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Abstract

The connection between del Pezzo surfaces and root systems goes back
to Coxeter and Du Val, and was given modern treatment by Manin in his
seminal book “Cubic forms”. Batyrev conjectured that a universal torsor on
a del Pezzo surface can be embedded into a projective homogeneous space of
the semisimple group with the same root system, equivariantly with respect
to the maximal torus action. Computational proofs of this conjecture based
on the structure of the Cox ring have been given recently by Popov and
Derenthal. We give a new proof of Batyrev’s conjecture using an inductive
process, interpreting the blowing-up of a point on a del Pezzo surface in terms
of representations of Lie algebras corresponding to Hermitian symmetric pairs.

Introduction

Del Pezzo surfaces, classically defined as smooth surfaces of degree d in the projective
space Pd, d ≥ 3, are among the most studied and best understood of algebraic
varieties. Over an algebraically closed ground field such a surface is the quadric
P1 × P1 or the projective plane P2 with r = 9 − d points in general position blown
up; in this definition d can be any integer between 1 and 9. Despite the apparent
simplicity the enumerative geometry of these surfaces displays amazing symmetries
and puzzling coincidences. The 27 lines on a smooth cubic surface were discovered
by Cayley and Salmon, and the symmetries of their configuration were explored by
Schoutte, Coxeter and Du Val. In 1970 Manin gave a modern exposition of this
subject, with many geometric and arithmetic applications [16]. He showed that the
Picard group of a del Pezzo surface X of degree d = 9 − r, d ≤ 6, contains a root
system Rr of rank r in such a way that the automorphism group of the incidence
graph of the exceptional curves on X is the Weyl group W(Rr). These root systems
are embedded into one another: R8 = E8, and as r decreases one chops one by one
the nodes off the long end of the Dynkin diagram of E8, until the diagram becomes
disconnected. Let αr be the simple root of Rr corresponding to the node which must
be removed from the Dynkin diagram of Rr in order to obtain that of Rr−1; let ωr
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be the fundamental weight dual to αr. For r = 4, 5, 6, 7 the number of exceptional
curves on X is |W(Rr)/W(Rr−1)| = 10, 16, 27, 56, respectively, and this is also the
dimension of the irreducible minuscule representation V (ωr) of the Lie algebra gr of
type Rr with the highest weight ωr. It is tempting to try to recover the Lie algebra
directly from a del Pezzo surface, but one has to bear in mind that the del Pezzo
surfaces of degree d ≤ 5 depend on 10 − 2d moduli, so that the Lie algebra should
somehow take into account all del Pezzo surfaces of given degree (see [17], and also
[10], [15]).

Universal torsors were introduced by Colliot-Thélène and Sansuc in the 1970-s in
a seemingly unrelated line of research (see [3] or [22]). If X is a smooth projective
variety over a field k, then an X-torsor under a torus T is a pair (Y, f), where Y is
a variety over k with a free action of T , and f is an affine morphism Y → X whose
fibres are orbits of T . An X-torsor is universal if all invertible regular functions on
Y are constant, and the Picard group of Y is trivial (see Section 1 for details). Then
T is isomorphic to the Néron–Severi torus of X, i.e., the algebraic torus dual to the
Picard lattice of X over an algebraic closure of k. In the work of Colliot-Thélène,
Sansuc, Swinnerton-Dyer, Salberger and the second named author (see the references
in [22]) the birational geometry of universal torsors on del Pezzo surfaces of degrees 3
and 4 played a crucial role in gaining some understanding of rational points on these
surfaces over number fields, for example, the Hasse principle, weak approximation,
the Brauer–Manin obstruction, the R-equivalence. The work of Batyrev, Tschinkel,
Peyre, Salberger, Hassett, de la Bretèche, Heath-Brown, Browning and others on
the Manin–Batyrev conjectures on the number of rational points of bounded height,
highlighted the importance of explicitly describing universal torsors as algebraic
varieties, and not merely their birational structure. However, in the most interesting
cases such as those of (smooth) del Pezzo surfaces of degrees 3 and 4, explicit
equations of universal torsors turned out to be quite complicated to write down
explicitly.

Around 1990, Victor Batyrev told the second named author about his conjecture
relating universal torsors on del Pezzo surfaces to certain projective homogeneous
spaces. Let Gr be the simply connected semisimple group of type Rr. We fix a
maximal torus Hr ⊂ Gr, and a basis of simple roots in the character group of Hr. Let
Pr ⊂ Gr be the maximal parabolic subgroup defined by the root αr (the stabilizer
of the line spanned by the highest weight vector of V (ωr)). Batyrev conjectured
that a universal torsor T on a del Pezzo surface X of degree d = 9 − r over an
algebraically closed field can be embedded into the affine cone (Gr/Pr)a ⊂ V (ωr)
over Gr/Pr, equivariantly with respect to the action of the Néron–Severi torus Tr
of X, identified with an extension of Hr by the scalar matrices Gm. Moreover, the
exceptional curves on X should be the images of the weight hyperplane sections
of T (that is, the intersections of T with the Hr-invariant hyperplanes in V (ωr)).
Inspired by these ideas, the second named author showed in [23] that the set of
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stable points of the affine cone over the Grassmannian G(3, 5) with respect to the
action of the diagonal torus of SL(5), is a universal torsor over a del Pezzo surface
of degree 5 which is the GIT quotient by this action. Batyrev’s line of attack on the
general case of his conjecture uses the Cox ring of X, which can be interpreted as the
ring of regular functions on a universal torsor over X. Indeed, Batyrev and Popov
[1] (see also [6]) found the generators and relations of the Cox ring, which enabled
Popov in his unpublished thesis [21] in the case d = 4 and Derenthal [5] in the cases
d = 3 and d = 2 to prove Batyrev’s conjecture by identifying the generators with
the weights of V (ωr), and comparing the relations with the well known equations of
Gr/Pr. The proofs of [21] and [5] are based on a substantial amount of calculation
which grows rapidly with r, and do not seem to give much insight into why things
work this way.

In the present work we prove Batyrev’s conjecture for del Pezzo surfaces of degrees
4, 3 and 2 using a totally different approach, via the representation theory of Lie
algebras. We start with the known case of a del Pezzo surface of degree 5. (Alter-
natively, one could start with the simpler though somewhat irregular case of degree
6, see [1].) Let pr be the Lie algebra of Pr ⊂ Gr. We build an inductive process
based on the remark that the pair (Rr, αr) for r = 4, 5, 6, 7 is a Hermitian symmetric
pair, which is saying that the complementary nilpotent algebra of pr in gr is com-
mutative. We show that V (ωr), as a gr−1-module, has a direct factor isomorphic to
V (ωr−1), and that the restriction of the projection V (ωr) → V (ωr−1) to a certain
open subset U ⊂ (Gr/Pr)a is the composition of a Gm-torsor and a morphism in-
verse to the blowing-up of V (ωr−1) \ {0} at (Gr−1/Pr−1)a \ {0} (see Corollary 4.2).
Now we can explain the main idea of our proof. Suppose that a universal torsor
T over a del Pezzo surface X of degree 9 − (r − 1) is Tr−1-equivariantly embedded
into the affine cone (Gr−1/Pr−1)a ⊂ V (ωr−1). Let M be a point on X outside of the
exceptional curves, and BlM(X) the blowing-up of X at M . The space V (ωr−1) is
a direct sum of 1-dimensional weight spaces of Hr−1, so that the torus consisting of
the diagonal matrices with respect to a weight basis of V (ωr−1) does not depend on
the choice of this basis. We show how to choose an element tM of this torus so that
the translation t−1M (Gr−1/Pr−1)a intersects T exactly in the fibre of f : T → X over
M . Then the closure of the inverse image of tM(T \ f−1(M)) in U is a universal
torsor over BlM(X). This yields a Tr-equivariant embedding of this universal torsor
into (Gr/Pr)a. We then show that the image of this embedding is contained in the
open subset of stable points with a free action of the Néron–Severi torus, so that
BlM(X) embeds into the corresponding quotient.

Here is the structure of the paper. In Section 1 we recall equivalent definitions
and some basic properties of universal torsors. In Section 2 we prove that the left
action of a maximal torus of G on G/P , where P is a maximal parabolic subgroup
of a semisimple algebraic group G, turns the set of stable points with free action
of the maximal torus into a universal torsor on an open subset of the GIT quotient
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of G/P by this action (with an explicit list of exceptions, see Theorem 2.7 for
a precise statement). In Section 3 we recall the necessary background from the
representation theory of Lie algebras. The implications for the structure of the
projection of (Gr/Pr)a to V (ωr−1) are studied in Section 4. In Section 5 we list
some well known properties of del Pezzo surfaces. Our main result, Theorem 6.1, is
stated and proved in Section 6.

The second named author is grateful to the Centre de recherches mathématiques
de l’Université de Montréal, the Mathematical Sciences Research Institute in Berke-
ley, and the organizers of the special semester “Rational and integral points on
higher-dimensional varieties” for hospitality and support.

1 Universal torsors

Let k be a field of characteristic 0 with an algebraic closure k. Let X be a geo-
metrically integral variety over k. We write X for X ×k k. We denote by k[X]
the k-algebra of regular functions on X, and by k[X]∗ the group of its invertible
elements.

Let T be an algebraic k-torus, that is, an algebraic group such that T ' Gnm for
some n. Let T̂ ' Zn be the group of characters of T . The Galois group Γ = Gal (k/k)
naturally acts on T̂ .

For generalities on torsors the reader is referred to [22]. An X-torsor under T
is a pair (T , f), where T is a k-variety with an action of T , and f : T → X is a
morphism such that locally in étale topology T → X is T -equivariantly isomorphic
to X ×k T . The following lemma is well known.

Lemma 1.1 Suppose that a k-torus T acts on a k-variety Y with trivial stabilizers,
and g : Y → X is an affine morphism of k-varieties whose fibres are orbits of T .
Then g : Y → X is a torsor under T .

Proof The property of g to be a torsor can be checked locally on X. Let U be an
open affine subset of X. Since g is affine, g−1(U) is also affine ([12], II, 5, Exercise
5.17). Since the stabilizers of all k-points of g−1(U) are trivial, by a corollary of
Luna’s étale slice theorem (see [18], p. 153) the natural map g−1(U)→ U is a torsor
under T . The lemma follows. QED

Colliot-Thélène and Sansuc associated to a torsor f : T → X under a torus T the
exact sequence of Γ-modules ([3], 2.1.1)

1→ k[X]∗/k
∗
→ k[T ]∗/k

∗
→ T̂ → PicX → Pic T → 0. (1)

Here the second and the fifth arrows are induced by f . The forth arrow is called
the type of T → X. To define it consider the natural pairing compatible with the
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action of the Galois group Γ:

∪ : H1(X,T )× T̂ → H1(X,Gm) = PicX,

where the cohomology groups are in étale or Zariski topology. The type sends χ ∈ T̂
to [T ]∪χ, where [T ] ∈ H1(X,T ) is the class of the torsor T → X. A torsor T → X
is called universal if its type is an isomorphism. If the variety X is projective, (1)
gives the following characterisation of universal torsors: an X-torsor under a torus
is universal if and only if Pic T = 0 and k[T ]∗ = k

∗
, that is, T has no non-constant

invertible regular functions.

We now give an equivalent definition of type which does not involve cohomology.
Let K = k(X) be the function field of X, and TK the generic fibre of T → X.
By Hilbert’s Theorem 90 the K-torsor TK is trivial, that is, is isomorphic to TK =
T×kK. By Rosenlicht’s lemma we have an isomorphism of Γ-modules K[TK ]∗/K∗ =
K[TK ]

∗/K∗ = T̂ . This isomorphism associates to a character χ ∈ T̂ a rational
function φ ∈ k(T )∗ such that φ(tx) = χ(t)φ(x); the function φ is well defined up to
an element of K∗ = k(X)∗. The divisor of φ on T does not meet the generic fibre
TK , and hence comes from a divisor on X defined up to a principal divisor. We
obtain a well defined class τ(χ) in PicX.

Lemma 1.2 The map τ : T̂ → PicX coincides with the type of f : T → X up to
sign.

Proof According to [22], Lemma 2.3.1 (ii), the type associates to χ the subsheaf Oχ
of χ-semiinvariants of the sheaf f∗(OT ). The function φ is a rational section of Oχ,
hence the class of its divisor represents Oχ ∈ PicX. QED

For the sake of completeness we note that if f : T → X is a universal torsor, then
the group of divisors on X is naturally identified with K[TK ]∗/k

∗
; this identifies the

semigroup of effective divisors on X with (K[TK ]∗ ∩ k[T ])/k
∗
.

We have k[T ] = ⊕χ∈T̂k[T ]χ, where k[T ]χ is the set of regular functions φ on T
satisfying φ(tx) = χ(t)φ(x) for any t in T . We also define k(T )χ as the set of rational
functions on T satisfying the same condition. Since k(T )χ is the group of rational
sections of the sheaf Oχ, we have k[T ]χ = H0(X,Oχ). Hence if the sheaf Oχ defines
a morphism X → P(H0(X,Oχ)∗), we obtain a commutative diagram

T → k[T ]∗χ \ {0} = H0(X,Oχ)∗ \ {0}
↓ ↓
X → P(H0(X,Oχ)∗)

(2)

Here the asterisk denotes the dual vector space.
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2 G/P and the torus quotient

Let G be a split simple simply connected algebraic group over k, with a split maximal
torus H ⊂ G; in this case the root system R of G relative to H is irreducible. Write
Ĥ for the character group of H. We use the standard notation Q(R) for the lattice
generated by the simple roots, then P (R) = Ĥ is the dual lattice generated by the
fundamental weights. We denote the Weyl group by W = W(R).

Let G→ GL(V ) be an irreducible representation of G with a fundamental highest
weight ω ∈ Ĥ. Let v ∈ V be a highest weight vector. The stabilizer of the line kv is a
maximal parabolic subgroup P ⊂ G. The homogeneous space G/P is thus a smooth
projective subvariety of P(V ) (indeed, the only closed orbit of G in P(V )). We write
P̂ (resp. Ĝ) for the character group of P (resp. of G). Let ε : P̂ → PicG/P be the
map associating to the character χ ∈ P̂ the G/P -torsor under Gm defined as the
quotient of G ×Gm by P , where p ∈ P sends (g, t) to (gp−1, χ(p)t). This map fits
into the exact sequence

0→ Ĝ→ P̂ → PicG/P → PicG→ 0.

Since G is semisimple and simply connected we have Ĝ = PicG = 0, so that ε is
an isomorphism (see, e.g., [20]). Since P̂ is the subgroup of Ĥ generated by ω, we
see that PicG/P is generated by the hyperplane section class. This fact implies the
following elementary statement from projective geometry.

Lemma 2.1 Let L1 and L2 be distinct hyperplanes in the projective space P(V ).
Then (G/P ) ∩ L1 ∩ L2 has codimension 2 in G/P .

Proof Since Pic (G/P ) is generated by the class of a hyperplane section, for any
hyperplane L ⊂ P(V ) the closed subset (G/P ) ∩ L is irreducible of codimension 1,
and the intersection has multiplicity 1. If the codimension of (G/P ) ∩ L1 ∩ L2 in
G/P is 1, we have (G/P ) ∩ L1 ∩ L2 = (G/P ) ∩ L for any L in the linear family
spanned by L1 and L2. Choosing L passing through a point of G/P not contained
in L1, we deduce a contradiction. QED

By the irreducibility of V the centre Z(G) acts diagonally on V , and hence it
acts trivially on P(V ). For a k-point x ∈ P(V ) we denote the stabilizer of x in
H by StH(x). We now show that for x in a dense open subset of G/P we have
StH(x) = Z(G), and determine the points such that StH(x) is strictly bigger than
Z(G).

Proposition 2.2 Let x be a k-point of G/P , and let Kx be the connected component
of the centralizer of StH(x) in G. Then we have the following properties:

(i) Kx is a reductive subgroup of G, H ⊂ Kx;
(ii) x ∈ Kxwv = Kx/(wPw−1 ∩Kx) for some w ∈W;
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(iii) Z(Kx) = StH(x);

(iv) StH(x) is finite if and only if Kx is semisimple, in which case the ranks of
Kx and G are equal.

Proof If StH(x) = Z(G), then Kx = G, and all the statements are clearly true.
Assume that StH(x) is bigger than Z(G), thenKx is a closed subgroup of G, Kx 6= G.
Let kx be the Lie algebra of Kx; explicitly kx ⊂ g is the fixed set of Ad(StH(x)).
Since kx contains the Cartan subalgebra h, it has a root decomposition kx = ⊕α∈Sgα,
where S ⊂ R. Let expα ∈ Ĥ be the multiplicative character defined by the root
α ∈ R. The space gα consists of y ∈ g such that Ad(h)y = expα(h)y for all h ∈ H.
Thus gα ⊂ kx if and only if StH(x) ⊂ H is in the kernel of expα. Therefore S = −S,
so that kx is reductive, and hence so is Kx.

The fixed points of H in G/P come from the points wv, where w ∈ W. One of
these, say x0 = wv, is contained in the closure of the orbit Hx. The stabilizer of x0
in G is the parabolic subgroup wPw−1. To prove (ii) we need to show that x belongs
to the Kx-orbit of x0. Let N ⊂ G be the unipotent subgroup complementary to
wPw−1, that is, such that the corresponding Lie algebras satisfy g = n ⊕ wpw−1.
Then N ∩ wPw−1 = {1}, and the N -orbit of the line kx0 is the open Schubert cell
Nx0 ⊂ G/wPw−1 ' G/P . The intersection of this open Schubert cell with Hx is a
non-empty open subset of Hx, thus there is a k-point x1 ∈ Hx∩Nx0. We can write
x1 = u.x0 for some u ∈ N . The complement to the union of connected components
of the centralizer of StH(x) other than Kx, is an open neighbourhood of 1 in G. We
choose x1 in such a way that u belongs to this open set. Since H ⊂ Kx, the points x
and x1 are in the same Kx-orbit, so that it is enough to show that x1 ∈ Kxx0. Any
t ∈ StH(x) fixes both x1 and x0, thus x1 = u.x0 = t−1ut.x0. Therefore, u−1t−1ut fixes
x0, hence u

−1t−1ut ∈ wPw−1. On the other hand, H normalizes N , thus t−1ut ∈ N ,
implying u−1t−1ut ∈ N . Since the intersection of wPw−1 and N is {1}, we see that
u and t commute. By the choice of x1 we see that u is in the connected component
of 1 of the centralizer of StH(x), that is, u ∈ Kx. This completes the proof of (ii).
The centre of Kx is contained in every maximal torus, in particular, in H. Any

element of Z(Kx) fixes x, since x ∈ Kx/(wPw−1 ∩ Kx), so that Z(Kx) ⊂ StH(x).
On the other hand, every element of StH(x) commutes with Kx by the definition of
Kx. But StH(x) ⊂ H ⊂ Kx, hence StH(x) ⊂ Z(Kx). This proves (iii).
The rank of the semisimple part of Kx equals the rank of G if and only if Z(Kx)

is finite. If Z(Kx) is finite, then Kx is semisimple by definition. Thus (iv) follows
from (iii). QED

Let us fix a weight basis in V , that is, a basis in which H is diagonal. The weight
of a coordinate is the character of H by which H acts on it. Denote by Λ the set of
weights of H in V , and by wt(x) the set of weights of x ∈ G/P , that is, the weights
of the non-vanishing coordinates of x.

7



Corollary 2.3 Assume that R is simply laced. Then the codimension of the set of
k-points x ∈ G/P such that StH(x) is finite, and StH(x) 6= Z(G), is at least 2.

Proof By Proposition 2.2 and W-invariance it is sufficient to show that the codimen-
sion of Kv in Gv is at least 2 for any proper connected semisimple subgroup K ⊂ G
containing H. (The set of such subgroups is clearly finite.)

For any x ∈ G/P the property wt(x) = Λ implies StH(x) = Z(G). Let V ′ ⊂ V
be the irreducible representation of K generated by v. Denote by Λ′ the set of
weights of V ′, and write V = V ′ ⊕ U , where U is another K-invariant subspace.
First, we claim that Λ′ 6= Λ because otherwise one can find x ∈ P(Kv) such that
wt(x) = Λ, and StH(x) = Z(G) = Z(K) would imply K = G. In particular, U 6= 0.
If dimU > 1, then the codimension of Kv ⊂ Gv ∩ V ′ is at least 2 by Lemma 2.1.

If dimU = 1, then U is a trivial representation of K and 0 is not a weight of V ′.
But then U is invariant under the action of the Weyl group W. Therefore wKw−1

acts trivially on U for any w ∈ W. If a ∈ R is a root of K, then w(a) is a root of
wKw−1, but in the simply laced case W acts transitively on R, hence the subgroups
wKw−1, w ∈ W, generate the whole group G. Thus, U is G-invariant, but that
contradicts the irreducibility of V . QED

Recall that a k-point x ∈ V is called stable for the action of H if the orbit Hx
is closed, and the stabilizer of x in H is finite ([18], p. 194). We always consider
stability with respect to the action of H, and drop the reference to H when it causes
no confusion.

For a subset M ⊂ Ĥ we write Conv(M) for the convex hull of M in the vector
space Ĥ ⊗ R. It is well known that Conv(Λ) = Conv(Wω) ([11], [8], see [4], Prop.
2.2 (i) for a short proof). The Hilbert–Mumford numerical criterion of stability says
that x is stable if and only if 0 belongs to the interior of Conv(wt(x)) ([7], Thm.
9.2).

In the following statement and thereafter the numeration of the nodes of Dynkin
diagrams, simple roots and fundamental weights follows the conventions of [2].

Proposition 2.4 Assume that the pair (R, ω) is not in the following list:

(Rr, ω1), (Ar, ωr), (A3, ω2), (B2, ω2), (C2, ω2), (D4, ω3), (D4, ω4), (3)

where Rr is Ar, Br, Cr, or Dr. Let x be a point of V ⊗k k such that no two elements
of Wω \ wt(x) are adjacent vertices of Conv(Wω). Then x is stable.

In particular, the set of unstable points of G/P has codimension at least 2.

Proof Since
∑
w∈W wω = 0, the point 0 is contained in the interior of Conv(Wω) =

Conv(Λ) in Ĥ⊗R. Thus if all the coordinates of x with weights in Wω are non-zero,
then x is stable.
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Now assume that exactly one such coordinate of x is zero; because of the action
of W it is no loss of generality to assume that it corresponds to ω. The dimension of
the corresponding eigenspace is 1, so to check that x is stable it is enough to show
that 0 lies in the interior of Conv(Wω \ {ω}). The vertices of Conv(Wω) adjacent
to ω are ω − wα, where α is the root dual to ω, for all w in the stabilizer of ω in
W (see [8], Lemma 3 and Cor. 2). All these are contained in the hyperplane L = 0,
where

L(y) = (y, ω)− (ω2) + (ω, α) = (y, ω)− (ω2) +
1

2
(α2).

We have L(ω) > 0. Thus 0 belongs to the interior of Conv(Wω \ {ω}) if and only if
ω and 0 are separated by this hyperplane, that is, if and only if L(0) < 0. Therefore,
we need to check the condition

(ω2) >
1

2
(α2).

Note that the numbers 2(ω2)/(α2), for all possible fundamental weights, are the
diagonal elements of the inverse Cartan matrix of R. A routine verification using
the tables of [2] or [19] shows that this inequality is satisfied for the pairs (R, ω) not
in the list (3).

Finally, let Wω \ wt(x) = {λ1, . . . , λn}. By assumption λ1, . . . , λn correspond to
pairwise non-adjacent vertices of Conv(Wω). Thus

Conv(Wω \ {λ1, . . . , λn}) =
n⋂

i=1

Conv(Wω \ {λi}).

Since 0 is in the interior of each convex hull in the right hand side, it is also in the
interior of Conv(wt(x)).

The last statement is an application of Lemma 2.1. QED

Definition 2.5 Let T ⊂ GL(V ) be the torus generated by the image of H in GL(V )
and the scalar matrices Gm ⊂ GL(V ). We write (G/P )a for the affine cone over
G/P in V , and (G/P )sfa for the open subset of stable points with trivial stabilizers
in T .

By the irreducibility of V , the stabilizer of x ∈ V ⊗k k, v 6= 0, in T is trivial if and
only if StH(pr(x)) = Z(G), where pr(x) is the image of x in P(V ).

Lemma 2.6 There exist a smooth quasi-projective variety Y and an affine mor-
phism f : (G/P )sfa → Y which is a torsor with structure group T with respect to its
natural left action on G/P .

Proof By the geometric invariant theory there exist a quasi-projective variety Y and
an affine morphism f : (G/P )sfa → Y such that every fibre of f is an orbit of T

9



([18], Thm. 1.10 (iii)). Since the stabilizers of all k-points of (G/P )sfa are trivial,
Lemma 1.1 implies that f : (G/P )sfa → Y is a torsor under T . The smoothness of
Y follows from the smoothness of (G/P )a, since a torsor is locally trivial in étale
topology. QED

Theorem 2.7 Assume that the root system R is simply laced, and the pair (R, ω)
is not in the list (3). Then the only invertible regular functions on (G/P )sfa are
constants, so that f : (G/P )sfa → Y is a universal torsor.

Proof By Lemma 2.6 we need to show that Pic T = 0 and k[T ]∗ = k
∗
for T =

(G/P )sfa (see Section 1). The Picard group of (G/P )a is trivial since that of G/P
is generated by the class of a hyperplane section. Thus it suffices to show that the
complement to (G/P )sfa in (G/P )a has codimension at least 2. The set of unstable
points has codimension at least 2, by Proposition 2.4. The closed subset of its
complement consisting of the stable points with non-trivial (finite) stabilizers in T ,
also has codimension at least 2, as follows from Corollary 2.3. QED

3 Hermitian symmetric pairs

Let g be a semisimple Lie algebra over the field k with Chevalley basis {Hβ, Xγ},
where γ is a root of R, and Hβ = [Xβ, X−β], where β is a simple root of R.

A simple root α of g defines a Z-grading on g in the following way. We set
deg(Xα) = 1, deg(X−α) = −1, deg(X±β) = 0 for all other simple roots β 6= α, and
deg(Hβ) = 0 for all simple roots β. Then

g =

l(α)⊕

i=−l(α)

gi, (4)

where l(α) is the label of α, that is, the coefficient of α in the decomposition of the
maximal root as a linear combination of the simple roots. The Lie algebra p = ⊕i≥0gi
is the parabolic subalgebra defined by α, and n = ⊕i<0gi is the complementary
nilpotent algebra. The centre of the Lie algebra g0 is one-dimensional, so that
g0 = Z(g0) ⊕ g′, where g′ is the semisimple Lie algebra whose Dynkin diagram is
that of g with the node corresponding to α removed.

It is clear from (4) that l(α) = 1 if and only if [n, n] = 0. The following terminology
has its origin in the theory of symmetric spaces, see [13], Ch. VIII.

Definition 3.1 The pair (R, α) is a Hermitian symmetric pair if l(α) = 1, or,
equivalently, if n is a commutative Lie algebra.

10



If R is simply laced, then (R, α) is a Hermitian symmetric pair if and only if
R = An, or if it is one of the following pairs: (Dn, αi), where i = 1, n − 1 or n,
(E6, α1), (E6, α6), and (E7, α7).

We now assume that n is commutative. Our next goal is to explore the impli-
cations of this assumption for the restriction of the g-module V to the semisimple
subalgebra g′. We write U(l) for the universal enveloping algebra of the Lie algebra l,
and S(W ) for the symmetric algebra of the vector space W . Since n is commutative
we have U(n) = S(n).

The line kv is a 1-dimensional p-submodule of V , hence the g-module V is the
quotient of the induced module U(g)⊗U(p) kv by the submodule generated by X2−αv.
(This follows from the construction of V as the quotient of the Verma module by
the submodule generated by X−βv for the simple roots β 6= α, and X2−αv.) By
the Poincaré–Birkhoff–Witt theorem we have U(g) = U(p) ⊗k U(n). The line kv
is a trivial g′-module. Therefore, the g′-module U(g) ⊗U(p) kv is isomorphic to
U(n) = S(n), so that the finite dimensional vector space V inherits the Z≤0-graded
commutative k-algebra structure from S(n), V = ⊕n≤0V n. We turn this grading
into a Z≥0-grading by setting Vn = V

−n. Since g′ has grading 0, the direct sum
V = ⊕n≥0Vn is the direct sum of g′-modules, and we can write

V = k ⊕ n⊕ S≥2(n)/S(n)U(g′)X2−α ,

where k = V0, n = V1. Note that 1 ∈ V0 is a highest weight vector; it generates V
as a S(n)-module.

Lemma 3.2 Let (R, α) be a Hermitian symmetric pair. Then the adjoint represen-
tation of g′ on V1 = n = g−1 is the irreducible representation such that X−α is a
highest weight vector. If R is simply laced, then the highest weight ω′ of V1 is the
sum of the fundamental weights corresponding to the nodes of the Dynkin diagram
of R adjacent to the node α.

Proof We have [Xβ, X−α] = 0 for all simple roots β 6= α, so that X−α is annihilated
by the positive roots of g′. Every root of n is the sum of −α and a root of g′, so
that n is generated by X−α as a g

′-module. The computation of the weight of X−α
is immediate from the defining relations among the elements of the Chevalley basis.
QED

We have the exponential map

exp : n→ S(n), exp(u) = 1 + u+
1

2
u2 +

1

3!
u3 + . . .

Let G be the simply connected semisimple algebraic k-group with Lie algebra g,
P ⊂ G the parabolic subgroup with Lie algebra p, and N the unipotent k-group
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with Lie algebra n. By the Chevalley construction of the Lie group from its Lie
algebra, N acts on V by the rule 1+x 7→ exp(x). Recall that the open Schubert cell
of G/P ⊂ P(V ) is the N -orbit of the highest weight vector, and hence is identified
with exp(n). (In particular, dimG/P = dim V1.) Thus exp(x) is a polynomial
G′-equivariant map

exp : V1 → (G/P )a ⊂ V = ⊕n≥0Vn.

Let p : V1 = n→ V2 be the degree 2 graded component of exp(x).

Lemma 3.3 Let G′ be the simply connected semisimple k-group with the Lie alge-
bra g′, and P ′ ⊂ G′ the parabolic subgroup which is the stabilizer of the line spanned
by the highest weight vector X−α ∈ n. The restriction of exp(x) to (G′/P ′)a coin-
cides with (1, id, 0, 0, . . .). We have (G′/P ′)a = p

−1(0), and the ideal of (G′/P ′)a is
generated by the coordinates of p(x).

Proof It is clear that every graded component of exp(x) of degree at least 2 sends the
orbit (G′/P ′)a of the highest weight vector X−α to 0. Indeed, X

m
−α is in the kernel

of the natural map Sm(n)→ Vm, for m ≥ 2 . To prove the second statement let us
observe that the symmetric square S2(n) decomposes as the direct sum of V2 and
the g′-submodule generated by X2−α, which is the irreducible representation V (2ω

′)
with highest weight 2ω′. It is well known ([14], proof of Thm. 1.1, or [1], Prop. 4.2)
that the orbit of the highest weight vector is the intersection of the second Veronese
embedding with V (2ω′). This completes the proof. QED

Consider the following series of root systems:

A4 ⊂ D5 ⊂ E6 ⊂ E7. (5)

Let (R, α) be one of the Hermitian symmetric pairs

(A4, α3), (D5, α5), (E6, α6), (E7, α7), (6)

where the roots are numbered as in [2]. By Lemma 3.2 the pair (G′, P ′) is defined by
(R′, α′) which is the previous pair to (R, α) in (6). In other words, P ′ corresponds
to the only node of the smaller diagram adjacent to α. (If G is of type A4, then G

′

is of type A1 × A2, G′/P ′ ' P1 × P2, but we shall not have to consider this case.)
We note that the fundamental weight ω dual to α is minuscule, that is, the
weights of V are Wω, and Wv is a basis of V (see [2], VIII.7.3). We also note that
the G-module V defined by ω is faithful (this follows from the fact that ω generates
P (R)/Q(R), which can be checked from the tables). Thus the faithful representation
of G in V defines a faithful representation of G′, and this implies that G′ ⊂ G (in
fact, G′ is the Levi subgroup of P ).

Let us identify the graded components of V in various cases. Let dr = dimV . We
have

d4 = 10, d5 = 16, d6 = 27, d7 = 56.
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The details given below show that for r = 4, 5, 6 the graded components of exp(x)
of degree at least 3 are zero.

Let R = A4. Then G = SL(5), and G/P is the Grassmannian G(2, 5). Let
us denote by En the standard n-dimensional representation of SL(n). We have
V = Λ2(E5), dim V = 10 = 1 + 6 + 3. The group G

′ = SL(2) × SL(3) is embedded
into SL(5) in the obvious way, and the graded factors of V are V1 = E2 ⊗ E3,
V2 = Λ

2(E3) ∼= E∗3 . The map p : V1 → V2 sends x to the Λ
2(E3)-component of

x ∧ x ∈ Λ2(E5) = Λ
2(E2)⊕ (E2 ⊗ E3)⊕ Λ

2(E3).

Let R = D5. Then V is a spinor representation of G = Spin(10) of dimension
16 = 1 + 10 + 5, and G/P is the isotropic Grassmannian (one of two families of
maximal isotropic subspaces of the non-degenerate quadric of rank 10), dimG/P =
10. The graded components are V1 = Λ

2(E5) and V2 = Λ
4(E5) ∼= E∗5 . The map

p : V1 → V2 sends x to x ∧ x.
Let R = E6. Then dim V = 27 = 1 + 16 + 10, V1 is the spinor representation of
Spin(10) as above, and V2 is the standard 10-dimensional representation of SO(10).
We have dimG/P = 16.

Let R = E7. Then dim V = 56 = 1 + 27 + 27 + 1, V1 is the 27-dimensional
representation of the group of type E6 considered above, V2 = (V1)

∗, and V3 = k is
the trivial 1-dimensional representation. (The graded components of degree at least
4 are zero.) We have dimG/P = 27. We define q : V1 = n → V3 = k as the degree
3 graded component of exp(x). This is a E6-invariant cubic form in 27 variables.
The 27 weight coordinates of p(x) are partial derivatives of q(x). This identifies the
space G/P of type E6 with the singular locus of the cubic hypersurface q(x) = 0.

Let us define a symmetric bilinear form p(x, y) on V1 with values in V2 by the
formula p(x+ y) = p(x) + 2p(x, y) + p(y). Then exp(x+ y) = exp(x)exp(y) implies
that

2p(x, y) = x ∙ y (7)

is the product of x ∈ V1 and y ∈ V1 in the commutative k-algebra V .
We have a decomposition of S2(V1) as the direct sum of V2 and the representation

with highest weight 2ω′ (cf. the proof of Lemma 3.3). In the notation of [2] the
representation V2 is irreducible with highest weight ω1, in particular, it is minuscule.
Thus the eigenspaces for the action of the maximal torus H ′ = H ∩ G′ are 1-
dimensional, so that on V2, in the same way as on V1, we have weight coordinates
well defined up to a multiplicative constant. The coordinates pλ(x, y) of p(x, y) are
symmetric bilinear forms of degree 2 with values in k. We can write

pλ(x, y) =
∑

λ=μ+ν

pμνxμyν , (8)

where μ and ν are weights of V1, pμν ∈ k, and xμ is a non-zero linear form on
the weight μ subspace (V1)μ ⊂ V1 (and similarly for yν ). One checks that for
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r = 4, 5, 6, 7 the ranks of the quadratic forms pλ(x) are 4, 6, 8, 10, respectively. If
r = 7 we associate to the cubic form

q(x) =
∑

μ+ν+ξ=0

qμνξxμxνxξ

the symmetric trilinear form

q(x, y, z) =
∑

μ+ν+ξ=0

qμνξxμyνzξ.

In this case the weights of V2 are the negatives of the weights of V1. Moreover,

p−μ(x) =
∂q(x)

∂xμ
,

so that
3q(x, y, z) =

∑

μ

p−μ(x, y)zμ, p−μ(x, y) =
∑

−μ=ν+ξ

3qμνξxνyξ. (9)

For future reference we note that if pλ(x, y) = 0 for all λ, then q(x, y, y) = 0. It
follows from exp(x+ y) = exp(x)exp(y) that

3q(x, x, y) = p(x) ∙ y (10)

is the product of p(x) ∈ V2 and y ∈ V1 in the commutative k-algebra V .

4 G/P and blowing-up

Let π : (G/P )a → V1 be the restriction to (G/P )a of the natural projection V =
k⊕ V1⊕ V2⊕ V3 → V1. We have exp(x) = (1, x, p(x), q(x)) hence π ◦ exp = id. Here
and in what follows we write our formulae for the case r = 7, with the convention
that if r < 7 the last coordinate must be discarded.

We now describe the fibres of π.

Lemma 4.1 Let gt = (t, 1, t
−1, t−2), t ∈ k

∗
. For x ∈ V1 ⊗k k we have the following

statements.

(a) If x /∈ (G′/P ′)a, then π−1(x) = {gt ∙ exp(x)|t ∈ k
∗
}.

(b) If x ∈ (G′/P ′)a \ {0}, then

π−1(x) = {(t, x, 0, 0)|t ∈ k
∗
} ∪ {(0, x, 2pλ(x, u), 3q(x, u, u))|u ∈ V1 ⊗k k}.

Proof Recall that the torus T is generated by the maximal torus H ⊂ G and the
scalar matrices (t, t, t, t), t ∈ k

∗
. Let h ∈ h be an element of the Lie algebra of

H such that β(h) = 0 for all simple roots β of G, β 6= α, and α(h) = 1. The
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1-parameter subgroup Gm ⊂ H whose tangent vector at the identity is h, acts on
V as (tm, tm−1, tm−2, tm−3), where m = ω(h), and ω is the fundamental weight dual
to α. Hence gt ∈ T for any t ∈ k

∗
.

Every k-point y = (y0, y1, y2, y3) of the closed set (G/P )a satisfies the equations

y0y2 = p(y1), y
2
0y3 = q(y1), (11)

since these are satisfied on the affine cone over exp(V1) which is dense in (G/P )a.
Therefore, if π sends a k-point y of (G/P )a to x = y1, and y0 6= 0, we can write
y = gt ∙ (1, x, p(x), q(x)) = gt ∙ exp(x) for t = y0 ∈ k

∗
. All such points are in (G/P )a

since the action of T preserves (G/P )a, and exp(V1) ⊂ (G/P )a. If y0 = 0 we see
from (11) and Lemma 3.3 that x ∈ (G′/P ′)a. This proves (a).
To prove (b) assume x ∈ (G′/P ′)a, x 6= 0. If y0 6= 0, then y = (t, x, 0, 0), by (11).
We need some preparations for the case y0 = 0. Recall that V0 is identified with k

by the choice of a highest weight vector v ∈ V0, and V1 is identified with n. Consider
g1 = n

−, the opposite nilpotent algebra of n. Any non-zero element X ∈ g1 sends
Vi to Vi−1 because of the grading. Hence we can write

exp(Xt)(y0, y1, y2, y3) = (y0 + s(y1, X)t+ z1t
2 + z2t

3, y1 + u1t+ u2t
2, y2 + wt, y3),

where z1, z2 ∈ k, u1, u2 ∈ V1, w ∈ V2, and s(y1, X) ∈ k is defined by

s(y1, X)v = Xy1v = [X, y1]v.

For any non-zero y1 ∈ n ⊗k k = V1 ⊗k k one can find X ∈ g1 ⊗k k such that
s(y1, X) = 1. Otherwise g1y1v = 0, and so y1v is a highest vector of the g-module
V ⊗k k, which is not a multiple of v. This contradicts the irreducibility of V ⊗k k.
Let us fix such an element X ∈ g1 ⊗k k.
Now let y0 = 0. Then

gt−1 exp(Xt)(0, y1, y2, y3) = (1 + z1t+ z2t
2, y1 + u1t+ u2t

2, y2t+ wt
2, y3t

2)

is a k[t]-point of (G/P )a, and hence its coordinates satisfy (11) identically in t.
Equating to 0 the coefficient at t in the first equation in (11) we obtain y2 = 2p(y1, u),
where u = u1. Equating to 0 the coefficient at t

2 in the second equation, and using
that q(y1, y1, v) = 0 for all v ∈ V1 (see (9)) we obtain y3 = 3q(y1, u, u).
To complete the proof of (b) we need to show that for any k-point x ∈ (G′/P ′)a

and any u ∈ V1 ⊗k k the point (0, x, 2pλ(x, u), 3q(x, u, u)) is contained in (G/P )a.
We note that

(0, x, 2pλ(x, u), 3q(x, u, u)) = exp(u) ∙ (0, x, 0, 0),

as immediately follows from (7) and (10). Since exp(u) is in the unipotent group
N ⊂ G it is enough to show that (0, x, 0, 0) is in (G/P )a. It is clear that (1, x, 0, 0) =
exp(x) is in (G/P )a. Choosing X ∈ g1 ⊗k k as above such that s(x,X) = −1 we
obtain exp(X)(1, x, 0, 0) = (0, x, 0, 0). QED
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Corollary 4.2 Let U ⊂ (G/P )a be the complement to the intersection of (G/P )a
with (V0 ⊕ V1) ∪ (V2 ⊕ V3). The restriction of π to U is a morphism U → V1 \ {0},
which is the composition of a torsor under the torus Gm = {gt|t ∈ k

∗
}, and the

morphism inverse to the blowing-up of V1 \ {0} at (G′/P ′)a \ {0}.

Proof The set U is covered by the open subsets U0 : y0 6= 0, and Uλ : yλ 6= 0, where
the yλ are the weight coordinates in V2. Indeed, if y0 = yλ = 0 for all λ, then we are
in case (b) of Lemma 4.1, but pλ(x, u) = 0 for all λ implies q(x, u, u) = 0, and such
points are not in U . Each of these open subsets is Gm-equivariantly isomorphic to
the direct product of Gm and the closed subvariety of (G/P )a given by yi = 1 with
trivial Gm-action. Gluing them together we obtain the quotient Ũ .

The equations (11) show that π−1(0)∩U = ∅, thus π projects U to V1 \ {0}. The
action ofGm preserves the fibres, hence π factors through a morphism Ũ → V1\{0}.
It is an isomorphism outside (G′/P ′)a, whereas the inverse image of (G

′/P ′)a \ {0}
is the projectivisation of the normal bundle to (G′/P ′)a \{0} in V1 \{0}, by Lemma
4.1 (b). It is not hard to prove (and is well known to experts) that this implies that
Ũ is the blowing-up of V1 \ {0} at (G′/P ′)a \ {0}. QED

5 Del Pezzo surfaces

For the geometry of exceptional curves on del Pezzo surfaces the reader is referred
to [16], Ch. IV, see also [10], Sect. 5. Let M1, . . . ,Mr, 4 ≤ r ≤ 7, be points in
general position in the projective plane P2, which says that no three points are on
a line, and no six points are on a conic. The blowing-up X of P2 in M1, . . . ,Mr
is called a split del Pezzo surface of degree d = 9 − r. The surface X contains
exactly dr exceptional curves, that is, smooth rational curves with self-intersection
−1. For r ≤ 6 the exceptional curves on X arise in one of these ways: the inverse
images of the Mi; the proper transforms of the lines through Mi and Mj , i 6= j; the
proper transforms of the conics through five of the Mi. For r = 7 one also has the
proper transforms of singular cubics passing through all the 7 points with a double
point at some Mi. The intersection index defines an integral bilinear form ( . ) on
PicX. The opposite of the canonical class −KX is an ample divisor, (K2X) = d.
The Picard group PicX = PicX is generated by the classes of exceptional curves
(the complement to the union of these curves is an open subset of A2). The triple
(PicX,KX , ( . )) coincides, up to isomorphism, with the triple (Nr, Kr, ( . )) defined
as

Nr = ⊕
r
i=0Z`i, Kr = −3`0 +

r∑

i=1

`i, (`
2
0) = 1, (`

2
i ) = −1, i ≥ 1, (`i.`j) = 0, i 6= j,

see [16, Thm. 23.9]. Moreover, the exceptional curves are identified with the el-
ements ` ∈ Nr such that (`2) = (`.Kr) = −1, called the exceptional classes [16,
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Thm. 23.8]. By definition, a geometrically integral conic on X is a smooth rational
curve with self-intersection 0. By Riemann–Roch theorem each conic belongs to a
1-dimensional pencil of curves which are fibres of a morphism X → P1, called a
conic bundle. We refer to the fibres of such a morphism as conics. In particular,
through every point of X passes exactly one conic of a given pencil. The classes of
conic bundles can be characterized by the properties (c2) = 0, (c.Kr) = −2.
Let K⊥r be the orthogonal complement to Kr in Nr. The elements α ∈ K

⊥
r such

that (α2) = −2 form a root system R in the vector space K⊥r ⊗ R ' R
r with the

negative definite scalar product ( . ). In fact, R is a root system of rank r in the
series (5). Moreover, the lattice K⊥r is generated by roots, so that K

⊥
r ' Q(R). For

example, we can choose

β1 = −`1 + `2, . . . , βr−1 = −`r−1 + `r, βr = −`0 + (`1 + `2 + `3)

as a basis of simple roots of R. The relation to our standard numeration (which
follows [2]) is this: αr = βr−1, α1 = β1.

The Weyl group W = W(R) generated by the reflections in the roots, is the
automorphism group of the triple (Nr, Kr, ( . )). It operates transitively on the set
of exceptional curves, and also on the set of conic bundle classes, see, e.g. [10,
Lemma 5.3]. Let

P (R) = {n ∈ K⊥r ⊗ R|(n.m) ∈ Z for any m ∈ Q(R)}

be the lattice dual to Q(R); we have Q(R) ⊂ P (R). The image of the map

Nr → Nr ⊗ R = RKr ⊕ (K
⊥
r ⊗ R)

is contained in the orthogonal direct sum 1
d
ZKr ⊕ P (R) as a subgroup of index d.

Lemma 5.1 Let α = βr−1 ∈ R be the simple root such that (R, α) is one of the
pairs (6), and let ω ∈ P (R) be the dual fundamental weight, (α.ω) = −1.
(i) The exceptional classes in Nr are −1dKr + wω, for all w ∈W.
(ii) Two distinct exceptional curves intersect in X if and only if the corresponding
weights are not adjacent vertices of the convex hull Conv(Wω).

(iii) Let ω1 be the fundamental weight dual to the root β1. The conic bundle classes
in Nr are −2dKr + wω1, for all w ∈W.

Note that since W acts transitively on the set of bases, the choice of a basis of
simple roots is not important for the conclusion of this lemma.

Proof (i) and (iii) The image of the exceptional class `r in P (R) is the fundamental
weight ω = ωr−1, and the image of the conic bundle class `0− `1 is the fundamental
weight ω1. The statement now follows from the transitivity of action of W on these
classes. Cf. [10, Lemma 5.2].
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(ii) By the transitivity of W on the exceptional classes it is enough to check this
for the classes −1

d
Kr + ω and −1dKr + x, where x = wω for some w ∈ W. The

intersection index

(−
1

d
Kr + x.−

1

d
Kr + ω) =

1

d
+ (x.ω) (12)

equals −L(x) in the notation of the proof of Proposition 2.4 (with the opposite sign
of the scalar product). In the simply laced case this proof shows that L(x) = 1 when
x = ω, L(x) = 0 if x is a vertex of the convex hull Conv(Wω) adjacent to ω, and
L(x) < 0 for all other x ∈Wω. QED

We observe that for any conic bundle class x there exists a conic bundle class y
such that (x.y) = 1. Indeed, by the transitivity of W on conic bundle classes we can
assume that x = `0 − `1. For y = `0 − `2 we have (x.y) = 1.

6 Main theorem

Let us recall our notation:

(R, α) be the pair in (6) such that R has rank r;

G is the simply connected semisimple group with a split maximal torus H and a
maximal parabolic subgroup P ⊃ H, such that (G,P ) is defined by the pair (R, α);
V is the fundamental representation of G such that P is the stabilizer of the line
spanned by a highest weight vector (this representation is faithful);

T ⊂ GL(V ) is the torus generated by the image of H in GL(V ), and the scalar
matrices;

Y is the geometric quotient of (G/P )sfa ⊂ (G/P )a with respect to the natural left
action of T ;

the morphism f : (G/P )sfa → Y is a universal torsor (see Theorem 2.7).

Let Λ ⊂ Ĥ be the set of weights of H in V , and let Vλ ⊂ V be the subspace of
weight λ, so that V = ⊕λ∈ΛVλ. In our case dim Vλ = 1 (since V is minuscule, see
Section 3). Let πλ : V → Vλ be the natural projections, and let Lλ = π

−1
λ (0) be

the weight coordinate hyperplanes. For a subset A ⊂ V we write A× for the set of
points of A outside ∪λ∈ΛLλ. For a subset B ⊂ Y we write B× for f(f−1(B)×).
We now state our main theorem whose proof occupies the rest of the paper.

Theorem 6.1 For r = 4, 5, 6 or 7 let M1, . . . ,Mr be points in general position
in P2 (no three on a line, no six on a conic). Let X be the blowing-up of P2 in
M1, . . . ,Mr. There exists an embedding X ↪→ Y such that X \X× is the union of
exceptional curves on X. For such an embedding f−1(X)→ X is a universal torsor.

We write Snχ(V ) for the weight χ ∈ Ĥ subspace of S
n(V ), and Snχ(V )

∗ for the dual
space of functions. Let I(T ) ⊂ k[V ] = S(V ∗) be the ideal of T . We shall prove the
following statement from which the main theorem will follow:
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There exists an embedding of a universal torsor T over X into (G/P )sfa ⊂ V such
that the restriction of f to T is the structure morphism T → X, and f(T ×) is the
complement to the union of exceptional curves on X. Moreover, for r < 7 the ideal
I(T ×) ⊂ k[V ×] is generated by the graded components of degree 2 and weight wω1,
for all w ∈W.

The last statement will be used in the case r = 7, and can be ignored by the
reader interested in the cases r = 5 and r = 6 only. Recall that ω1 is the highest
weight of a non-trivial irreducible g-module of least dimension.

Proof The proof is by induction on r starting from r = 4. In this case Y is a del
Pezzo surface of degree 5, G/P is the Grassmannian variety G(3, 5) ' G(2, 5), and
G(3, 5)sf = G(3, 5)s is a universal torsor over Y (see [23] or [22, Lemma 3.1.6]). It
is well known that the ideal of G(3, 5)a ⊂ V is generated by the (quadratic) Plücker
relations, and it is easy to see that their weights are of the form wω1, so that our
statement is true in this case.

Suppose we know the statement for r − 1 ≥ 4. This means that we are given the
following data:

(R′, α′) is the ‘previous’ pair to (R, α) in (6);

W′ = W(R′) is the Weyl group;

G′ and P ′ are defined by (R′, α′), so that (G′/P ′)a ⊂ V1 (see Section 3);
H ′ = H ∩G′, so that R′ is the root system of G′ with respect to H ′;
T ′ ⊂ GL(V1) is the torus generated by the image of H ′ in GL(V1) and the scalars
(T ′ is also the image of H in GL(V1));

xμ is a non-zero linear form on the weight μ subspace of V1;

Y ′ is the quotient of (G′/P ′)sfa by T
′;

f ′ : (G′/P ′)sfa → Y
′ is a universal torsor;

X ′ is the blowing-up of P2 in M1, . . . ,Mr−1 (it is a del Pezzo surface of degree
d′ = 8− r);
an embedding X ′ ↪→ Y ′ satisfying the conditions of the theorem, in particular,
T ′ = f ′−1(X ′)→ X ′ is a universal torsor.
The general position assumption implies that Mr does not belong to the excep-
tional curves of X ′. Thus, by Hilbert’s theorem 90, we can find a k-point x0 ∈ T ′×

such that f ′(x0) =Mr.

Let τ : T̂ ′ → PicX ′ be the map defined in Section 1; up to sign τ coincides
with the type of the torsor f ′ : T ′ → X ′ (Lemma 1.2). Since the torsor f ′ :
T ′ → X ′ is universal, τ is an isomorphism of T̂ ′ = K[T ′K ]

∗/K∗ and PicX ′ as
abelian groups. To account for the duality between vectors and linear forms on
V1 we identify these groups by the isomorphism −τ . Recall that the Weyl group
W′ acts on T̂ ′ via the normalizer of H ′ in G′, permuting the weights of V1. By
induction assumption −τ sends these weights bijectively onto the exceptional classes
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in PicX ′. If we transport the action of W′ from T̂ ′ to PicX ′ using −τ , then the
action of W′ so obtained preserves the intersection index of exceptional curves, see
(12). Thus −τ is a homomorphism of W′-modules, where W′ acts on PicX ′ as the
automorphism group of the triple (Nr−1, Kr−1, ( . )). In particular, −τ identifies the
W′-(co)invariants on both sides (isomorphic to Z). This implies that if χ is a weight
of T ′ in Sn(V1), then the restriction of χ to the scalar matrices Gm ⊂ T ′ coincides
with the intersection index of −τ(χ) with −KX′ , that is,

(τ(χ).KX′) = n (13)

(the sign is uniquely determined by the fact that effective divisors intersect positively
with −KX′). The isomorphism −τ also identifies the quotients by the W′-invariants,
that is, P (R′) and Ĥ ′. We fix these identifications from now on.

For φ(x) ∈ Snχ(V1)
∗, χ ∈ T̂ ′, we let Cφ ⊂ X ′ be the image of the intersection of

T ′ with the T ′-invariant hypersurface φ(x) = 0. If Cφ 6= X ′, then the class [Cφ] in
PicX ′ is −τ(χ), and (13) can be written as

([Cφ].−KX′) = n. (14)

We have (see the end of Section 1 for the first equality)

H0(X ′,O−χ) = k[T
′]−χ = S

n
χ(V1)

∗/I(T ′) ∩ Snχ(V1)
∗. (15)

Apart from the weights of V1 which correspond to exceptional curves, the following
two cases will be particularly relevant. For n = 2 let λ be a weight of T ′ in V2. The
restriction of λ to H ′ is wω1 ∈ Ĥ ′ = P (R′), where w ∈W′ (see the end of Section 3).
If φ ∈ S2λ(V1)

∗ is such that Cφ 6= X ′, then by (14) we see that [Cφ] = − 2d′KX′ +wω1,
so Cφ is a conic on X

′ by Lemma 5.1 (iii). The Riemann–Roch theorem implies that
dimH0(X ′,O−λ) = 2, where O−λ = O(Cφ) is the invertible sheaf associated to Cφ.
Thus I(T ′) ∩ S2λ(V1)

∗ has codimension 2 in S2λ(V1)
∗. Note that by Lemma 3.3 we

have pλ(x) ∈ I(T ′) ∩ S2λ(V1)
∗.

For r = 7 and n = 3 the space V3 is a trivial 1-dimensional representation of G
′,

hence of weight 0 ∈ Ĥ ′. Thus for φ ∈ S30(V1)
∗ we have [Cφ] = −KX′ , by (14). If

Cφ 6= X ′, then Cφ is a plane section of the cubic surface X ′ ⊂ P3. The vector space
H0(X ′,O(Cφ)) = H0(X ′,O(−KX′)) has dimension 4, thus I0 = I(T ′) ∩ S30(V1)

∗ has
codimension 4 in S30(V1)

∗. It is clear that q(x) ∈ I0, see, e.g., (10).

The following proposition is a crucial technical step in the proof of our main
theorem.

Proposition 6.2 There exists a non-empty open subset Ω(x0) ⊂ (G′/P ′)×a such that
for any y0 ∈ Ω(x0) we have pλ(x

−1
0 y0x) /∈ I(T

′) ∩ S2λ(V1)
∗ for all weights λ of V2,

and q(x−10 y0x) /∈ I0 if r = 7.
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Proof We begin with pointing out the following useful fact. Let Verλ be the compo-
sition of the second Veronese embedding V1 → S2(V1) with the projection of S2(V1)
to its direct summand S2λ(V1). By Lemma 3.3, pλ(x) = 0 is the only quadratic
equation of G′/P ′ of weight λ, thus Verλ((G

′/P ′)a) spans a codimension 1 subspace
of S2λ(V1), namely, the zero set of the linear form pλ(x) ∈ S

2
λ(V1)

∗.

Next, we claim that the quadratic forms pλ(x
−1
0 y0x), y0 ∈ (G

′/P ′)×a , span a codi-
mension 1 subspace of S2λ(V1)

∗. Using (8) we write

pλ(x
−1
0 y0x) =

∑

λ=μ+ν

pμν
y0μy0ν

x0μx0ν
xμxν .

Suppose that for some coefficients cμν we have a linear relation

∑

λ=μ+ν

cμνpμν
y0μy0ν

x0μx0ν
= 0.

This can be read as a relation with coefficients cμνpμνx
−1
0μx

−1
0ν satisfied by all the

vectors (y0μy0ν), where y0 ∈ (G′/P ′)×a and μ + ν = λ. The set of these vectors
is precisely Verλ((G

′/P ′)×a ). The linear span of Verλ((G
′/P ′)×a ) is the same as the

linear span of Verλ((G
′/P ′)a). By the argument in the beginning of the proof, up to

a multiplicative constant there is only one linear relation satisfied by the elements
of Verλ((G

′/P ′)a), namely the one with coefficients pμν . Therefore, cμν = x0μx0ν is
uniquely determined up to a multiplicative constant. This proves our claim. Note
that the linear span under discussion is thus the space of forms vanishing at x0.

It follows that the set of k-points y ∈ (G′/P ′)×a such that pλ(x
−1
0 yx) belongs to

the codimension 2 subspace I(T ′) ∩ S2λ(V1)
∗, is a proper closed subset of (G′/P ′)×a .

For r < 7 we define Ω(x0) as the complement to the union of these closed subsets
for all weights λ of V2.

Until the rest of the proof we let r = 7. Let Ver30 : V1 → S
3
0(V1) be the composition

of the natural map V1 → S3(V1) with the projection S3(V1) → S30(V1). The map
Ver30 sends x = (xμ) to the vector (xμxνxξ), for all μ, ν, ξ such that μ + ν + ξ = 0.
If we write the invariant cubic form (defined up to a scalar multiple) as

q(x) =
∑

μ+ν+ξ=0

qμνξxμxνxξ,

then it is well known that all the coefficients qμνξ are non-zero (see, e.g., [9]). Recall
that the singular locus of the cubic hypersurface q(x) = 0 is (G′/P ′)a.

Let Lx0 ⊂ S
3
0(V1)

∗ be the subspace of forms vanishing at x0 together with all their
(first order) partial derivatives. We claim that Lx0 coincides with the linear span of
the forms q(x−10 y0u), where y0 ranges over (G

′/P ′)a.

Let us prove this claim. The partial derivatives of q(x) vanish on (G′/P ′)a, hence
q(x−10 y0u) ∈ Lx0 for any y0 ∈ (G

′/P ′)a. Thus the linear span of the forms q(x
−1
0 y0u),
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where y0 ∈ (G′/P ′)a, is contained in Lx0 . We now prove that these spaces have the
same dimension.

Let f(x) =
∑
μ+ν+ξ=0 fμνξxμxνxξ be a form in Lx0 . The partial derivative with

respect to xξ is 3
∑
μ+ν=−ξ fμνξxμxν . It vanishes at x0 ∈ V

×
1 if and only if

xξ
∑

μ+ν=−ξ

fμνξxμxν =
∑

μ+ν=−ξ

q−1μνξfμνξ ∙ qμνξxμxνxξ

does. Hence (q−1μνξLx0)
⊥ is spanned by the 27 vectors (qμνξx0μx0νx0ξ), where ξ is

fixed, and μ, ν are arbitrary. Since the coordinates of x0 are non-zero, this space
has the same dimension as the space M ⊂ S30(V1) spanned by the 27 vectors (qμνξ),
where ξ is fixed, and μ, ν are arbitrary weights satisfying μ + ν + ξ = 0. The fact
that the ideal of (G′/P ′)a is generated by the partial derivatives of q(x), implies
that M⊥ is the linear span of Ver30((G

′/P ′)a). We conclude that dimLx0 equals the
dimension of this linear span. Since all the coefficients qμνξ are non-zero, the forms
q(x−10 y0u), where y0 ∈ (G

′/P ′)a, span the space of the same dimension. This proves
our claim.

Let us complete the proof of the proposition in the case r = 7. A cubic form
f ∈ S30(V1)

∗ is in Lx0 if and only if f(x) = 0 is singular at x0 ∈ V
×
1 . This is the

case if and only if the corresponding hyperplane Hf ⊂ S30(V1) contains the tangent
space Φ to Ver30(V1) at the point m = Ver

3
0(x0). We have a commutative diagram

(cf. (15) and (2))

X ′ ← T ′ ↪→ V1
↓ ↓ ↓

P(H0(X ′,O(−KX′))∗) ← H0(X ′,O(−KX′))∗ \ {0} ↪→ S30(V1)

where the left hand vertical map is the anticanonical embedding of X ′, and the other
two are Ver30. The image of T

′ in the 4-dimensional vector space

H0(X ′,O(−KX′))
∗ = (k[T ′] ∩ S30(V1)

∗)∗ = (S30(V1)
∗/I0)

∗ ' A4 ⊂ S30(V1)

is the affine cone X ′a (without 0) over the cubic surface X
′ ⊂ P3.

By induction assumption I(T ′×) is generated by its graded components Iλ of
degree 2 and weight λ, for all weights λ of V2. The weights of V1 are the negatives
of the weights of V2, so that x−λIλ has degree 3 and weight 0. Since the coordinates
x−λ are invertible on T ′×, the ideal I(T ′×) is generated by its graded component of
degree 3 and weight 0. Hence locally in the neighbourhood T ′× of x0 the ideal I(T ′)
is generated by I0, that is, by the equations of A4 in S30(V1).
This implies that the tangent space TX′a,m ⊂ A

4 is Φ ∩ A4. Thus for any f in a
dense open subset of Lx0 we have Hf ∩A

4 = TX′a,m. Since X
′ ⊂ P3 is a smooth cubic

surface, X ′a \ TX′a,m is dense and open in X
′
a. Therefore, for the general f ∈ Lx0 we

have X ′a ∩Hf 6= X
′
a, so that f /∈ I0. Now the above claim implies the statement of

proposition. QED
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Corollary 6.3 For any k-point y0 ∈ Ω(x0) and any weight λ of V2 the closed subset
of T ′ given by pλ(x

−1
0 y0x) = 0 is the preimage f

′−1(Cλ) of a geometrically integral
k-conic Cλ ⊂ X ′ passing through Mr. For r = 7 the closed subset of T ′ given
by q(x−10 y0x) = 0, for any y0 ∈ Ω(x0), is the preimage f

′−1(Q) of a geometrically
integral cubic k-curve Q with a double point at Mr (the intersection of the cubic
surface X ′ with its tangent plane at Mr).

Proof To check that Mr ∈ Cλ set x = x0, then pλ(x
−1
0 y0x) = pλ(y0) = 0 by Lemma

3.3 since y0 ∈ (G′/P ′)a. If the conic Cλ is not geometrically integral, then its
components must have intersection index 1 with −KX′ , so there are two of them. It
is well known that a curve on X ′ has such a property if and only if it is an exceptional
curve. However, Mr does not belong to the exceptional curves of X

′. Thus Cλ is
geometrically integral.

If r = 7, by substituting x = x0 one shows as before that Q contains M7 (the
cubic form q vanishes on G′/P ′). Since the pλ(x) are partial derivatives of q(x), and
M7 ∈ Cλ, we see that Q has a double point at M7. If Q is not geometrically integral,
then it is the union of a geometrically integral conic and an exceptional curve, or the
union of three exceptional curves. In each of these cases the singular point M7 ⊂ Q
will have to lie on an exceptional curve, and this is a contradiction. QED

Corollary 6.4 For any y0 ∈ Ω(x0) the scheme-theoretic intersection of x
−1
0 y0T

′

and (G′/P ′)a is the orbit T
′y0.

Proof By Lemma 3.3 the ideal of (G′/P ′)a is generated by pλ(x), for all weights λ of
V2. As was remarked at the end of Section 5, there exist weights λ and ν such that
the intersection index of Cλ and Cν on X

′ is 1, that is, Mr is the scheme-theoretic
intersection Cλ ∩ Cν . Thus the orbit T ′y0 is the closed subscheme of x

−1
0 y0T

′ given
by pλ(x) = pν(x) = 0, and our statement follows. QED

Let σ : X = BlMr(X
′) → X ′ be the morphism inverse to the blowing-up of Mr.

Then σ induces an isomorphism of X \ σ−1(Mr) with X ′ \Mr, and σ−1(Mr) ∼= P1.
The proper transform of a curve D ⊂ X ′ is defined as the closure of σ−1(D \Mr)
in X. The comparison of intersection indices on X ′ and X shows that the proper
transforms of the conics Cλ and the singular cubic Q (for r = 7) are exceptional
curves on X. By comparing the numbers we see that these curves together with
σ−1(Mr) and the inverse images of the exceptional curves on X

′ give the full set of
exceptional curves on X.

End of proof of Theorem 6.1. Consider the open set U ⊂ (G/P )a and the morphism
π : U → V1 \ {0}, see Corollary 4.2. Choose any y0 ∈ Ω(x0), and define T ⊂ U as
the ‘proper transform’ of x−10 y0T

′ with respect to π. Explicitly, T ⊂ U is defined as
the Zariski closure of

π−1(x−10 y0T
′ \ (G′/P ′)a) = π

−1(x−10 y0T
′ \ T ′y0),
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where the equality is due to Corollary 6.4. The torus T ′ acts on T ′, and π is T ′-
equivariant, hence T ′ acts on T . But Gm = {gt} (see Lemma 4.1) also acts on T .
The torus T is generated by T ′ and Gm = {gt}, so that T acts on T .

Corollaries 4.2 and 6.4 imply that the restriction of π to T is the composition of
a torsor under Gm = {gt} and the morphism Bly0T ′(x

−1
0 y0T

′)→ x−10 y0T
′ inverse to

the blowing-up of the orbit T ′y0 in x
−1
0 y0T

′. The blowing-up of T ′y0 in x
−1
0 y0T

′ is
naturally isomorphic to the pullback T ′ ×X′ X of the torsor T ′ → X ′ to X. This
can be summarized in the following commutative diagram:

T −→ T ′ ×X′ X −→ X

y σ



y

T ′ −→ X ′
(16)

where the horizontal arrows are torsors under tori, and the vertical arrows are con-
tractions. The composed morphism f : T → X is a composition of two torsors
under tori, and hence is an affine morphism whose fibres are orbits of T . Therefore
T is an X-torsor under T , by Lemma 1.1. We obtain a T -equivariant embedding
T ↪→ (G/P )a.

For r < 7 we note that I(T ×) ⊂ k[V ×] is generated by I(x−10 y0T
′×) and the

equations of (G/P )a, moreover, for each weight wω1, w ∈ W, there is exactly one
quadratic equation, by Lemma 3.3. The restriction of ω1 ∈ Ĥ = P (R) to H ′ is again
the weight ω1 ∈ Ĥ ′ = P (R′). By induction assumption I(T ′×) is generated by its
graded components of degree 2 of such weights, hence the same is true for I(T ×).

It remains to prove that T ⊂ (G/P )sfa , and that the torsor f : T → X is universal.
The action of T on T is free, so let us show that every point of T is stable. We claim
that f sends the weight hyperplane sections of T to the exceptional curves on X.
By the results of Section 4 this follows from induction assumption for the weights of
V1, and from Corollary 6.3 for the weights of V2⊕V3. Corollary 6.4 implies that the
highest weight hyperplane xω = 0 corresponds to σ

−1(Mr). By Lemma 5.1 (ii) the
set of exceptional curves of X is identified with the set Wω in such a way that two
distinct exceptional curves intersect in X if and only if the corresponding weights
are not adjacent vertices of the convex hull Conv(Wω). Now Proposition 2.4 implies
that T ⊂ (G/P )sfa . We thus obtain an embedding X ↪→ Y .

The pull-back of the torsor (G/P )sfa → Y to X gives rise to the following com-
mutative diagram, where the horizontal arrows represent the types of corresponding
torsors:

T̂
∼
−→ PicY

|| ↓
T̂ −→ PicX

The upper horizontal arrow is an isomorphism since the torsor (G/P )sfa → Y is
universal, by Theorem 2.7. Since the exceptional curves on X are cut by divisors on
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Y , the restriction map Pic Y → PicX is surjective. However, the ranks of Pic Y and
PicX are equal, so this map is an isomorphism. Now it follows from the diagram
that the type of the torsor f : T → X is an isomorphism, so that this torsor is
universal as well. The theorem is proved. QED
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