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6. Kodaira dimension x(X) = 0;

m K. Ueno (1971, 1975).
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(ii) PIC( ) = NS (X) is torsion-free of rank 2%¢ + k(NS (A)).
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(i) Pic®(X) = 0.
(ii PIC( ) = NS (X) is torsion-free of rank 2%¢ + k(NS (A)).

)
(i) HL(X,Z¢) =0V £ # char(k).
(iv) et(X Zy) is torsion-free for any prime ¢ # char(k).
)

(v) & >2= Kx # 0 and contains an effective divisor.(In
particular, X is not Calabi-Yau!)

(vi) The group H(k, Pic(X)) is finite.
(vii) The kernel of H!(k, Pic(X)) — HY(k,NS(Y)) is killed by 2.
(viii) If NS(A) is a trivial [-module, then every element of odd
order in Bri(X) is contained in Bro(X).
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m @g’A does not contain a normal subgroup of index £.
Then ;
- HomFZ(/\%eA[E],,ug)GM =7/t =
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- HOIIl(G&A,Z/E) =0

Therefore Br(A)[¢]" = 0.
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Assume that

= NS (A) = Z;

m /is a prime; ,

m the @&A—module is absolutely simple;

[ G&A does not contain a normal subgroup of index /;
Then |Br(A)| = |Br(X)"| is prime to /.

Here is a more elaborated version.
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—-S,, - the symmetric group on m letters,
—A,, C S, - the alternating group on m letters.

Ex. I. Condition (d) does not hold. (S-Z, 2012). If

— E—elliptic curve over k without CM with

Gal(k(E[2])/k) = GL(2,F;,) = Ss;

-A=EXE.

Then Gal(k(A[2])/k) = Gal(k(E[2])/k) and

there is a Galois-invariant element in Br(A)[2]

that does not come from a Galois-invariant element of H2(A, j5).
—Here H = GL(2,F») = Ss.

So, the condition that H has no normal subgroup of index ¢ cannot
be removed.
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Ex. Il (Z, 1999 - 2004). If
char(k) # 2,3;
f(x) € K[x] is an irreducible separable polynomial of degree
d > 5 such that Gal(f) is either Sy or Ay;
d—1

Cr:= {y? = f(x)} C AZ - hyperelliptic curve, g = ==
J(Cs) its jacobian, a g-dimensional abelian variety over k.

Then the Galois module J(Cr)z is absolutely simple,
End(J(Cr)) = Z, and NS (J(Cf)) = Z.
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If X is the Kummer variety attached to a 2-covering of A, then
Br(X)[2]" = 0.

More!ll If k is a number field and X is everywhere locally soluble,

then X(Ag)Br #£ 0.
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m If X is a projective variety over k we have X(Ax) =[] X(k,),
where v ranges over all places of k.

m The Brauer—Manin pairing X(Ax) x Br(X) — Q/Z is given
by the sum of local invariants of class field theory.

m For a subgroup B C Br(X) we denote by X(Ax)B c X(Ax)
the orthogonal complement to B under this pairing.

The multiplicativity property of Brauer - Manin sets (S-Z, 2014).
X and Y are absolutely irreducible smooth projective varieties /k
= X(Ak)Br(X) % Y(Ak)Br(Y) _ (X % Y)(Ak)Br(XXY)
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Let A be an abelian variety of dimension g > 2;
Let X be the Kummer variety attached to a 2-covering of A;

(S-Z, 2016)
X(Ag) # 0= X(Ay)BrX)(mon=2) - g).

(B. Creutz - B. Viray, 2017)
X (A, BOOR) 2 0 X(APO) £ 0

(S, 2017) Let B be a subgroup of Br(X) such that
X(Ak)B ?é )= X(Ak)B+Br(X)(non—2) 7& 0.
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Degeneration of a spectral sequence at H=?

Our calculation uses the following fact.
Let n be an odd integer. Then there is a canonical decomposition
of abelian groups

HE(Y Z/n) = H*(k, Z/n) & B (k, Hy, (Y, Z/n)) & H(Y, Z/n)"
compatible with the natural action of the involution, so that
HE (Y, Z/n)" = H*(k,Z/n) ® HE(Y, Z/n)",

H2.(Y,Z/n)~ = HY(k, H*(Y,Z/n)).

This allows one to represent elements of Br(X)(non — 2) by
explicit cup-products, and so evaluate them at local points.



