Algebraic number theory

Test 1

18 February, 2011

You can use all statements from lectures or problem sheets without proof.

1. Decide which of the following elements of $\mathbb{Z}[\sqrt{2}]$ are units, irreducibles, or neither (a very brief explanation will suffice):
$1+\sqrt{2}, 2+\sqrt{2}, 3+\sqrt{2}, 4+\sqrt{2}$.
In Questions 2 and $3, p$ and q are prime numbers,
$\alpha=\sqrt[3]{p^{2} q}, \quad \beta=\frac{1}{p} \alpha^{2}, \quad K=\mathbb{Q}(\alpha), \quad \mathbb{Z}[\alpha]=\left\{l+m \alpha+n \alpha^{2} \mid l, m, n \in \mathbb{Z}\right\}$.
2. (a) Prove that $\beta \in \mathcal{O}_{K}$ and $\beta \notin \mathbb{Z}[\alpha]$.
(b) Using the result of part (a) decide if $\mathbb{Z}[\alpha]$ is an integrally closed ring.
3. Find an integral dependence relation for $\alpha+\beta$.
