite index subgroup of Õ(Ld), and then take a quotient of a variety
by a finite group action.)

Replacing O(Ld) by the index 2 subgroup SO(Ld) gives rise to an unram-

ified cover M̃d→Md. Here M̃d is a Zariski open subset of S̃O(Ld)\Ωd, where

S̃O(Ld) = SO(Ld) ∩ Õ(Ld). This replaces the non-connected orthogonal group

by the connected special orthogonal group. The degree of M̃d→Md is 2 unless
d = 1. In the exceptional case d = 1 the group O(L1) = Õ(L1) contains −1

which acts trivially on Ω1, hence O(L1) = {±1}× SO(L1) and thus M̃1→M1 is
an isomorphism.

We have seen that a point in Ωd is a homomorphism S→SO(Ld)R. The action
of SO(Ld)(R) on Ωd is transitive, so Ωd can be identified with the conjugacy
class of h in Hom(S,SO(Ld)(R)). This is similar to the classical identification
of H = SL(2)(R)/SO(2)(R) with the conjugacy class of S ⊂ GL(2)+

R . (Here
GL(2)+

R is given by the condition det(x) > 0; note that GL(2)(R)/S = H±.)

In modern language Ag and S̃O(Ld)\Ωd are the sets of complex points of
Shimura varieties. To exploit the connection between moduli spaces of prim-
itively polarised K3 surfaces and Shimura varieties, we now give a very brief
introduction to Shimura varieties, referring the reader to Deligne’s foundational
paper [Del79] and Milne’s lecture notes [Mil05] for a systematic treatment.

Orthogonal Shimura variety

A Shimura datum is a pair (G,X), where G is a connected reductive alge-
braic group over Q and X is a G(R)-conjugacy class in Hom(S, G(R)) satisfying
certain axioms ensuring that each connected component of X is a Hermitian
symmetric domain. Morphisms of Shimura data are defined in the obvious way.
In the K3 case, let SO(Ld) be the group scheme over Z whose functor of points
associates to a ring R the group SO(Ld⊗ZR). Then (SO(Ld)Q,Ωd) is a Shimura
datum. In the case of principally polarised abelian varieties the Shimura datum
is (GSp2g,Q,H±g ).

A congruence subgroup is a subgroup of G(Q) cut out by a compact open

subgroup K ⊂ G(AQ,f), where AQ,f = Ẑ⊗ZQ is the ring of finite adèles. (Equiv-
alently, a congruence subgroup is a subgroup that has a subgroup of finite index
which preserves a lattice modulo some integer N in a rational representation.)
Deligne’s definition of the Shimura variety defined by the Shimura datum (G,X)
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and a compact open subgroup K ⊂ G(AQ,f) is

ShK(G,X)C = G(Q)\X ×G(AQ,f)/K,

where G(Q) acts diagonally on both factors on the left, whereas K acts on
G(AQ,f) on the right. The crucial fact is that any Shimura variety ShK(G,X)
is defined over a number field; it is a so called canonical model. The set
ShK(G,X)(C) is a disjoint union of the quotients Γ\X+, where X+ is a con-
nected component of X and Γ is a congruence subgroup of the stabiliser of X+

in G(Q).

We now go back to the K3 surfaces Shimura datum (SO(Ld)Q,Ωd). Let
K ⊂ SO(Ld)(AQ,f) be a compact open subgroup. The canonical model of the
associated Shimura variety ShK(Ld) := ShK(SO(Ld)Q,ΩL) is a quasi-projective
variety over Q. By construction, the C-points of ShK(Ld) parameterise Z-Hodge
structures on Ld of K3 type, see Definition 15.5.1.

Suppose that K is neat. (See R. Pink’s thesis [Pin, pp. 4-5] for the definition
of neatness and the fact that every compact open subgroup of SO(Ld)(AQ,f)
contains a neat subgroup of finite index.) Then for each prime ` there is a
lisse Z`-sheaf Ld,` on ShK(Ld) defined by the inverse system of finite étale
covers ShK(`m)(Ld)→ShK(Ld), where K(`m) is the largest subgroup of K that
acts trivially on L/`m. Thus, to a k-point x of ShK(Ld) there corresponds a
representation Gal(k̄/k)→SO(Ld⊗ZZ`). Putting together these representations
for all ` gives a representation

φx : Gal(k̄/k) −→ SO(Ld ⊗Z Ẑ). (15.9)

We refer to this as the monodromy representation.

Spin Shimura variety

From a lattice with signature (2, n), n ≥ 1, one can also construct a spin Shimura
variety. Recall that Cl(Ld) is the Clifford algebra of Ld, and Cl+(Ld) ⊂ Cl(Ld) is
the even Clifford algebra. Let GSpin(Ld) be the group Z-scheme whose functor
of points associates to a ring R the group of invertible elements g of Cl+(Ld⊗ZR)
such that g(Ld ⊗Z R)g−1 = Ld ⊗Z R.

Recall that h : S→SO(Ld)R canonically lifts to h̃ : S→GSpin(Ld)R. It follows
that the GSpin(Ld)(R)-conjugacy class of h̃ : S→GSpin(Ld)R maps bijectively
to Ωd, which is the SO(Ld)(R)-conjugacy class of h. This shows that the ho-
momorphism GSpin(Ld)→SO(Ld) naturally extends to a morphism of Shimura
data

(GSpin(Ld)Q,Ωd) −→ (SO(Ld)Q,Ωd).

If K̃ ⊂ GSpin(Ld)(AQ,f) is a compact open subgroup, we write Shspin

K̃
(Ld) for the

Shimura variety ShK̃(GSpin(Ld)Q,Ωd). We can take K to be the image of K̃ in
SO(L)(AQ,f); indeed, by [And96, 4.4], K is compact and open in SO(Ld)(AQ,f).
The natural group homomorphism GSpin(Ld)Q→SO(Ld)Q induces a morphism
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Shspin

K̃
(Ld)→ShK(Ld). This morphism is finite and surjective, and is defined

over Q, see [And96, App. 1].

Let K̃N ⊂ GSpin(Ld)(Ẑ) be the set of elements congruent to 1 modulo

N in Cl+(Ld ⊗Z Ẑ). If K̃ ⊂ K̃N for N ≥ 3, then K̃ and K are neat and

the morphism Shspin

K̃
(Ld)→ShK(Ld) is étale. This morphism restricts to an

isomorphism on each geometric connected component [Riz10, §5.5, (32)]. Thus

Shspin

K̃
(Ld)→ShK(Ld) has a section defined over a number field E which only

depends on K̃.

Kuga–Satake construction III: the Kuga–Satake abelian scheme

The choice of a polarisation of the integral Hodge structure on Cl(Ld) defines a
morphism of Shimura data

(GSpin(Ld)Q,Ωd) −→ (GSp2g,Q,H±g ),

where g = 220. Moreover, there is a finite morphism of Shimura varieties from
Shspin

K̃
(Ld) to a moduli space of abelian varieties, defined over Q. In order

to construct this, we find a skew-symmetric form on Cl(Ld) following [Huy16,
Ch. 4, 2.2]. For this we choose orthogonal elements f1, f2 ∈ Ld satisfying
(f2

1 ), (f2
2 ) > 0 and define a skew-symmetric form on Cl(Ld) by ±Tr(f1f2v

∗w),
where Tr(x) is the trace of the left multiplication by x ∈ Cl(Ld) on Cl(Ld).
The action of GSpin(Ld) on this form is multiplication by the spinor norm (see
[Huy16, Ch. 4, Prop. 2.5] for proofs of these facts, as well as the correct choice
of sign). The group GSpin(Ld) injects into the group of symplectic similitudes
GSp(Cl(Ld)) of this form.

If K̃ ⊂ K̃N , then we have a morphism from Shspin

K̃
(Ld) to the Shimura variety

ShΓN
(GSp(Cl(Ld))Q,H±), where ΓN is the subgroup of GSp(Cl(Ld))(Ẑ) con-

sisting of the elements that are congruent to 1 modulo N . The latter Shimura
variety is identified with the moduli variety Ag,δ,N parameterising abelian vari-
eties of dimension g = 2n+1, polarisation type δ (explicitly computable in terms
of L and f1, f2) and level structure of level N . If N ≥ 3, then Ag,δ,N is a fine
moduli space carrying a universal family of abelian varieties.

Recall that E is a number field over which there exists a section of the
morphism of Shimura varieties Shspin

K̃
(Ld)E→ShK(Ld)E . The definition of the

Kuga–Satake abelian scheme depends on the choice of E.

Definition 15.7.1 The Kuga–Satake abelian scheme f : A→ShK(Ld)E is
defined as the pullback of the universal family of abelian varieties on Ag,δ,N to

Shspin

K̃
(Ld), and then, after extending the ground field from Q to E, to ShK(Ld)E.

The left multiplication by the elements of Ld ⊂ Cl(Ld) on Cl(Ld) gives
a homomorphism Ld ↪→ EndZ(Cl(Ld)) whose cokernel is torsion-free. Since
Cl(Ld) = R1fan,∗Z as sheaves on ShK(Ld)C, this gives rise to a morphism of
variations of Z-Hodge structures

Ld ↪→ Cl(Ld) ↪→ EndZ(R1fan,∗Z). (15.10)
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Via the comparison theorems we get a morphism of Z`-sheaves

Ld,` ↪→ EndZ`
(R1f∗Z`). (15.11)

Back to moduli spaces of K3 surfaces

Recall that Md introduced in the beginning of this section is the coarse moduli
space over Q of primitively polarised K3 surfaces of degree 2d; this is a quasi-
projective variety defined over Q. Let M̃d be the coarse moduli space over Q of
triples (X,λ, u) such that X is a K3 surface over a field of characteristic 0, λ is
a primitive polarisation of X of degree 2d, and u is an isometry

det(P 2(X,Z2(1))) −→ det(Ld ⊗Z Z2),

where P 2(X,Z2(1)) is the orthogonal complement of the image of λ in the 2-

adic étale cohomology H2(X,Z2(1)). We have an unramified cover M̃d→Md (of
degree 2 unless d = 1, when this is an isomorphism). By the work of Rizov
and Madapusi Pera based on the Torelli theorem [PSS71], there is an open

immersion M̃d ↪→ ShKd
(Ld) defined over Q, where

Kd = {g ∈ SO(Ld ⊗Z Ẑ) : g acts trivially on L∗d/Ld}. (15.12)

For a proof that this immersion is defined over Q, see [MP15, Cor. 5.4] (see also
[Riz10, Thm. 3.9.1]).

To a polarised K3 surface (X,λ) defined over a field k of characteristic 0 one
can attach two Galois representations: the representation in étale cohomology
and the monodromy representation. The first of them comes from the natural
action of the Galois group Γ = Gal(k̄/k) on H2

ét(X, Ẑ(1)). For a prime ` de-
fine P 2(X,Z`(1)) as the orthogonal complement to λ in H2

ét(X,Z`(1)). Choose
an isometry u : det(P 2(X,Z2(1)))−̃→ det(Ld ⊗Z Z2). After replacing k by a
quadratic extension we can assume that Γ acts trivially on det(P 2(X,Z2(1))).
By [Sai12, Cor. 3.3] the quadratic character through which Γ acts on the 1-
dimensional vector space det(H2

ét(X,Q`(1))) does not depend on `. Thus Γ
acts trivially on det(P 2(X,Z`(1))) for all primes `, hence the representation

ρX : Γ→O(P 2(X, Ẑ(1))) attached to X takes values in SO(P 2(X, Ẑ(1))).

The triple (X,λ, u) defines a k-point x in M̃2d ⊂ ShKd
(Ld). Choose a neat

compact open subgroup K′d ⊂ Kd and let x′ be a lift of x to ShK′d(Ld), so

that x′ is defined over a finite extension k′ of k. Let Γ′ = Gal(k̄/k′) and let

φx′ : Γ′→SO(Ld ⊗Z Ẑ) denote the monodromy representation associated with
the point x′, as defined at (15.9).

Lemma 15.7.2 Let (X,λ) be a primitively polarised K3 surface over a field k
of characteristic 0. There exists a finite extension k′/k of explicitly bounded

degree such that the adelic Galois representations ρX|Γ′ : Γ′→SO(P 2(X, Ẑ(1)))

and φx′ : Γ′→SO(Ld ⊗Z Ẑ) are isometric, where Γ′ = Gal(k̄/k′).
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Proof. This is an immediate consequence of [MP16, Prop. 5.6 (1)]. �

The conclusion of the work done in this section is the following proposition.

Proposition 15.7.3 Let k be a field of characteristic 0, and let (X,λ) be a
primitively polarised K3 surface over k. Let P 2(X,Z`(1)) be the orthogonal
complement to λ in H2

ét(X,Z`(1)), where ` is a prime. There exists a finite
extension k′/k and an abelian variety A over k′ with the following properties.

(i) For any prime ` there is an embedding of Γ′-modules, where Γ′ = Gal(k̄/k′):

P 2(X,Z`(1)) ↪→ EndZ`
(H1

ét(A,Z`)). (15.13)

(ii) Let k ⊂ C, and let P 2(XC,Z(1)) be the orthogonal complement to λ in
H2(XC,Z(1)). There is an embedding of integral Hodge structures of weigth 0:

P 2(XC,Z(1)) ↪→ EndZ(H1(AC,Z)). (15.14)

The two embeddings are compatible via comparison isomorphisms between clas-
sical and `-adic étale cohomology.

Proof. Let x be the k-point in Md defined by (X,λ). After replacing k by a

quadratic extension k′/k we can assume that x lifts to a k′-point on M̃d ↪→
ShKd

(Ld), where Kd is defined in (15.12). Pick a neat compact open subgroup
K̃d in GSpin(Ld)(AQ,f), for example, the set of elements congruent to 1 modulo

N in Cl+(Ld⊗Ẑ), where N ≥ 3. Let K′d be the intersection of Kd with the image

of K̃d in SO(Ld)(AQ,f). Then K′d is a neat compact open subgroup of Kd. We
enlarge k′ so that x comes from a k′-point s on the cover ShK′d(Ld) of ShKd

(Ld).
We extend k′ further to include the number field E over which there is a section
of the morphism of Shimura varieties Shspin

K̃d
(Ld)E→ShK′d(Ld)E . Now we have

the Kuga–Satake abelian scheme f : A→ShK′d(Ld), so A = f−1(s) is an abelian
variety over k′. Now (15.13) is just the specialisation of (15.11) at the k′-point
s. Similarly, (15.14) is the specialisation of (15.10). �

Given a polarised K3 surface X over k we can call an abelian variety A from
Proposition 15.7.3 a Kuga–Satake variety of X. Indeed, for k ⊂ C, by construc-
tion AC is isomorphic to the complex Kuga–Satake variety of the complex K3
surface XC as defined at the end of the previous section. What we gain now is
that A is defined over a finite extension of k.

It is worth noting that Lemma 15.7.2 replaces Proposition 6.4 and Lemma
6.5.1 in Deligne’s pioneering work [Del72] (written before the machinery of
Shimura varieties was fully developed) in establishing that (15.13) is an iso-
morphism of Galois modules, cf. [Del72, Prop. 6.5].

15.8 Tate conjecture and the Brauer group of
K3 surfaces

From Proposition 15.7.3 we obtain an embedding of Gal(k̄/k′)-modules

P 2(X,Q`(1)) ↪→ EndQ`
(H1(A×k′ k̄,Q`)). (15.15)
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Similarly, avoiding the finitely many primes dividing 2d, one obtains an embed-
ding of Gal(k̄/k′)-modules

P 2(X,µ`) ↪→ EndF`
(A[`]). (15.16)

Deligne used this to prove the Weil conjectures for K3 surfaces over finite fields
(before he proved them for arbitrary varieties), but this theory has many other
applications. For example, if k is finitely generated over Q, then the semisimplic-
ity of the Galois module H2

ét(X,Q`(1)) for a K3 surface X follows from (15.15)
and the semisimplicity for abelian varieties, as proved by Faltings.

Theorem 15.8.1 Let X be a K3 surface over a field k finitely generated over
Q. Then the Tate conjecture holds for X, that is, we have

H2
ét(X,Q`(1))Γ = Pic(X)Γ ⊗Z Q`.

Proof. Let A be a Kuga–Satake abelian variety of X defined over a finite
extension of k, as constructed in Proposition 15.7.3.

The profinite, hence compact group Γ acts continuously on the discrete group
Pic(X), so this action factors through a finite quotient Gal(k′/k) of Γ, for some
finite Galois extension k′ of k. Thus it is enough to prove the theorem under
the additional assumption that Γ acts trivially on Pic(X) and on End(A). We
need to show that the Γ-invariant subspace of H2

ét(X,Q`(1)) is Pic(X) ⊗Z Q`.
By Faltings, the Tate conjecture holds for A. Thus the Γ-invariant subspace
of EndQ`

(H1(A,Q`)) is End(A) ⊗Z Q`. Hence the image of P 2(X,Q`(1))Γ in
EndQ`

(H1(A,Q`)) belongs to the Q`-span of the intersection of the image of
P 2(XC,Q(1)) in EndQ(H1(AC,Q)) with End(A)⊗ZQ ⊂ EndQ(H1(AC,Q)). But
such elements of EndQ(H1(AC,Q)) have Hodge type (0, 0). Hence every ele-
ment of H2

ét(X,Q`(1))Γ is a Q`-linear combination of classes of type (0, 0) in
H2(XC,Q(1)). By the Lefschetz theorem, each such class is algebraic. �

The following result was obtained in [SZ08], using Deligne’s version of the
Kuga–Satake construction [Del72].

Theorem 15.8.2 (Skorobogatov–Zarhin) Let X be a K3 surface over a
field k finitely generated over Q. Then Br(X)Γ is finite.

Proof. The `-primary torsion subgroup Br(X)Γ{`} is finite for all primes `. This
follows from Theorems 15.2.1 and 15.8.1.

To prove that Br(X)Γ[`] = 0 for almost all `, by the Kummer exact sequence
it is enough to prove that for almost all ` we have H2

ét(X,µ`)
Γ = (Pic(X)/`)Γ.

For this it is enough to show that (T (X)/`)Γ = 0 for almost all `, where T (X)
is the transcendental lattice of X. By the Lefschetz theorem and the non-
degeneracy of the intersection pairing on Pic(X), the transcendental lattice
T (X) does not contain non-zero elements of Hodge type (0, 0). Hence the image
of T (X) in EndZ(H1(AC,Z)) has trivial intersection with End(A). It follows
that the image of T (X)/` in EndF`

(A[`]) intersects trivially with End(A)/` =
End(A)/` for almost all `. By Faltings and Zarhin, for almost all ` we have

EndF`
(A[`])Γ = End(A)/`.
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Thus (T (X)/`)Γ = 0 for almost all `. �

Corollary 15.8.3 Let X be a K3 surface over a field k finitely generated over
Q. The group Br(X)/Br0(X) is finite.

Remark 15.8.4 Let k be a field of characteristic p > 0 which is finitely gen-
erated over Fp. Then the subgroups of Br(X)Γ and Br(X)/Br0(X), which
consist of the elements of order prime to p, are both finite. For p > 2 this is
proved in [SZ15] using work of Rizov and Madapusi Pera [MP15], and Zarhin
[Zar76, Zar77, Zar85]. For p = 2 this is proved by K. Ito in [Ito18] using instead
of [MP15] a more recent work of Wansu Kim and Madapusi Pera proving the
Tate conjecture and essentially establishing the Kuga–Satake construction in
characteristic 2.
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mogènes de tores. J. Théor. Nombres Bordeaux 26 (2014) 69–83. 134,
259

[CT15] J.-L. Colliot-Thélène. Rationalité d’un fibré en coniques. Manuscripta
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C. R. Acad. Sci. Paris Sér. I Math. 297 (1983) 179–182. 109, 314

[GGMB14] O. Gabber, P. Gille et L. Moret-Bailly. Fibrés principaux sur les
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cohomologie des schémas. North-Holland, 1968, pp. 46–188. 10, 55, 75,
89, 93, 96, 158, 162, 163, 183, 191, 195, 196, 199

[Gun13] F. Gundlach. Integral Brauer–Manin obstruction for sums of two
squares and a power. J. Lond. Math. Soc. 88 (2013) 599–618. 152

[GS] D. Gvirtz and A.N. Skorobogatov. Cohomology and the Brauer groups
of diagonal surfaces. 113, 116
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[Jou84] J.-P. Jouanolou. Théorèmes de Bertini et applications. Progr. Math.
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[Ku10] B.È. Kunyavskĭı. The Bogomolov multiplier of finite simple groups. Co-
homological and geometric approaches to rationality problems, 209–217,
Progress in Math. 282, Birkhäuser, 2010. 176
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Birkhäuser, 1982, pp. 253–272. 242, 259



356 BIBLIOGRAPHY

[SW95] P. Sarnak and L. Wang. Some hypersurfaces in P4 and the Hasse-
principle. C. R. Acad. Sci. Paris, Sér. I Math. 321 (1995) 319–322.
289

[Sch18] S. Schreieder, Quadric surface bundles over surfaces and stable ratio-
nality. Algebra & Number Theory 12 (2018) 479–490. 233, 236, 237,
239

[Sch19] S. Schreieder. On the rationality problem for quadric bundles. Duke
Math. J. 168 (2019) 187–223. 234, 239

[Sch] S. Schreieder. Stably irrational hypersurfaces of small slopes.
https://arxiv.org/abs/1801.05397v2 236, 239

[Ser64] J-P. Serre. Sur les groupes de congruence des variétés abéliennes, I, II.
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