# Algebraic number theory 

## Test 2

March 12, 2012

You can use any results from lectures without proof.

1. List all quadratic fields of discriminant $D$ such that $|D| \leq 12$. (No proof is required.)

In the next two questions $K=\mathbb{Q}(\sqrt{-13})$.
2. Let $P \subset \mathcal{O}_{K}$ be a prime ideal such that $2 \in P$.
(a) Find two elements $\alpha, \beta \in \mathcal{O}_{K}$ such that $P=(\alpha, \beta)$.
(b) Prove that the class of $P$ in the class group $\mathrm{Cl}(K)$ has order 2.
(c) Deduce that $\mathcal{O}_{K}$ is not a Euclidean domain.
3. Factorise $(1+\sqrt{-13})$ into prime ideals in $\mathcal{O}_{K}$.

