Algebraic number theory

Test 1

18 February, 2011

1. (8 marks; 2 marks for each element)
$1+\sqrt{2}$ has norm -1 , so this is unit.
$2+\sqrt{2}$ has norm 2 so this element is irreducible.
$3+\sqrt{2}$ has norm 7 , so this is also irreducible.
$4+\sqrt{2}=\sqrt{2}(1+2 \sqrt{2})$, where both factors are irreducible, so this element is neither a unit nor an irreducible.
2. (6 marks)
(a) (4 marks) $\beta=\sqrt[3]{p q^{2}}$ is a root of $t^{3}-p q^{2}=0$, so β is an algebraic integer. Since $\beta \in K$ we have $\beta \in \mathcal{O}_{K}$.
$1, \alpha$ and α^{2} form a basis of K as a vector space over \mathbb{Q}. So if $\beta \in \mathbb{Z}[\alpha]$, then β is an integer multiple of α^{2}, which not true.
(b) (2 marks) $\mathbb{Z}[\alpha]$ is not an integrally closed ring, because β is in the field of fractions K of $\mathbb{Z}[\alpha]$, is integral, and yet is not in $\mathbb{Z}[\alpha]$.
3. (6 marks)

Note that $\alpha \beta=p q, \alpha^{2}=p \beta, \beta^{2}=q \alpha$. It follows that $\mathbb{Z}+\mathbb{Z} \alpha+\mathbb{Z} \beta$ is a ring, and is stable under the multiplication by $\alpha+\beta$, which acts as the matrix

$$
\left(\begin{array}{ccc}
0 & p q & p q \\
1 & 0 & q \\
1 & p & 0
\end{array}\right)
$$

Its characteristic polynomial is $t^{3}-3 p q t-p q(p+q)$, so this gives the desired integral dependence relation. (You can also compute with the ring $\mathbb{Z}[\alpha]$ or with $\mathbb{Z}[\beta]$, the result is the same.)

