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Abstract

The connection between del Pezzo surfaces and root systems goes back
to Coxeter and Du Val, and was given modern treatment by Manin in his
seminal book “Cubic forms”. Batyrev conjectured that a universal torsor on
a del Pezzo surface can be embedded into a projective homogeneous space of
the semisimple group with the same root system, equivariantly with respect
to the maximal torus action. Computational proofs of this conjecture based
on the structure of the Cox ring have been given recently by Popov and
Derenthal. We give a new proof of Batyrev’s conjecture using an inductive
process, interpreting the blowing-up of a point on a del Pezzo surface in terms
of representations of Lie algebras corresponding to Hermitian symmetric pairs.

Introduction

Del Pezzo surfaces, classically defined as smooth surfaces of degree d in the projective
space P4, d > 3, are among the most studied and best understood of algebraic
varieties. Over an algebraically closed ground field such a surface is the quadric
P! x P! or the projective plane P? with r = 9 — d points in general position blown
up; in this definition d can be any integer between 1 and 9. Despite the apparent
simplicity the enumerative geometry of these surfaces displays amazing symmetries
and puzzling coincidences. The 27 lines on a smooth cubic surface were discovered
by Cayley and Salmon, and the symmetries of their configuration were explored by
Schoutte, Coxeter and Du Val. In 1970 Manin gave a modern exposition of this
subject, with many geometric and arithmetic applications [16]. He showed that the
Picard group of a del Pezzo surface X of degree d = 9 — r, d < 6, contains a root
system R, of rank r in such a way that the automorphism group of the incidence
graph of the exceptional curves on X is the Weyl group W(R,). These root systems
are embedded into one another: Rg = Eg, and as r decreases one chops one by one
the nodes off the long end of the Dynkin diagram of Eg, until the diagram becomes
disconnected. Let a, be the simple root of R, corresponding to the node which must
be removed from the Dynkin diagram of R, in order to obtain that of R,_1; let w,



be the fundamental weight dual to a,. For r = 4,5,6,7 the number of exceptional
curves on X is |W(R,)/W(R,_1)| = 10, 16,27, 56, respectively, and this is also the
dimension of the irreducible minuscule representation V (w;) of the Lie algebra g, of
type R, with the highest weight w,. It is tempting to try to recover the Lie algebra
directly from a del Pezzo surface, but one has to bear in mind that the del Pezzo
surfaces of degree d < 5 depend on 10 — 2d moduli, so that the Lie algebra should
somehow take into account all del Pezzo surfaces of given degree (see [17], and also
[10], [15]).

Universal torsors were introduced by Colliot-Thélene and Sansuc in the 1970-s in
a seemingly unrelated line of research (see [3] or [22]). If X is a smooth projective
variety over a field k, then an X-torsor under a torus 7" is a pair (Y, f), where Y is
a variety over k with a free action of 7', and f is an affine morphism Y — X whose
fibres are orbits of 7. An X-torsor is universal if all invertible regular functions on
Y are constant, and the Picard group of Y is trivial (see Section 1 for details). Then
T is isomorphic to the Néron—Severi torus of X, i.e., the algebraic torus dual to the
Picard lattice of X over an algebraic closure of k. In the work of Colliot-Thélene,
Sansuc, Swinnerton-Dyer, Salberger and the second named author (see the references
in [22]) the birational geometry of universal torsors on del Pezzo surfaces of degrees 3
and 4 played a crucial role in gaining some understanding of rational points on these
surfaces over number fields, for example, the Hasse principle, weak approximation,
the Brauer—Manin obstruction, the R-equivalence. The work of Batyrev, Tschinkel,
Peyre, Salberger, Hassett, de la Breteche, Heath-Brown, Browning and others on
the Manin—-Batyrev conjectures on the number of rational points of bounded height,
highlighted the importance of explicitly describing universal torsors as algebraic
varieties, and not merely their birational structure. However, in the most interesting
cases such as those of (smooth) del Pezzo surfaces of degrees 3 and 4, explicit
equations of universal torsors turned out to be quite complicated to write down
explicitly.

Around 1990, Victor Batyrev told the second named author about his conjecture
relating universal torsors on del Pezzo surfaces to certain projective homogeneous
spaces. Let G, be the simply connected semisimple group of type R,. We fix a
maximal torus H, C G, and a basis of simple roots in the character group of H,. Let
P, C G, be the maximal parabolic subgroup defined by the root «, (the stabilizer
of the line spanned by the highest weight vector of V(w,)). Batyrev conjectured
that a universal torsor 7 on a del Pezzo surface X of degree d = 9 — r over an
algebraically closed field can be embedded into the affine cone (G,/P.), C V(w,)
over G,/P,, equivariantly with respect to the action of the Néron—Severi torus 7,
of X, identified with an extension of H, by the scalar matrices G,,. Moreover, the
exceptional curves on X should be the images of the weight hyperplane sections
of T (that is, the intersections of 7 with the H,-invariant hyperplanes in V' (w,)).
Inspired by these ideas, the second named author showed in [23] that the set of



stable points of the affine cone over the Grassmannian G(3,5) with respect to the
action of the diagonal torus of SL(5), is a universal torsor over a del Pezzo surface
of degree 5 which is the GIT quotient by this action. Batyrev’s line of attack on the
general case of his conjecture uses the Cox ring of X, which can be interpreted as the
ring of regular functions on a universal torsor over X. Indeed, Batyrev and Popov
[1] (see also [6]) found the generators and relations of the Cox ring, which enabled
Popov in his unpublished thesis [21] in the case d = 4 and Derenthal [5] in the cases

= 3 and d = 2 to prove Batyrev’s conjecture by identifying the generators with
the weights of V(w,), and comparing the relations with the well known equations of
G,/ P,. The proofs of [21] and [5] are based on a substantial amount of calculation
which grows rapidly with r, and do not seem to give much insight into why things
work this way:.

In the present work we prove Batyrev’s conjecture for del Pezzo surfaces of degrees
4, 3 and 2 using a totally different approach, via the representation theory of Lie
algebras. We start with the known case of a del Pezzo surface of degree 5. (Alter-
natively, one could start with the simpler though somewhat irregular case of degree
6, see [1].) Let p, be the Lie algebra of P, C G,. We build an inductive process
based on the remark that the pair (R, a,) for r = 4,5,6, 7 is a Hermitian symmetric
pair, which is saying that the complementary nilpotent algebra of p, in g, is com-
mutative. We show that V(w,), as a g,_1-module, has a direct factor isomorphic to
V(wyr—1), and that the restriction of the projection V(w,) — V(w,_1) to a certain
open subset U C (G,/P,), is the composition of a G,,-torsor and a morphism in-
verse to the blowing-up of V(w,_1) \ {0} at (Gy—1/Pr—1). \ {0} (see Corollary 4.2).
Now we can explain the main idea of our proof. Suppose that a universal torsor
T over a del Pezzo surface X of degree 9 — (r — 1) is T,_;-equivariantly embedded
into the affine cone (G,_1/P,_1)s C V(wr—1). Let M be a point on X outside of the
exceptional curves, and Bly/(X) the blowing-up of X at M. The space V(w,_1) is
a direct sum of 1-dimensional weight spaces of H,_1, so that the torus consisting of
the diagonal matrices with respect to a weight basis of V' (w,_1) does not depend on
the choice of this basis. We show how to choose an element ¢;; of this torus so that
the translation t;j(Gr,l /P,_1), intersects T exactly in the fibre of f : T — X over
M. Then the closure of the inverse image of ty/(7 \ f~!'(M)) in U is a universal
torsor over Bl (X). This yields a T,-equivariant embedding of this universal torsor
into (G, /P,),. We then show that the image of this embedding is contained in the
open subset of stable points with a free action of the Néron—Severi torus, so that
Bly/(X) embeds into the corresponding quotient.

Here is the structure of the paper. In Section 1 we recall equivalent definitions
and some basic properties of universal torsors. In Section 2 we prove that the left
action of a maximal torus of G on G/P, where P is a maximal parabolic subgroup
of a semisimple algebraic group G, turns the set of stable points with free action
of the maximal torus into a universal torsor on an open subset of the GIT quotient



of G/P by this action (with an explicit list of exceptions, see Theorem 2.7 for
a precise statement). In Section 3 we recall the necessary background from the
representation theory of Lie algebras. The implications for the structure of the
projection of (G,/P,), to V(w,_1) are studied in Section 4. In Section 5 we list
some well known properties of del Pezzo surfaces. Our main result, Theorem 6.1, is
stated and proved in Section 6.

The second named author is grateful to the Centre de recherches mathématiques
de I’Université de Montréal, the Mathematical Sciences Research Institute in Berke-
ley, and the organizers of the special semester “Rational and integral points on
higher-dimensional varieties” for hospitality and support.

1 Universal torsors

Let k be a field of characteristic 0 with an algebraic closure k. Let X be a geo-
metrically integral variety over k. We write X for X x; k. We denote by k[X]
the k-algebra of regular functions on X, and by k[X]* the group of its invertible
elements.

Let T be an algebraic k-torus, that is, an algebraic group such that T ~ G for
some n. Let T' ~ Z" be the group of characters of T. The Galois group I’ = Gal (k/k)
naturally acts on T.

For generalities on torsors the reader is referred to [22]. An X-torsor under T
is a pair (7, f), where T is a k-variety with an action of 7, and f : 7 — X is a
morphism such that locally in étale topology 7 — X is T-equivariantly isomorphic
to X x; T. The following lemma is well known.

Lemma 1.1 Suppose that a k-torus T acts on a k-variety Y with trivial stabilizers,
and g :'Y — X 1is an affine morphism of k-varieties whose fibres are orbits of T.
Then g : Y — X is a torsor under T'.

Proof The property of g to be a torsor can be checked locally on X. Let U be an
open affine subset of X. Since g is affine, g~ (U) is also affine ([12], II, 5, Exercise
5.17). Since the stabilizers of all k-points of g~*(U) are trivial, by a corollary of
Luna’s étale slice theorem (see [18], p. 153) the natural map ¢~ '(U) — U is a torsor
under 7. The lemma follows. QED

Colliot-Thélene and Sansuc associated to a torsor f : 7 — X under a torus T the
exact sequence of I'-modules ([3], 2.1.1)

1 — k[X]"/k" = k[T]*/k" = T — PicX — PicT — 0. (1)

Here the second and the fifth arrows are induced by f. The forth arrow is called
the type of T — X. To define it consider the natural pairing compatible with the
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action of the Galois group I':
U: H(X,T) x T — HYX, G,,) = Pic X,

where the cohomology groups are in étale or Zariski topology. The type sends x € T
to [T]Ux, where [T] € H'(X,T) is the class of the torsor T — X. A torsor T — X
is called universal if its type is an isomorphism. If the variety X is projective, (1)
gives the following characterisation of universal torsors: an X-torsor under a torus
is universal if and only if Pic7 = 0 and k[T]* = k", that is, T has no non-constant
invertible regular functions.

We now give an equivalent definition of type which does not involve cohomology.
Let K = k(X) be the function field of X, and Tx the generic fibre of T — X.
By Hilbert’s Theorem 90 the K-torsor Tk is trivial, that is, is isomorphic to Tk =
T x, K. By Rosenlicht’s lemma we have an isomorphism of I'-modules K [TK] JK* =
K|[Tk]*/K* = T. This isomorphism associates to a character x € T a rat1ona1
function ¢ € k(7T)* such that ¢(tz) = x(t)é(z); the function ¢ is well defined up to
an element of K* = k(X)*. The divisor of ¢ on 7 does not meet the generic fibre
T, and hence comes from a divisor on X defined up to a principal divisor. We
obtain a well defined class 7(x) in Pic X.

Lemma 1.2 The map 7 : T — Pic X coincides with the type of f: T — X up to
s1gn.

Proof According to [22], Lemma 2.3.1 (ii), the type associates to x the subsheaf O,
of x-semiinvariants of the sheaf f.(O7). The function ¢ is a rational section of O,,
hence the class of its divisor represents O, € Pic X. QED

For the sake of completeness we note that if f : 7 — X is a universal torsor, then
the group of divisors on X is naturally identified with K[7%]* /E*; this identifies the
semigroup of effective divisors on X with (K[Tx]* N k[T])/k .

We have k[T] = @XETE[’T]X, where k[T, is the set of regular functions ¢ on T~
satisfying ¢(tx) = x(t)é(z) for any ¢ in T. We also define k(7), as the set of rational
functions on 7 satisfying the same condition. Since E(T)X is the group of rational
sections of the sheaf O,, we have k[T], = H°(X, O,). Hence if the sheaf O, defines
a morphism X — P(H°(X, 0, )*), we obtain a commutative diagram

T = RTE\{0} = B(X,00°\ {0}
! i )
X — P(HY(X,0,)")

Here the asterisk denotes the dual vector space.



2 (/P and the torus quotient

Let GG be a split simple simply connected algebraic group over k, with a split maximal
torus H C G in this case the root system R of G relative to H is irreducible. Write
H for the character group of H. We use the standard notation Q(R) for the lattice
generated by the simple roots, then P(R) = H is the dual lattice generated by the
fundamental weights. We denote the Weyl group by W = W(R).

Let G — GL(V) be an irreducible representation of G with a fundamental highest
weight w € H. LetveVbea highest weight vector. The stabilizer of the line kv is a
maximal parabolic subgroup P C G. The homogeneous space G/ P is thus a smooth
projective subvariety of P(V) (indeed, the only closed orbit of G in P(V')). We write
P (resp. G) for the character group of P (resp. of G). Let ¢ : P — PicG/P be the
map associating to the character x € P the G /P-torsor under G,,, defined as the
quotient of G x G,,, by P, where p € P sends (g,t) to (gp~!, x(p)t). This map fits
into the exact sequence

0— G — P — PicG/P — PicG — 0.

Since G is semisimple and simply connected we have G = PicG = 0, so that ¢ is
an isomorphism (see, e.g., [20]). Since P is the subgroup of H generated by w, we
see that Pic G/P is generated by the hyperplane section class. This fact implies the
following elementary statement from projective geometry.

Lemma 2.1 Let L; and Ly be distinct hyperplanes in the projective space P(V).
Then (G/P)N Ly N Ly has codimension 2 in G/P.

Proof Since Pic (G/P) is generated by the class of a hyperplane section, for any
hyperplane L C P(V') the closed subset (G/P) N L is irreducible of codimension 1,
and the intersection has multiplicity 1. If the codimension of (G/P) N Ly N Ly in
G/P is 1, we have (G/P)N Ly N Ly = (G/P) N L for any L in the linear family
spanned by L; and Ls. Choosing L passing through a point of G/P not contained
in Ly, we deduce a contradiction. QED

By the irreducibility of V' the centre Z(G) acts diagonally on V, and hence it
acts trivially on P(V). For a k-point z € P(V) we denote the stabilizer of z in
H by Sty(xz). We now show that for z in a dense open subset of G/P we have
Stu(x) = Z(G), and determine the points such that Sty (z) is strictly bigger than
Z(G).

Proposition 2.2 Let x be a k-point of G /P, and let K, be the connected component
of the centralizer of Sty (x) in G. Then we have the following properties:

(i) K, is a reductive subgroup of G, H C K,;
(ii) z € Kywv = K, /(wPw™' N K,) for some w € W;
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(iii) Z(K,) = Stu(z);
(iv) Sty (z) is finite if and only if K, is semisimple, in which case the ranks of
K, and G are equal.

Proof If Sty(x) = Z(G), then K, = G, and all the statements are clearly true.
Assume that Sty (z) is bigger than Z(G), then K, is a closed subgroup of G, K, # G.

Let £, be the Lie algebra of K,; explicitly &, C g is the fixed set of Ad(Sty(z)).
Since £, contains the Cartan subalgebra b, it has a root decomposition £, = G,csda,
where S C R. Let exp, € H be the multiplicative character defined by the root
a € R. The space g, consists of y € g such that Ad(h)y = exp,(h)y for all h € H.
Thus g, C ¢, if and only if Sty (z) C H is in the kernel of exp,. Therefore S = —S,
so that €, is reductive, and hence so is K.

The fixed points of H in G/P come from the points wv, where w € W. One of
these, say zo = ww, is contained in the closure of the orbit Hx. The stabilizer of x,
in G is the parabolic subgroup wPw™!. To prove (ii) we need to show that z belongs
to the K, -orbit of xq. Let N C G be the unipotent subgroup complementary to
wPw™?!, that is, such that the corresponding Lie algebras satisfy g = n @ wpw!.
Then N NwPw™! = {1}, and the N-orbit of the line kzg is the open Schubert cell
Nzy C G/wPw™ ~ G/P. The intersection of this open Schubert cell with Hz is a
non-empty open subset of Hz, thus there is a k-point z; € Hz N Nzy. We can write
1 = u.zo for some u € N. The complement to the union of connected components
of the centralizer of Sty (z) other than K,, is an open neighbourhood of 1 in G. We
choose 1 in such a way that u belongs to this open set. Since H C K, the points x
and x; are in the same K, -orbit, so that it is enough to show that z; € K,xo. Any
t € Stg(z) fixes both z; and xg, thus z; = u.zy = t~*ut.zg. Therefore, u= 1t~ ut fixes
2o, hence u='t"*ut € wPw~!. On the other hand, H normalizes N, thus ¢t ut € N,
implying u~'t"*ut € N. Since the intersection of wPw™ and N is {1}, we see that
u and t commute. By the choice of x; we see that u is in the connected component
of 1 of the centralizer of Sty (z), that is, u € K. This completes the proof of (ii).

The centre of K, is contained in every maximal torus, in particular, in H. Any
element of Z(K,) fixes z, since z € K, /(wPw ' N K,), so that Z(K,) C Sty(z).
On the other hand, every element of Sty (x) commutes with K, by the definition of
K,. But Sty(z) C H C K,, hence Sty (z) C Z(K,). This proves (iii).

The rank of the semisimple part of K, equals the rank of G if and only if Z(K,)
is finite. If Z(K,) is finite, then K, is semisimple by definition. Thus (iv) follows
from (iii). QED

Let us fix a weight basis in V/, that is, a basis in which H is diagonal. The weight
of a coordinate is the character of H by which H acts on it. Denote by A the set of
weights of H in V| and by wt(x) the set of weights of x € G/P, that is, the weights
of the non-vanishing coordinates of z.



Corollary 2.3 Assume that R is simply laced. Then the codimension of the set of
k-points © € G/ P such that Sty (x) is finite, and Sty (x) # Z(G), is at least 2.

Proof By Proposition 2.2 and W-invariance it is sufficient to show that the codimen-
sion of Kv in Gv is at least 2 for any proper connected semisimple subgroup K C G
containing H. (The set of such subgroups is clearly finite.)

For any x € G/P the property wt(z) = A implies Sty(z) = Z(G). Let V! C V
be the irreducible representation of K generated by v. Denote by A’ the set of
weights of V', and write V = V' @ U, where U is another K-invariant subspace.
First, we claim that A’ # A because otherwise one can find z € P(Kv) such that
wt(xz) = A, and Sty(z) = Z(G) = Z(K) would imply K = G. In particular, U # 0.
If dim U > 1, then the codimension of Kv C GvN V' is at least 2 by Lemma 2.1.

If dimU =1, then U is a trivial representation of K and 0 is not a weight of V.
But then U is invariant under the action of the Weyl group W. Therefore wKw™*
acts trivially on U for any w € W. If a € R is a root of K, then w(a) is a root of
wKw™!, but in the simply laced case W acts transitively on R, hence the subgroups
wKw™, w € W, generate the whole group G. Thus, U is G-invariant, but that
contradicts the irreducibility of V. QED

Recall that a k-point z € V is called stable for the action of H if the orbit Hz
is closed, and the stabilizer of x in H is finite ([18], p. 194). We always consider
stability with respect to the action of H, and drop the reference to H when it causes
no confusion.

For a subset M C H we write Conv(M) for the convex hull of M in the vector
space H ® R. It is well known that Conv(A) = Conv(Ww) ([11], [8], see [4], Prop.
2.2 (i) for a short proof). The Hilbert—Mumford numerical criterion of stability says
that x is stable if and only if 0 belongs to the interior of Conv(wt(x)) ([7], Thm.
9.2).

In the following statement and thereafter the numeration of the nodes of Dynkin
diagrams, simple roots and fundamental weights follows the conventions of [2].

Proposition 2.4 Assume that the pair (R,w) is not in the following list:

(me1>7 (AT7WT>7 (A37w2)7 (B27w2)7 (C27w2>7 (D47w3)7 <D47w4)’ (3)

where R, is A,, B,, C,, or D,. Let z be a point of V &y, k such that no two elements
of Ww \ wt(x) are adjacent vertices of Conv(Ww). Then x is stable.

In particular, the set of unstable points of G/P has codimension at least 2.

Proof Since ), . ww = 0, the point 0 is contained in the interior of Conv(Ww) =
Conv(A) in H®R. Thus if all the coordinates of  with weights in Ww are non-zero,
then z is stable.



Now assume that exactly one such coordinate of x is zero; because of the action
of W it is no loss of generality to assume that it corresponds to w. The dimension of
the corresponding eigenspace is 1, so to check that x is stable it is enough to show
that 0 lies in the interior of Conv(Ww \ {w}). The vertices of Conv(Ww) adjacent
to w are w — wa, where « is the root dual to w, for all w in the stabilizer of w in
W (see [8], Lemma 3 and Cor. 2). All these are contained in the hyperplane L = 0,
where

Ly) = (3:9) — (@) + (@,0) = (3,) — (&) + 5 (0?).

We have L(w) > 0. Thus 0 belongs to the interior of Conv(Ww \ {w}) if and only if
w and 0 are separated by this hyperplane, that is, if and only if L(0) < 0. Therefore,
we need to check the condition

() > 5(0).
2

Note that the numbers 2(w?)/(a?), for all possible fundamental weights, are the
diagonal elements of the inverse Cartan matrix of R. A routine verification using
the tables of [2] or [19] shows that this inequality is satisfied for the pairs (R, w) not
in the list (3).

Finally, let Ww \ wt(z) = {\1,..., Ay }. By assumption A, ..., A, correspond to
pairwise non-adjacent vertices of Conv(Ww). Thus

Conv(Ww \ {A1,...,\n}) = ﬂ Conv(Ww \ {\:}).

Since 0 is in the interior of each convex hull in the right hand side, it is also in the
interior of Conv(wt(z)).

The last statement is an application of Lemma 2.1. QED

Definition 2.5 Let T C GL(V) be the torus generated by the image of H in GL(V)
and the scalar matrices G,, C GL(V). We write (G/P), for the affine cone over
G/P inV, and (G/P)3! for the open subset of stable points with trivial stabilizers
mn T.

By the irreducibility of V, the stabilizer of x € V ®; k, v # 0, in T is trivial if and
only if Sty (pr(z)) = Z(G), where pr(z) is the image of z in P(V).

Lemma 2.6 There exist a smooth quasi-projective variety Y and an affine mor-
phism f: (G/P)$f — Y which is a torsor with structure group T with respect to its
natural left action on G/P.

Proof By the geometric invariant theory there exist a quasi-projective variety Y and
an affine morphism f : (G/P)%/ — Y such that every fibre of f is an orbit of T
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([18], Thm. 1.10 (iii)). Since the stabilizers of all k-points of (G/P)f are trivial,
Lemma 1.1 implies that f : (G/P)3/ — Y is a torsor under 7. The smoothness of
Y follows from the smoothness of (G/P),, since a torsor is locally trivial in étale
topology. QED

Theorem 2.7 Assume that the root system R is simply laced, and the pair (R,w)
is mot in the list (3). Then the only invertible reqular functions on (G/P)$ are
constants, so that f : (G/P)*) =Y is a universal torsor.

Proof By Lemma 2.6 we need to show that Pic7 = 0 and k[T]* = k for T =
(G/P)s! (see Section 1). The Picard group of (G/P), is trivial since that of G/P
is generated by the class of a hyperplane section. Thus it suffices to show that the
complement to (G/P)3/ in (G/P), has codimension at least 2. The set of unstable
points has codimension at least 2, by Proposition 2.4. The closed subset of its
complement consisting of the stable points with non-trivial (finite) stabilizers in T,
also has codimension at least 2, as follows from Corollary 2.3. QED

3 Hermitian symmetric pairs

Let g be a semisimple Lie algebra over the field k£ with Chevalley basis {Hg, X},
where 7 is a root of R, and Hz = [X, X_g|, where § is a simple root of R.

A simple root « of g defines a Z-grading on g in the following way. We set
deg(X,) =1, deg(X_,) = —1, deg(X15) = 0 for all other simple roots 3 # «, and
deg(Hgs) = 0 for all simple roots 3. Then

I(a)
(o)

i=—l(«

where [(«) is the label of a, that is, the coefficient of « in the decomposition of the
maximal root as a linear combination of the simple roots. The Lie algebra p = ®;>0g;
is the parabolic subalgebra defined by «, and n = @;-¢g; is the complementary
nilpotent algebra. The centre of the Lie algebra gy is one-dimensional, so that
go = Z(g0) ® ¢/, where g’ is the semisimple Lie algebra whose Dynkin diagram is
that of g with the node corresponding to a removed.

It is clear from (4) that [(«) = 1 if and only if [n,n] = 0. The following terminology
has its origin in the theory of symmetric spaces, see [13], Ch. VIIIL.

Definition 3.1 The pair (R,a) is a Hermitian symmetric pair if l(a) = 1, or,
equivalently, if n is a commutative Lie algebra.
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If R is simply laced, then (R,«a) is a Hermitian symmetric pair if and only if
R = A,, or if it is one of the following pairs: (D, a;), where i = 1, n — 1 or n,
(Ee, 1), (Es, as), and (E7, az).

We now assume that n is commutative. Our next goal is to explore the impli-
cations of this assumption for the restriction of the g-module V' to the semisimple
subalgebra g’. We write U([) for the universal enveloping algebra of the Lie algebra I,
and S(W) for the symmetric algebra of the vector space W. Since n is commutative
we have U(n) = S(n).

The line kv is a 1-dimensional p-submodule of V| hence the g-module V' is the
quotient of the induced module U(g) ®yy) kv by the submodule generated by X2 v.
(This follows from the construction of V' as the quotient of the Verma module by
the submodule generated by X sv for the simple roots 3 # «, and X% v.) By
the Poincaré-Birkhoff-Witt theorem we have U(g) = U(p) ®x U(n). The line kv
is a trivial g’-module. Therefore, the g’-module U(g) ®y() kv is isomorphic to
U(n) = S(n), so that the finite dimensional vector space V inherits the Z<o-graded
commutative k-algebra structure from S(n), V = @,<V". We turn this grading
into a Z>(-grading by setting V,, = V~". Since g’ has grading 0, the direct sum
V = ®,>0V, is the direct sum of g’-modules, and we can write

V=kodnd 57(n)/Sn)U(g") X2,
where k£ = Vo, n = V;. Note that 1 € V} is a highest weight vector; it generates V'
as a S(n)-module.

Lemma 3.2 Let (R,«a) be a Hermitian symmetric pair. Then the adjoint represen-
tation of ¢’ on Vi = n = g_1 is the irreducible representation such that X_, is a
highest weight vector. If R is simply laced, then the highest weight W' of V1 is the
sum of the fundamental weights corresponding to the nodes of the Dynkin diagram
of R adjacent to the node a.

Proof We have [Xg, X_,| = 0 for all simple roots  # «, so that X_, is annihilated
by the positive roots of g’. Every root of n is the sum of —a and a root of g, so
that n is generated by X_, as a g’-module. The computation of the weight of X _,,

is immediate from the defining relations among the elements of the Chevalley basis.
QED

We have the exponential map

1 1
exp : n— S(n), exp(u):1+u+§u2+§u3+...

Let G be the simply connected semisimple algebraic k-group with Lie algebra g,
P C G the parabolic subgroup with Lie algebra p, and N the unipotent k-group
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with Lie algebra n. By the Chevalley construction of the Lie group from its Lie
algebra, N acts on V' by the rule 1+ x — exp(x). Recall that the open Schubert cell
of G/P C P(V) is the N-orbit of the highest weight vector, and hence is identified
with exp(n). (In particular, dimG/P = dimVj.) Thus exp(x) is a polynomial
G'-equivariant map

exp: Vi = (G/P), CV = @0V

Let p : Vi = n — V; be the degree 2 graded component of exp(x).

Lemma 3.3 Let G’ be the simply connected semisimple k-group with the Lie alge-
bra g', and P' C G’ the parabolic subgroup which is the stabilizer of the line spanned
by the highest weight vector X_, € n. The restriction of exp(z) to (G'/P'), coin-
cides with (1,id, 0,0,...). We have (G'/P"), = p~*(0), and the ideal of (G'/P'), is
generated by the coordinates of p(x).

Proof It is clear that every graded component of exp(z) of degree at least 2 sends the
orbit (G'/P"), of the highest weight vector X_, to 0. Indeed, X™ is in the kernel
of the natural map S™(n) — V,,, for m > 2 . To prove the second statement let us
observe that the symmetric square S?(n) decomposes as the direct sum of V5 and
the g’-submodule generated by X2, which is the irreducible representation V (2w')
with highest weight 2w'. It is well known ([14], proof of Thm. 1.1, or [1], Prop. 4.2)
that the orbit of the highest weight vector is the intersection of the second Veronese

embedding with V' (2w'). This completes the proof. QED

Consider the following series of root systems:
A, C Dy C E¢ C Ef. (5)
Let (R, a) be one of the Hermitian symmetric pairs

(A4,Oz3), (D57a5)’ (E67 0‘6)’ (E7’ 0‘7)a (6)

where the roots are numbered as in [2]. By Lemma 3.2 the pair (G’, P’) is defined by
(R, /) which is the previous pair to (R,«a) in (6). In other words, P’ corresponds
to the only node of the smaller diagram adjacent to .. (If G is of type A4, then G’
is of type A x Ay, G'/P' ~ P! x P2, but we shall not have to consider this case.)

We note that the fundamental weight w dual to « is minuscule, that is, the
weights of V' are Ww, and Ww is a basis of V' (see [2], VIIL.7.3). We also note that
the G-module V' defined by w is faithful (this follows from the fact that w generates
P(R)/Q(R), which can be checked from the tables). Thus the faithful representation
of G in V defines a faithful representation of G’, and this implies that G’ C G (in
fact, G’ is the Levi subgroup of P).

Let us identify the graded components of V' in various cases. Let d, = dim V. We
have
d4 — 10, d5 - 16, d6 — 27, d7 - 56
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The details given below show that for » = 4,5,6 the graded components of exp(x)
of degree at least 3 are zero.

Let R = A,. Then G = SL(5), and G/P is the Grassmannian G(2,5). Let
us denote by E, the standard n-dimensional representation of SL(n). We have
V = A*(Es), dimV = 10 = 1 + 6 + 3. The group G’ = SL(2) x SL(3) is embedded
into SL(5) in the obvious way, and the graded factors of V are V; = Ey ® Ej,
Vo = A?(E3) = Ej;. The map p: Vi — V5 sends z to the A%(E3)-component of

AN = AZ(E5) = AQ(EQ) D (E2 & Eg) P AQ(Eg)

Let R = D5. Then V is a spinor representation of G = Spin(10) of dimension
16 = 14 10+ 5, and G/P is the isotropic Grassmannian (one of two families of
maximal isotropic subspaces of the non-degenerate quadric of rank 10), dim G/P =
10. The graded components are V; = A*(E5) and Vo = A*(E5) = Ef. The map
p: Vi — Vysends x to x A x.

Let R = Eg. Then dimV = 27 =1+ 16 + 10, V; is the spinor representation of
Spin(10) as above, and V; is the standard 10-dimensional representation of SO(10).
We have dim G/P = 16.

Let R = E;. Then dimV = 56 = 1 4 27 + 27 + 1, V; is the 27-dimensional
representation of the group of type Eg considered above, Vo = (V4)*, and V3 = k is
the trivial 1-dimensional representation. (The graded components of degree at least
4 are zero.) We have dim G/P = 27. We define ¢ : V; = n — V3 = k as the degree
3 graded component of exp(z). This is a Eg-invariant cubic form in 27 variables.
The 27 weight coordinates of p(z) are partial derivatives of ¢(z). This identifies the
space G/ P of type Eg with the singular locus of the cubic hypersurface ¢(z) = 0.

Let us define a symmetric bilinear form p(x,y) on V; with values in V5 by the
formula p(z + y) = p(z) + 2p(z,y) + p(y). Then exp(x + y) = exp(x)exp(y) implies
that

2p(z,y) =z -y (7)

is the product of x € V] and y € V; in the commutative k-algebra V.

We have a decomposition of S?(V;) as the direct sum of V5 and the representation
with highest weight 2w’ (cf. the proof of Lemma 3.3). In the notation of [2] the
representation Vj is irreducible with highest weight wy, in particular, it is minuscule.
Thus the eigenspaces for the action of the maximal torus H' = H N G’ are 1-
dimensional, so that on V5, in the same way as on 1}, we have weight coordinates
well defined up to a multiplicative constant. The coordinates py(x,y) of p(z,y) are
symmetric bilinear forms of degree 2 with values in k. We can write

pA(l',y) = Z PuvZ Y, (8)
A=p+v

where 1 and v are weights of Vi, p,, € k, and z, is a non-zero linear form on
the weight p subspace (V4), C Vi (and similarly for y, ). One checks that for
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r = 4,5,6,7 the ranks of the quadratic forms p,(z) are 4, 6, 8, 10, respectively. If
r = 7 we associate to the cubic form

Z Qe Tplyxe

ptv+£=0

the symmetric trilinear form

‘77 Y, 2 Z QuuelpYv e -
ptr+£=0

In this case the weights of V5 are the negatives of the weights of ;. Moreover,

9q(z)
p*H('T) - axu )
so that
3¢(,0,2) = Y _p-u(@ Wz pou(@y) = D et 9)
© —p=v+E£

For future reference we note that if py(z,y) = 0 for all A\, then ¢(z,y,y) = 0. It
follows from exp(x + y) = exp(x)exp(y) that

3q(w,z,y) = p(z) - y (10)

is the product of p(z) € V, and y € V; in the commutative k-algebra V.

4 G/P and blowing-up

Let 7w : (G/P), — Vi be the restriction to (G/P), of the natural projection V' =
koVieVad Vs — Vi. We have exp(z) = (1, z,p(x), ¢(z)) hence moexp = id. Here
and in what follows we write our formulae for the case r = 7, with the convention
that if » < 7 the last coordinate must be discarded.

We now describe the fibres of .

Lemma 4.1 Let g, = (t,1,t1,¢t72), t € k. Forz € Vi ®; k we have the following
statements.

(a) If x ¢ (G'/P")a, then m~'(z) = {g, - exp(x)|t € k }.
(b) If x € (G'/P"), \ {0}, then

7 Hz) = {(t,2,0,0)|t € &} U{(0,z, 2px(x,u), 3q(z,u,u)|u € Vi @ k}.

Proof Recall that the torus T s generated by the maximal torus H C G and the
scalar matrices (t,t,t,t), t € k. Let h € h be an element of the Lie algebra of
H such that G(h) = 0 for all simple roots 8 of G, 8 # «, and a(h) = 1. The
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1-parameter subgroup G,, C H whose tangent vector at the identity is h, acts on
Voas (t™, ™1 ™2 ¢m3) where m = w(h), and w is the fundamental weight dual
to a. Hence g, € T for any t € k.

Every k-point y = (yo,¥1, y2, y3) of the closed set (G/P), satisfies the equations

voy2 = p(v1), yous = q(1), (11)

since these are satisfied on the affine cone over exp(V;) which is dense in (G/P),.
Therefore, if 7 sends a k-point y of (G/P), to x = yi, and yy # 0, we can write
y =g -(1,z,p(x),q(x)) = g - exp(z) for t = yo € k . All such points are in (G/P),
since the action of T preserves (G/P),, and exp(V;) C (G/P),. If yo = 0 we see
from (11) and Lemma 3.3 that z € (G'/P’),. This proves (a).

To prove (b) assume x € (G'/P')q, v # 0. If yo # 0, then y = (¢,2,0,0), by (11).

We need some preparations for the case yy = 0. Recall that Vj is identified with k
by the choice of a highest weight vector v € V), and V; is identified with n. Consider
g1 = n~, the opposite nilpotent algebra of n. Any non-zero element X € g; sends
V; to V;_1 because of the grading. Hence we can write

exp(Xt) (Yo, Y1, y2,y3) = (Yo + s(y1, X)t + 218 + 2t°, y1 4+ urt + uat®, yo + wt, ys),
where z1, 29 € k, ug, us € V3, w € Vs, and s(y;, X) € k is defined by
s(y1, X)v = Xyv = [X,y1]v.

For any non-zero y; € n ®; k = Vi ® k one can find X € g1 Ok k such that
s(y1, X) = 1. Otherwise giy;v = 0, and so yjv is a highest vector of the g-module

V' ®y k, which is not a multiple of v. This contradicts the irreducibility of V ®y k.

Let us fix such an element X € g; ®y k.
Now let yo = 0. Then

g1 exp(Xt) (0, y1, Y2, y3) = (1 + 21t + 291, y1 + urt + ugt?, yot + wt?, yst?)

is a k[t]-point of (G/P),, and hence its coordinates satisfy (11) identically in ¢.
Equating to 0 the coefficient at ¢ in the first equation in (11) we obtain yo = 2p(y;, u),
where u = u;. Equating to 0 the coefficient at #* in the second equation, and using
that q(y1,y1,v) = 0 for all v € V; (see (9)) we obtain y3 = 3q(y1, u, u).

To complete the proof of (b) we need to show that for any k-point = € (G'/P'),
and any u € V; ®; k the point (0, z,2py(x,u), 3¢(x,u,u)) is contained in (G/P),.
We note that

(0, z, 2p\(z,u),3q(x,u,u)) = exp(u) - (0,z,0,0),

as immediately follows from (7) and (10). Since exp(w) is in the unipotent group
N C G it is enough to show that (0,x,0,0) isin (G/P),. It is clear that (1,z,0,0) =
exp(x) is in (G/P),. Choosing X € g; ®; k as above such that s(z, X) = —1 we
obtain exp(X)(1,z,0,0) = (0,2,0,0). QED
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Corollary 4.2 Let U C (G/P), be the complement to the intersection of (G/P),
with (Vo @ V1) U (Vo @ V3). The restriction of © to U is a morphism U — Vi \ {0},
which is the composition of a torsor under the torus G,, = {g|t € E*}, and the
morphism inverse to the blowing-up of V1 \ {0} at (G'/P"),\ {0}.

Proof The set U is covered by the open subsets Uy : yg # 0, and U, : y) # 0, where
the y, are the weight coordinates in V5. Indeed, if yy = y) = 0 for all A, then we are
in case (b) of Lemma 4.1, but py(z,u) = 0 for all A implies ¢(z,u,u) = 0, and such
points are not in U. Each of these open subsets is G,,-equivariantly isomorphic to
the direct product of G, and the closed subvariety of (G/P), given by y; = 1 with
trivial G,-action. Gluing them together we obtain the quotient U.

The equations (11) show that #71(0) N U = (), thus 7 projects U to V; \ {0}. The
action of G,, preserves the fibres, hence 7 factors through a morphism U — Vi\{0}.
It is an isomorphism outside (G'/P’),, whereas the inverse image of (G'/P’), \ {0}
is the projectivisation of the normal bundle to (G'/P’),\ {0} in V; \ {0}, by Lemma
4.1 (b). It is not hard to prove (and is well known to experts) that this implies that
U is the blowing-up of V; \ {0} at (G'/P"), \ {0}. QED

5 Del Pezzo surfaces

For the geometry of exceptional curves on del Pezzo surfaces the reader is referred

o [16], Ch. IV, see also [10], Sect. 5. Let M,...,M,, 4 < r < 7, be points in
general position in the projective plane P?, which says that no three points are on
a line, and no six points are on a conic. The blowing-up X of P? in M,,..., M,
is called a split del Pezzo surface of degree d = 9 — r. The surface X contains
exactly d, exceptional curves, that is, smooth rational curves with self-intersection
—1. For r < 6 the exceptional curves on X arise in one of these ways: the inverse
images of the M;; the proper transforms of the lines through M; and M;, i # j; the
proper transforms of the conics through five of the M;. For r = 7 one also has the
proper transforms of singular cubics passing through all the 7 points with a double
point at some M;. The intersection index defines an integral bilinear form (.) on
Pic X. The opposite of the canonical class —Kx is an ample divisor, (K%) = d.
The Picard group Pic X = Pic X is generated by the classes of exceptional curves
(the complement to the union of these curves is an open subset of A?). The triple
(Pic X, Kx,(.)) coincides, up to isomorphism, with the triple (N,, K, (.)) defined
as

N, = ®_oZl;, K, = =306+ b, (5)=1, () =-1,i>1, (L)) =0,i#j,

=1

see [16, Thm. 23.9]. Moreover, the exceptional curves are identified with the el-
ements ¢ € N, such that (¢?) = ((.K,) = —1, called the exceptional classes [16,
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Thm. 23.8]. By definition, a geometrically integral conic on X is a smooth rational
curve with self-intersection 0. By Riemann—Roch theorem each conic belongs to a
1-dimensional pencil of curves which are fibres of a morphism X — P!, called a
conic bundle. We refer to the fibres of such a morphism as conics. In particular,
through every point of X passes exactly one conic of a given pencil. The classes of
conic bundles can be characterized by the properties (¢?) =0, (c.K,) = —2.

Let K be the orthogonal complement to K, in N,. The elements o € K- such
that (a?) = —2 form a root system R in the vector space K ® R ~ R" with the
negative definite scalar product (.). In fact, R is a root system of rank r in the
series (5). Moreover, the lattice K- is generated by roots, so that K ~ Q(R). For
example, we can choose

Br=—li+ oy ..., Bror = by + Ly, Br = —Lo+ (1 + ly + {3)

as a basis of simple roots of R. The relation to our standard numeration (which
follows [2]) is this: «, = B,_1, a1 = fi.

The Weyl group W = W(R) generated by the reflections in the roots, is the
automorphism group of the triple (N,, K,,(.)). It operates transitively on the set
of exceptional curves, and also on the set of conic bundle classes, see, e.g. [10,
Lemma 5.3]. Let

PR) = {n € K;* @ R|(n.m) € Z for any m € Q(R)}
be the lattice dual to Q(R); we have Q(R) C P(R). The image of the map
N, - N, @R =RK, @ (K ®R)
is contained in the orthogonal direct sum SZK, & P(R) as a subgroup of index d.

Lemma 5.1 Let « = (,_; € R be the simple root such that (R,a) is one of the
pairs (6), and let w € P(R) be the dual fundamental weight, (c.w) = —1.

(i) The exceptional classes in N, are —:K, +ww, for allw € W.

(ii) Two distinct exceptional curves intersect in X if and only if the corresponding
weights are not adjacent vertices of the conver hull Conv(Ww).

(iii) Let wy be the fundamental weight dual to the root By. The conic bundle classes
i N, are —EK} + wwy, for allw € W.

Note that since W acts transitively on the set of bases, the choice of a basis of
simple roots is not important for the conclusion of this lemma.

Proof (i) and (iii) The image of the exceptional class ¢, in P(R) is the fundamental
weight w = w,_1, and the image of the conic bundle class £y — ¢; is the fundamental
weight w;. The statement now follows from the transitivity of action of W on these
classes. Cf. [10, Lemma 5.2].
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(ii) By the transitivity of W on the exceptional classes it is enough to check this
for the classes —%lKT + w and —éKT + x, where x = ww for some w € W. The

intersection index 1 1 1

<_3Kr + . — EKT +w) = 7 + (z.w) (12)
equals —L(x) in the notation of the proof of Proposition 2.4 (with the opposite sign
of the scalar product). In the simply laced case this proof shows that L(z) = 1 when
z =w, L(x) = 0 if z is a vertex of the convex hull Conv(Ww) adjacent to w, and

L(z) < 0 for all other x € Ww. QED

We observe that for any conic bundle class = there exists a conic bundle class y
such that (z.y) = 1. Indeed, by the transitivity of W on conic bundle classes we can
assume that z = ¢y — ¢;. For y = ¢y — {5 we have (z.y) = 1.

6 Main theorem

Let us recall our notation:

(R, @) be the pair in (6) such that R has rank 7;

G is the simply connected semisimple group with a split maximal torus H and a
maximal parabolic subgroup P D H, such that (G, P) is defined by the pair (R, a);

V' is the fundamental representation of G such that P is the stabilizer of the line
spanned by a highest weight vector (this representation is faithful);

T C GL(V) is the torus generated by the image of H in GL(V'), and the scalar
matrices;

Y is the geometric quotient of (G/P)s! C (G/P), with respect to the natural left
action of T

the morphism f : (G/P)$/ — Y is a universal torsor (see Theorem 2.7).

Let A C H be the set of weights of H in V, and let V), C V be the subspace of
weight A, so that V = @,caV). In our case dim V), = 1 (since V' is minuscule, see
Section 3). Let 7y : V — Vj be the natural projections, and let Ly = 7, "(0) be
the weight coordinate hyperplanes. For a subset A C V' we write A* for the set of
points of A outside UyepLy. For a subset B C' Y we write B* for f(f~'(B)*).

We now state our main theorem whose proof occupies the rest of the paper.

Theorem 6.1 Forr = 4, 5, 6 or 7 let My,...,M, be points in general position
in P (no three on a line, no six on a conic). Let X be the blowing-up of P? in
M, ..., M,. There exists an embedding X — Y such that X \ X is the union of
exceptional curves on X. For such an embedding f~1(X) — X is a universal torsor.

We write S7 (V) for the weight x € H subspace of S™(V), and Se(V)* for the dual
space of functions. Let I(7T) C k[V] = S(V*) be the ideal of 7. We shall prove the

following statement from which the main theorem will follow:
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There exists an embedding of a universal torsor T over X into (G/P)$f C V such
that the restriction of f to T is the structure morphism T — X, and f(T*) is the
complement to the union of exceptional curves on X. Moreover, for r < 7 the ideal
I(T*) C k[V*] is generated by the graded components of degree 2 and weight wwy,
for allw e W.

The last statement will be used in the case r = 7, and can be ignored by the
reader interested in the cases » = 5 and r = 6 only. Recall that w; is the highest
weight of a non-trivial irreducible g-module of least dimension.

Proof The proof is by induction on r starting from r» = 4. In this case Y is a del
Pezzo surface of degree 5, G/P is the Grassmannian variety G(3,5) ~ G(2,5), and
G(3,5)% = G(3,5)° is a universal torsor over Y (see [23] or [22, Lemma 3.1.6]). It
is well known that the ideal of G(3,5), C V is generated by the (quadratic) Pliicker
relations, and it is easy to see that their weights are of the form ww;, so that our
statement is true in this case.

Suppose we know the statement for » — 1 > 4. This means that we are given the
following data:

(R, ) is the ‘previous’ pair to (R, a) in (6);

W = W(R/) is the Weyl group;

G’ and P’ are defined by (R’, /), so that (G'/P’), C Vi (see Section 3);

H' = HN G, so that R’ is the root system of G’ with respect to H';

T" C GL(1}) is the torus generated by the image of H' in GL(V}) and the scalars
(T" is also the image of H in GL(14));

x, is a non-zero linear form on the weight u subspace of Vi;

Y is the quotient of (G'/P')s/ by T';

' (G'/P")3 — Y'is a universal torsor;

X’ is the blowing-up of P? in My,..., M, ; (it is a del Pezzo surface of degree
d=8-—r);

an embedding X’ < Y’ satisfying the conditions of the theorem, in particular,

T' = f~YX') — X' is a universal torsor.

The general position assumption implies that M, does not belong to the excep-
tional curves of X’. Thus, by Hilbert’s theorem 90, we can find a k-point z¢g € 7'
such that f'(x¢) = M,.

Let 7 : 7" — Pic X’ be the map defined in Section 1; up to sign 7 coincides
with the type of the torsor f' : 7' — X’ (Lemma 1.2). Since the torsor f’ :
7' — X’ is universal, 7 is an isomorphism of 7" = K[T;]*/K* and Pic X’ as
abelian groups. To account for the duality between vectors and linear forms on
V1 we identify these groups by the isomorphism —7. Recall that the Weyl group
W’ acts on 1" via the normalizer of H' in (', permuting the weights of Vi. By
induction assumption —7 sends these weights bijectively onto the exceptional classes
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in Pic X’. If we transport the action of W’ from 7" to Pic X’ using —7, then the
action of W’ so obtained preserves the intersection index of exceptional curves, see
(12). Thus —7 is a homomorphism of W’-modules, where W’ acts on Pic X’ as the
automorphism group of the triple (N,_1, K,_1,(.)). In particular, —7 identifies the
W’-(co)invariants on both sides (isomorphic to Z). This implies that if x is a weight
of 7" in S™(V1), then the restriction of x to the scalar matrices G,, C 1" coincides
with the intersection index of —7(x) with —Kx/, that is,

(r(x)-Kx1) = n (13)

(the sign is uniquely determined by the fact that effective divisors intersect positively
with —Kx/). The isomorphism —7 also identifies the quotients by the W’-invariants,
that is, P(R’) and H’'. We fix these identifications from now on.

For ¢(x) € SP(V1)*, x € T', we let Cy C X' be the image of the intersection of
T" with the T"-invariant hypersurface ¢(z) = 0. If Cy # X', then the class [Cy] in
Pic X’ is —7(x), and (13) can be written as

We have (see the end of Section 1 for the first equality)
HO(X',0_,) = kT, = Sy /L(T) N SL(Vi)" (15)

Apart from the weights of Vi which correspond to exceptional curves, the following
two cases will be particularly relevant. For n = 2 let A be a weight of 7" in V5. The
restriction of A to H' is ww; € H' = P(R'), where w € W’ (see the end of Section 3).
If ¢ € S}(V1)* is such that Cy # X', then by (14) we see that [Cy] = —2 Ky + wwy,
so Cy is a conic on X’ by Lemma 5.1 (iii). The Riemann-Roch theorem implies that
dim H°(X’,O_,) = 2, where O_, = O(C,) is the invertible sheaf associated to Cj.
Thus I(7") N S2(V1)* has codimension 2 in S3(V;)*. Note that by Lemma 3.3 we
have py(z) € I(T") N S2(Vy)*.

For r =7 and n = 3 the space V3 is a trivial 1-dimensional representation of G’,
hence of weight 0 € H’. Thus for ¢ € S3(V1)* we have [Cy] = —Kx, by (14). If
Cy # X', then C} is a plane section of the cubic surface X’ C P3. The vector space
HO(X',O(Cy)) = HY(X',O(—Kx)) has dimension 4, thus Iy = I(7") N S§(V1)* has
codimension 4 in S3(V})*. It is clear that q(x) € Iy, see, e.g., (10).

The following proposition is a crucial technical step in the proof of our main
theorem.

Proposition 6.2 There exists a non-empty open subset Q(xqg) C (G'/P")) such that

a

for any yo € Qo) we have p(zy yox) ¢ I(T') N S2(V1)* for all weights X of Va,
and q(xg yor) & Iy if r =17.
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Proof We begin with pointing out the following useful fact. Let Ver, be the compo-
sition of the second Veronese embedding V; — S?(V;) with the projection of S?(V;)
to its direct summand S%(V;). By Lemma 3.3, py(z) = 0 is the only quadratic
equation of G’/ P’ of weight A, thus Ver,((G’/P’),) spans a codimension 1 subspace
of S%(V1), namely, the zero set of the linear form py(z) € S3(V})*.

Next, we claim that the quadratic forms py(xg 'yox), 3o € (G'/P')X, span a codi-
mension 1 subspace of S3(V1)*. Using (8) we write

-1 _ YouYov
pA(xO yox)-— Puv Tyy.
- TouTov
_/'L+V

Suppose that for some coefficients c,, we have a linear relation

YouYov
g CuvPuv p— =0.
A=ptv Opt0v

This can be read as a relation with coefficients cu,,pwxaﬂlmayl satisfied by all the
vectors (YouYov), where yo € (G'/P')X and p+ v = A. The set of these vectors
is precisely Ver,((G'/P")). The linear span of Ver,((G'/P’)Y) is the same as the
linear span of Ver,((G'/P’),). By the argument in the beginning of the proof, up to
a multiplicative constant there is only one linear relation satisfied by the elements
of Ver,((G'/P'),), namely the one with coefficients p,,,. Therefore, c,, = x,zo, is
uniquely determined up to a multiplicative constant. This proves our claim. Note
that the linear span under discussion is thus the space of forms vanishing at x,.

It follows that the set of k-points y € (G’/P')X such that py(z,'yz) belongs to
the codimension 2 subspace I(7") N S3(V1)*, is a proper closed subset of (G'/P’)*.
For r < 7 we define (x¢) as the complement to the union of these closed subsets
for all weights A of V5.

Until the rest of the proof we let r = 7. Let Verj : Vi — S3(V1) be the composition
of the natural map Vi — S*(V;) with the projection S*(V;) — S35(V;1). The map
Ver§ sends z = (z,,) to the vector (z,7,m¢), for all u, v, € such that yu+ v + & = 0.
If we write the invariant cubic form (defined up to a scalar multiple) as

¢(x) = Y Guerprae,
ptr+€=0
then it is well known that all the coefficients g,,¢ are non-zero (see, e.g., [9]). Recall
that the singular locus of the cubic hypersurface ¢(x) = 0 is (G'/P’),.

Let L., C S3(V1)* be the subspace of forms vanishing at z together with all their
(first order) partial derivatives. We claim that L,, coincides with the linear span of
the forms q(z; 'you), where gy ranges over (G'/P'),.

Let us prove this claim. The partial derivatives of ¢(x) vanish on (G’'/P’),, hence
q(zy 'you) € Ly, for any yo € (G'/P'),. Thus the linear span of the forms g(zy 'you),
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where yo € (G'/P'),, is contained in L,,. We now prove that these spaces have the
same dimension.

Let f(z) = >, ec0 fuweTutoze be a form in L,,. The partial derivative with
respect to x¢ is 3% ., ¢ fuvezuzy. It vanishes at zo € Vi* if and only if

-1
Le Z fuwet iz, = Z Qe fue * Qe e

ptr=—¢ ptr=—¢

does. Hence (q;jELxO)L is spanned by the 27 vectors (gueTouTo,Toe), Where £ is
fixed, and u, v are arbitrary. Since the coordinates of zy are non-zero, this space
has the same dimension as the space M C S3(V;) spanned by the 27 vectors (gue),
where £ is fixed, and u, v are arbitrary weights satisfying u + v + £ = 0. The fact
that the ideal of (G'/P'), is generated by the partial derivatives of ¢(x), implies
that M* is the linear span of Verj((G’/P'),). We conclude that dim L,, equals the
dimension of this linear span. Since all the coefficients g,,¢ are non-zero, the forms
q(zy'you), where yo € (G'/P"),, span the space of the same dimension. This proves
our claim.

Let us complete the proof of the proposition in the case r = 7. A cubic form
f € S3(Vi)*isin Ly, if and only if f(z) = 0 is singular at xy € V;*. This is the
case if and only if the corresponding hyperplane H; C S3(V;) contains the tangent
space ® to Vers(V}) at the point m = Ver3(zy). We have a commutative diagram
(cf. (15) and (2))

X' — T’ — Vi
I 4 4
PHY(X", O(=Kx1))*) « HYX,O(-Kx))"\{0} = S5(V1)

where the left hand vertical map is the anticanonical embedding of X', and the other
two are Vers. The image of 77 in the 4-dimensional vector space

HY (X', O(=Kx))" = (K[T']N S5(V1)")" = (S5(V1)"/1o)" ~ A" C S5(W1)

is the affine cone X! (without 0) over the cubic surface X' C P3.

By induction assumption I(77%) is generated by its graded components I of
degree 2 and weight A, for all weights A of V5. The weights of V; are the negatives
of the weights of V5, so that x_, I, has degree 3 and weight 0. Since the coordinates
x_y are invertible on 7%, the ideal I(7"*) is generated by its graded component of
degree 3 and weight 0. Hence locally in the neighbourhood 77 of zg the ideal I(7”)
is generated by Iy, that is, by the equations of A* in S3(V}).

This implies that the tangent space Tx: ,, C A*is ® N A*. Thus for any f in a
dense open subset of L,, we have H; NA* = Tx; m. Since X' C IP3 is a smooth cubic
surface, X/ \ Tx: », is dense and open in X|. Therefore, for the general f € L,, we
have X, N Hy # X, so that f ¢ I,. Now the above claim implies the statement of
proposition. QED
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Corollary 6.3 For any k-point yo € Q(zo) and any weight X of V, the closed subset
of T' given by pr(xg yox) = 0 is the preimage f'~*(Cy) of a geometrically integral
k-conic C\ C X' passing through M,. For r = 7 the closed subset of T' given
by q(zy o) = 0, for any yo € Qzo), is the preimage f'~1(Q) of a geometrically
integral cubic k-curve Q with a double point at M, (the intersection of the cubic
surface X' with its tangent plane at M, ).

Proof To check that M, € Cy set x = x¢, then py(xg 'yoz) = pa(yo) = 0 by Lemma
3.3 since yy € (G'/P’),. If the conic C) is not geometrically integral, then its
components must have intersection index 1 with —Kx/, so there are two of them. It
is well known that a curve on X’ has such a property if and only if it is an exceptional
curve. However, M, does not belong to the exceptional curves of X’. Thus C) is
geometrically integral.

If r = 7, by substituting x = xy one shows as before that ) contains M; (the
cubic form ¢ vanishes on G'/P’). Since the py(x) are partial derivatives of ¢(x), and
M, € C), we see that () has a double point at M;. If ) is not geometrically integral,
then it is the union of a geometrically integral conic and an exceptional curve, or the
union of three exceptional curves. In each of these cases the singular point M; C @
will have to lie on an exceptional curve, and this is a contradiction. QED

Corollary 6.4 For any yo € Q(zo) the scheme-theoretic intersection of xy yoT’
and (G'/P'), is the orbit T'y,.

Proof By Lemma 3.3 the ideal of (G'/P’), is generated by p,(x), for all weights A of
V5. As was remarked at the end of Section 5, there exist weights A and v such that
the intersection index of C'y and C, on X' is 1, that is, M, is the scheme-theoretic
intersection C N C,. Thus the orbit 7"y, is the closed subscheme of xj 'y 7" given
by pa(z) = p,(z) = 0, and our statement follows. QED

Let 0 : X = Bly, (X’) — X’ be the morphism inverse to the blowing-up of M,.
Then o induces an isomorphism of X \ c~'(M,) with X'\ M,, and o~!(M,) = PL.
The proper transform of a curve D C X’ is defined as the closure of o=(D \ M,)
in X. The comparison of intersection indices on X’ and X shows that the proper
transforms of the conics C) and the singular cubic @ (for r = 7) are exceptional
curves on X. By comparing the numbers we see that these curves together with
o~Y(M,) and the inverse images of the exceptional curves on X’ give the full set of
exceptional curves on X.

End of proof of Theorem 6.1. Consider the open set U C (G/P), and the morphism
m: U — Vi \ {0}, see Corollary 4.2. Choose any yo € Q(zo), and define T C U as
the ‘proper transform’ of x, LyoT" with respect to 7. Explicitly, 7 C U is defined as
the Zariski closure of

7z YT\ (G'/P)a) = 7 (2 0T\ T'yo),
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where the equality is due to Corollary 6.4. The torus 7" acts on 7', and 7 is T"-
equivariant, hence 7" acts on 7. But G,, = {¢:} (see Lemma 4.1) also acts on T .
The torus 7' is generated by 7" and G,,, = {g;}, so that T" acts on 7.

Corollaries 4.2 and 6.4 imply that the restriction of 7 to T is the composition of
a torsor under G,, = {g;} and the morphism Bly 7/ (25 yoT") — x5 'yoT" inverse to
the blowing-up of the orbit T"y in zy'yo7’. The blowing-up of T"yy in x5 yo T is
naturally isomorphic to the pullback 7' X x» X of the torsor 7/ — X’ to X. This
can be summarized in the following commutative diagram:

T — T/XX/X — X

[ e

7”/ — X/

where the horizontal arrows are torsors under tori, and the vertical arrows are con-
tractions. The composed morphism f : 7 — X is a composition of two torsors
under tori, and hence is an affine morphism whose fibres are orbits of T". Therefore
T is an X-torsor under 7', by Lemma 1.1. We obtain a T-equivariant embedding
T — (G/P),.

For r < 7 we note that I(7*) C k[V*] is generated by I(zy'yy7"*) and the
equations of (G/P),, moreover, for each weight ww;, w € W, there is exactly one
quadratic equation, by Lemma 3.3. The restriction of w; € H = P(R) to H' is again
the weight w; € H' = P(R’). By induction assumption I(77%) is generated by its
graded components of degree 2 of such weights, hence the same is true for (7).

It remains to prove that 7 C (G/P)$/, and that the torsor f : T — X is universal.
The action of T on T is free, so let us show that every point of 7 is stable. We claim
that f sends the weight hyperplane sections of 7 to the exceptional curves on X.
By the results of Section 4 this follows from induction assumption for the weights of
V1, and from Corollary 6.3 for the weights of Vo @ V3. Corollary 6.4 implies that the
highest weight hyperplane z,, = 0 corresponds to o~ 1(M,). By Lemma 5.1 (ii) the
set of exceptional curves of X is identified with the set Ww in such a way that two
distinct exceptional curves intersect in X if and only if the corresponding weights
are not adjacent vertices of the convex hull Conv(Ww). Now Proposition 2.4 implies
that 7 C (G/P)$/. We thus obtain an embedding X < Y.

The pull-back of the torsor (G/P)3/ — Y to X gives rise to the following com-
mutative diagram, where the horizontal arrows represent the types of corresponding
torsors:

T = PicY
J l
T — PicX

The upper horizontal arrow is an isomorphism since the torsor (G/P)$/ — Y is
universal, by Theorem 2.7. Since the exceptional curves on X are cut by divisors on
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Y, the restriction map PicY — Pic X is surjective. However, the ranks of PicY and
Pic X are equal, so this map is an isomorphism. Now it follows from the diagram
that the type of the torsor f : 7 — X is an isomorphism, so that this torsor is
universal as well. The theorem is proved. QED
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