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Plan of the talk

a) Notation;

b) Review finiteness results for abelian and K 3 surfaces;

c) Construction and generalities on Kummer varieties;

d) Examples

Notation
If G - commutative group, n a positive integer=⇒

G [n] ⊂ G - the kernel of multiplication by n in G ;

G [non− n] := {g ∈ Gtors | (ord(g), n) = 1} ⊂ G .

k is a field =⇒we assume char(k) does not divide n and

k̄ is an algebraic closure of k ;

µn ⊂ k̄∗ is the multiplicative group of nth roots of unity;

Γ = Gal(k̄/k) := Aut(k̄/k) is the absolute Galois group of k;

Br(k) is the Brauer group of k (it is a torsion abelian group).
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X smooth absolutely irreducible projective variety over k

X = X ×k k̄;

Br(X ) = H2
ét(X ,Gm) is the Brauer-Grothendieck group of X ;

The group Br(X ) is a Γ-module.

For all n the subgroups Br(X )[n] are finite.

There is a short exact sequence of Γ-modules
0→ Pic(X̄ )/n (= NS (X̄ )/n)→ H2

ét(X̄ , µn)→ Br(X )[n]→ 0.

There are two natural group homomorphisms
α : Br(k)→ Br(X ), β : Br(X )→ Br(X )Γ ⊂ Br(X ).

Let Br0(X ) := α(Br(k)) ⊂ Br(X )
Br1(X ) := ker(β) ⊂ Br(X ).
Then Br0(X ) ⊂ Br1(X ) ⊂ Br(X ).
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Finiteness Theorems

Br0(X ) ⊂ Br1(X ) ⊂ Br(X ).

There are two embeddings:
1.
Br(X )/Br1(X ) ↪→ Br(X )Γ.
2.
Br1(X )/Br0(X ) ↪→ H1(k ,Pic(X̄ )).

⇒

If Pic(X̄ ) is torsion-free
(i.e., Pic0(X̄ ) = 0 and
NS (X̄ ) is torsion-free)
then
Br1(X )/Br0(X ) is finite.

Example X is a K 3 surface.

Remark If k is a number field then Br0(X ) is infinite.
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Finiteness theorems for abelian varieties and K3 surfaces

Theorem (S-Z, 2006, 2014). Suppose that k is finitely generated
over its prime subfield and

X̄ is either an abelian variety,
or a product of curves
and
S is a K 3 surface/k .

⇒

(i) If char(k) = 0, then
the groups Br(X )Γ, Br(S̄)Γ,
Br(X )/Br1(X ) and Br(S)/Br0(S)
are finite.
(ii) If char(k) = p > 0 then
Br(X )Γ[non− p] and
(Br(X )/Br1(X )) [non− p]
are finite.
If p > 2 then Br(S)Γ[non− p] and
(Br(S)/Br0(S)) [non− p]
are finite.

The case p = 2 for K 3 surfaces was settled by Kazuhiro Ito (2017)
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Kummer varieties

Let

A - an abelian variety over k , dim(A) = g ;

At its dual;

n - positive integer that is not divisible by char(k);

A[n] := A(k̄)[n] as a k-group (sub)scheme;

T - a k-torsor for A[2].

Then

Groups A[n] and At [n] are finite free Z/n-modules of rank 2g ;

they have the same order n2g ;

infinite groups A(k̄) and At(k̄) are divisble.

The quotient Y = (A×k T )/A[2] by the diagonal action of
A[2] is the attached 2-covering f : Y → A/A[2] = A induced
by projection A×k T → A.
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1. f : Y → A ⇒ f torsor for A[2], T = {0} × T = f −1(0) ⊂ Y .
2. A acts on Y freely transitively ⇒ Y an A-torsor.
3. Hence, there is an isomorphism of varieties Y ∼= A over k̄.
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5. Let σ : Y ′ → Y be the blow-up of T ⊂ Y . Since ιY : Y → Y
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Y = (A×k T )/A[2]

6. A[2] acts on A by translations⇒ Y is the twisted form of A
defined by a 1-cocycle with coefficients in A[2] representing the
class of T in H1(k ,A[2]).
7. There is an exact sequence of Γ-modules
0 −→ At(k̄) −→ Pic(Y ) −→ NS (Y ) −→ 0.
8. The abelian groups NS (Y ) and NS (A) are isomorphic.
9. Also NS (Y ) ∼= NS (A) as Γ-modules, because translations by
elements of A(k̄) act trivially on NS (A).
10. ιY acts on Pic0(Y ) = At(k̄) as [−1], At(k̄) is divisible
⇒ H0(〈ιY 〉,At(k̄)) = At [2], H1(〈ιY 〉,At(k̄)) = 0.
11. We get an exact sequence of Γ-modules
0 −→ At [2] −→ Pic(Y )ιY −→ NS (Y ) −→ 0.
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Properties of Kummer varieties

Example (V. Nikulin, 1975). g = dim(A) = 2 and T = A[2]⇒ X is
the classical Kummer surface attached to the abelian surface A.

Properties. Let X be a Kummer variety over k = C.
1. X is simply connected;
2. H i (X ,Z) are torsion-free;
3. Betti numbers b0 = b2g = 1, b2i+1 = 0,

b2i =

(
2g
2i

)
+ 22g , where 0 < i < n.

E. Spanier (1956);
4. for g ≥ 1 the canonical class KX = 1

2 (g − 2)[E ]
5. so for g > 2 it contains an effective divisor; (hence X is not

Calabi-Yau!)
6. Kodaira dimension κ(X ) = 0;

K. Ueno (1971, 1975).
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Generalization, k is an arbitrary field, char(k) 6= 2

Proposition (S-Z, 2016). X a Kummer variety chark 6= 2⇒

(i) Pic0(X ) = 0.

(ii) Pic(X ) = NS (X ) is torsion-free of rank 22g + rk(NS (A)).

(iii) H1
ét(X ,Z`) = 0 ∀ ` 6= char(k).

(iv) H2
ét(X ,Z`) is torsion-free for any prime ` 6= char(k).

(v) g > 2⇒ KX̄ 6= 0 and contains an effective divisor.(In
particular, X̄ is not Calabi-Yau!)

(vi) The group H1(k ,Pic(X )) is finite.

(vii) The kernel of H1(k ,Pic(X ))→ H1(k,NS (Y )) is killed by 2.

(viii) If NS (A) is a trivial Γ-module, then every element of odd
order in Br1(X ) is contained in Br0(X ).
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Theorem (S-Z, 2016). X a Kummer variety,

char(k) = 0⇒
morphisms π : Y ′ → X and σ : Y ′ → Y induce isomorphisms of
Γ-modules Br(X )−̃→Br(Y

′
)←̃−Br(Y ) ∼= Br(A).

Comments. Right isomorphism:
–Y is the twist of A by a 1-cocycle with coefficients in A[2],
–the induced action of A[2] on Br(A) is trivial.
– ∀n the whole group A(k̄) acts trivially on the finite group
Br(A)[n], since A(k̄) is divisible and Aut(Br(A)[n]) is finite.
Middle isomorphism:
– the birational invariance of the Brauer group of a smooth and
projective variety over a field of characteristic zero.
Left isomorphism:
– Grothendieck’s results about Brauer groups (including a certain
exact sequence) and the structure of the branch divisor Ē .
Theorem (S-Z, 2016). X Kummer, k finitely generated/ Q ⇒
the groups Br(X )/Br0(X ) and Br(X )Γ are finite.
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Theorem (S-Z, 2016). X Kummer, k finitely generated/ Q ⇒
the groups Br(X )/Br0(X ) and Br(X )Γ are finite.



Theorem (S-Z, 2016). X a Kummer variety, char(k) = 0⇒
morphisms π : Y ′ → X and σ : Y ′ → Y induce isomorphisms of
Γ-modules Br(X )−̃→Br(Y

′
)←̃−Br(Y ) ∼= Br(A).

Comments. Right isomorphism:
–Y is the twist of A by a 1-cocycle with coefficients in A[2],
–the induced action of A[2] on Br(A) is trivial.
– ∀n the whole group A(k̄) acts trivially on the finite group
Br(A)[n], since A(k̄) is divisible and Aut(Br(A)[n]) is finite.
Middle isomorphism:
– the birational invariance of the Brauer group of a smooth and
projective variety over a field of characteristic zero.
Left isomorphism:

– Grothendieck’s results about Brauer groups (including a certain
exact sequence) and the structure of the branch divisor Ē .
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Cohomology and Brauer groups of abelian varieties

k(A[n]) - the field of definition of all points of order n on A;

µn ⊂ k(A[n]) (Serre);

Γ acts on A[n] through finite G̃n,A := Gal(k(A[n])/k);

the Γ-module H2
ét(Ā,Z/n) = HomZ/n(Λ2

Z/nA[n], µn) is the

(free) Z/n-module of alternating bilinear forms on A[n] with
values in µn; ⇒it is actually a G̃n,A-module;

0→ NS (Ā)/n→ HomZ/n(Λ2
Z/nA[n], µn)→ Br(Ā)[n]→ 0.

If NS (Ā) ∼= Z⇒ Γ acts trivially on NS (Ā))⇒

0→ HomZ/n(Λ2
Z/nA[n], µn)Γ/(NS (Ā)/n)→ (Br(Ā)[n])Γ →

H1(G̃n,A,NS (Ā)/n) ∼= Hom(G̃n,A,Z/n).
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If NS (Ā) ∼= Z⇒ Γ acts trivially on NS (Ā))⇒
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If NS (Ā) ∼= Z⇒ Γ acts trivially on NS (Ā))⇒
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0→ HomZ/n(Λ2
Z/nA[n], µn)Γ/(NS (Ā)/n)→ (Br(Ā)[n])Γ →
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Assume that

n = ` is a prime;

NS (Ā) ∼= Z ;

the G̃`,A-module A[`] is absolutely simple;

G̃`,A does not contain a normal subgroup of index `.

Then
– HomF`

(Λ2
F`

A[`], µ`)
G̃`,A = Z/` ⇒

– HomF`
(Λ2

F`
A[`], µ`)

G̃`,A/
(
NS (Ā)/`

)
= 0.

– Hom(G̃`,A,Z/`) = 0

Therefore Br(Ā)[`]Γ = 0.
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Proposition (S-Z, 2016).

Assume that

NS (Ā) ∼= Z;

` is a prime; ,

the G̃`,A-module is absolutely simple;

G̃`,A does not contain a normal subgroup of index `;

Then |Br(Ā)Γ| = |Br(X̄ )Γ| is prime to `.

Here is a more elaborated version.
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Theorem (S-Z, 2016).

Let char(k) = 0, A1, . . . ,An be abelian
varieties over k satisfying the following conditions for each
i = 1, . . . , n.

(a) The fields k(Ai [`]) are linearly disjoint over k;

(b) The Γ-module Ai [`] is absolutely simple;

(c) NS (Ai ) ∼= Z;

(d) ∃Hi ⊂ Gal(k(Ai [`])/k) such that

Hi -module Ai [`] is simple, and absolutely simple when
dim(Ai ) > 1;
@Fi ≤ Hi with [Hi : Fi ] = `.

Let A =
∏n

i=1 Ai .Then
Br(A)[`]Γ = 0.

Moreover, if dim(A) ≥ 2, X is a Kummer, attached to a
2-covering of A ⇒

Br(X )[`]Γ = 0.
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A non-example for this Theorem, ` = 2

–Sm - the symmetric group on m letters,
–Am ⊂ Sm - the alternating group on m letters.

Ex. I. Condition (d) does not hold. (S-Z, 2012). If
– E−elliptic curve over k without CM with
Gal(k(E [2])/k) ∼= GL(2,F2) = S3;
– A = E × E .
Then Gal(k(A[2])/k) = Gal(k(E [2])/k) and
there is a Galois-invariant element in Br(A)[2]
that does not come from a Galois-invariant element of H2(A, µ2).
–Here H = GL(2,F2) = S3.
So, the condition that H has no normal subgroup of index ` cannot
be removed.
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that does not come from a Galois-invariant element of H2(A, µ2).

–Here H = GL(2,F2) = S3.
So, the condition that H has no normal subgroup of index ` cannot
be removed.
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Examples of Ai , ` = 2

Examples of Ai that meet conditions of the Theorem.

Ex. II. (Z, 1999 - 2004). If

1 char(k) 6= 2, 3;

2 f (x) ∈ K [x ] is an irreducible separable polynomial of degree
d ≥ 5 such that Gal(f ) is either Sd or Ad ;

3 Cf := {y 2 = f (x)} ⊂ A2 - hyperelliptic curve, g = d−1
2 ;

4 J(Cf ) its jacobian, a g -dimensional abelian variety over k .

Then the Galois module J(Cf )2 is absolutely simple,
End(J(Cf )) = Z, and NS (J(Cf )) ∼= Z.
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Generalization of this example

Theorem (S-Z, 2016). Let k be a field of characteristic zero.
Let A be the product of Jacobians of the hyperelliptic curves

y 2 = fi (x),
where fi (x) ∈ k[x ], i = 1, . . . , n, is a separable polynomial of
either odd degree di ≥ 5 with Galois group Sdi or Adi ,
or of degree 3 with Galois group S3.
Assume that g =

∑n
i=1(di − 1)/2 ≥ 2 and the splitting fields of

the polynomials fi (x), i = 1, . . . , n, are linearly disjoint over k .

If X is the Kummer variety attached to a 2-covering of A, then
Br(X )[2]Γ = 0.

More!!! If k is a number field and X is everywhere locally soluble,
then X (Ak)Br 6= ∅.



Generalization of this example

Theorem (S-Z, 2016).

Let k be a field of characteristic zero.
Let A be the product of Jacobians of the hyperelliptic curves

y 2 = fi (x),
where fi (x) ∈ k[x ], i = 1, . . . , n, is a separable polynomial of
either odd degree di ≥ 5 with Galois group Sdi or Adi ,
or of degree 3 with Galois group S3.
Assume that g =

∑n
i=1(di − 1)/2 ≥ 2 and the splitting fields of

the polynomials fi (x), i = 1, . . . , n, are linearly disjoint over k .

If X is the Kummer variety attached to a 2-covering of A, then
Br(X )[2]Γ = 0.

More!!! If k is a number field and X is everywhere locally soluble,
then X (Ak)Br 6= ∅.



Generalization of this example

Theorem (S-Z, 2016). Let k be a field of characteristic zero.

Let A be the product of Jacobians of the hyperelliptic curves
y 2 = fi (x),

where fi (x) ∈ k[x ], i = 1, . . . , n, is a separable polynomial of
either odd degree di ≥ 5 with Galois group Sdi or Adi ,
or of degree 3 with Galois group S3.
Assume that g =

∑n
i=1(di − 1)/2 ≥ 2 and the splitting fields of

the polynomials fi (x), i = 1, . . . , n, are linearly disjoint over k .

If X is the Kummer variety attached to a 2-covering of A, then
Br(X )[2]Γ = 0.

More!!! If k is a number field and X is everywhere locally soluble,
then X (Ak)Br 6= ∅.



Generalization of this example

Theorem (S-Z, 2016). Let k be a field of characteristic zero.
Let A be the product of Jacobians

of the hyperelliptic curves
y 2 = fi (x),

where fi (x) ∈ k[x ], i = 1, . . . , n, is a separable polynomial of
either odd degree di ≥ 5 with Galois group Sdi or Adi ,
or of degree 3 with Galois group S3.
Assume that g =

∑n
i=1(di − 1)/2 ≥ 2 and the splitting fields of

the polynomials fi (x), i = 1, . . . , n, are linearly disjoint over k .

If X is the Kummer variety attached to a 2-covering of A, then
Br(X )[2]Γ = 0.

More!!! If k is a number field and X is everywhere locally soluble,
then X (Ak)Br 6= ∅.



Generalization of this example

Theorem (S-Z, 2016). Let k be a field of characteristic zero.
Let A be the product of Jacobians of the hyperelliptic curves

y 2 = fi (x),

where fi (x) ∈ k[x ], i = 1, . . . , n, is a separable polynomial of
either odd degree di ≥ 5 with Galois group Sdi or Adi ,
or of degree 3 with Galois group S3.
Assume that g =

∑n
i=1(di − 1)/2 ≥ 2 and the splitting fields of

the polynomials fi (x), i = 1, . . . , n, are linearly disjoint over k .

If X is the Kummer variety attached to a 2-covering of A, then
Br(X )[2]Γ = 0.

More!!! If k is a number field and X is everywhere locally soluble,
then X (Ak)Br 6= ∅.



Generalization of this example

Theorem (S-Z, 2016). Let k be a field of characteristic zero.
Let A be the product of Jacobians of the hyperelliptic curves

y 2 = fi (x),
where fi (x) ∈ k[x ],

i = 1, . . . , n, is a separable polynomial of
either odd degree di ≥ 5 with Galois group Sdi or Adi ,
or of degree 3 with Galois group S3.
Assume that g =

∑n
i=1(di − 1)/2 ≥ 2 and the splitting fields of

the polynomials fi (x), i = 1, . . . , n, are linearly disjoint over k .

If X is the Kummer variety attached to a 2-covering of A, then
Br(X )[2]Γ = 0.

More!!! If k is a number field and X is everywhere locally soluble,
then X (Ak)Br 6= ∅.



Generalization of this example

Theorem (S-Z, 2016). Let k be a field of characteristic zero.
Let A be the product of Jacobians of the hyperelliptic curves

y 2 = fi (x),
where fi (x) ∈ k[x ], i = 1, . . . , n, is a separable polynomial of

either odd degree di ≥ 5 with Galois group Sdi or Adi ,
or of degree 3 with Galois group S3.
Assume that g =

∑n
i=1(di − 1)/2 ≥ 2 and the splitting fields of

the polynomials fi (x), i = 1, . . . , n, are linearly disjoint over k .

If X is the Kummer variety attached to a 2-covering of A, then
Br(X )[2]Γ = 0.

More!!! If k is a number field and X is everywhere locally soluble,
then X (Ak)Br 6= ∅.



Generalization of this example

Theorem (S-Z, 2016). Let k be a field of characteristic zero.
Let A be the product of Jacobians of the hyperelliptic curves

y 2 = fi (x),
where fi (x) ∈ k[x ], i = 1, . . . , n, is a separable polynomial of
either odd degree di ≥ 5

with Galois group Sdi or Adi ,
or of degree 3 with Galois group S3.
Assume that g =

∑n
i=1(di − 1)/2 ≥ 2 and the splitting fields of

the polynomials fi (x), i = 1, . . . , n, are linearly disjoint over k .

If X is the Kummer variety attached to a 2-covering of A, then
Br(X )[2]Γ = 0.

More!!! If k is a number field and X is everywhere locally soluble,
then X (Ak)Br 6= ∅.



Generalization of this example

Theorem (S-Z, 2016). Let k be a field of characteristic zero.
Let A be the product of Jacobians of the hyperelliptic curves

y 2 = fi (x),
where fi (x) ∈ k[x ], i = 1, . . . , n, is a separable polynomial of
either odd degree di ≥ 5 with Galois group Sdi or Adi ,

or of degree 3 with Galois group S3.
Assume that g =

∑n
i=1(di − 1)/2 ≥ 2 and the splitting fields of

the polynomials fi (x), i = 1, . . . , n, are linearly disjoint over k .

If X is the Kummer variety attached to a 2-covering of A, then
Br(X )[2]Γ = 0.

More!!! If k is a number field and X is everywhere locally soluble,
then X (Ak)Br 6= ∅.



Generalization of this example

Theorem (S-Z, 2016). Let k be a field of characteristic zero.
Let A be the product of Jacobians of the hyperelliptic curves

y 2 = fi (x),
where fi (x) ∈ k[x ], i = 1, . . . , n, is a separable polynomial of
either odd degree di ≥ 5 with Galois group Sdi or Adi ,
or of degree 3

with Galois group S3.
Assume that g =

∑n
i=1(di − 1)/2 ≥ 2 and the splitting fields of

the polynomials fi (x), i = 1, . . . , n, are linearly disjoint over k .

If X is the Kummer variety attached to a 2-covering of A, then
Br(X )[2]Γ = 0.

More!!! If k is a number field and X is everywhere locally soluble,
then X (Ak)Br 6= ∅.



Generalization of this example

Theorem (S-Z, 2016). Let k be a field of characteristic zero.
Let A be the product of Jacobians of the hyperelliptic curves

y 2 = fi (x),
where fi (x) ∈ k[x ], i = 1, . . . , n, is a separable polynomial of
either odd degree di ≥ 5 with Galois group Sdi or Adi ,
or of degree 3 with Galois group S3.

Assume that g =
∑n

i=1(di − 1)/2 ≥ 2 and the splitting fields of
the polynomials fi (x), i = 1, . . . , n, are linearly disjoint over k .

If X is the Kummer variety attached to a 2-covering of A, then
Br(X )[2]Γ = 0.

More!!! If k is a number field and X is everywhere locally soluble,
then X (Ak)Br 6= ∅.



Generalization of this example

Theorem (S-Z, 2016). Let k be a field of characteristic zero.
Let A be the product of Jacobians of the hyperelliptic curves

y 2 = fi (x),
where fi (x) ∈ k[x ], i = 1, . . . , n, is a separable polynomial of
either odd degree di ≥ 5 with Galois group Sdi or Adi ,
or of degree 3 with Galois group S3.
Assume that g =

∑n
i=1(di − 1)/2 ≥ 2

and the splitting fields of
the polynomials fi (x), i = 1, . . . , n, are linearly disjoint over k .

If X is the Kummer variety attached to a 2-covering of A, then
Br(X )[2]Γ = 0.

More!!! If k is a number field and X is everywhere locally soluble,
then X (Ak)Br 6= ∅.



Generalization of this example

Theorem (S-Z, 2016). Let k be a field of characteristic zero.
Let A be the product of Jacobians of the hyperelliptic curves

y 2 = fi (x),
where fi (x) ∈ k[x ], i = 1, . . . , n, is a separable polynomial of
either odd degree di ≥ 5 with Galois group Sdi or Adi ,
or of degree 3 with Galois group S3.
Assume that g =

∑n
i=1(di − 1)/2 ≥ 2 and the splitting fields of

the polynomials fi (x), i = 1, . . . , n,

are linearly disjoint over k .

If X is the Kummer variety attached to a 2-covering of A, then
Br(X )[2]Γ = 0.

More!!! If k is a number field and X is everywhere locally soluble,
then X (Ak)Br 6= ∅.



Generalization of this example

Theorem (S-Z, 2016). Let k be a field of characteristic zero.
Let A be the product of Jacobians of the hyperelliptic curves

y 2 = fi (x),
where fi (x) ∈ k[x ], i = 1, . . . , n, is a separable polynomial of
either odd degree di ≥ 5 with Galois group Sdi or Adi ,
or of degree 3 with Galois group S3.
Assume that g =

∑n
i=1(di − 1)/2 ≥ 2 and the splitting fields of

the polynomials fi (x), i = 1, . . . , n, are linearly disjoint over k .

If X is the Kummer variety attached to a 2-covering of A, then
Br(X )[2]Γ = 0.

More!!! If k is a number field and X is everywhere locally soluble,
then X (Ak)Br 6= ∅.



Generalization of this example

Theorem (S-Z, 2016). Let k be a field of characteristic zero.
Let A be the product of Jacobians of the hyperelliptic curves

y 2 = fi (x),
where fi (x) ∈ k[x ], i = 1, . . . , n, is a separable polynomial of
either odd degree di ≥ 5 with Galois group Sdi or Adi ,
or of degree 3 with Galois group S3.
Assume that g =

∑n
i=1(di − 1)/2 ≥ 2 and the splitting fields of

the polynomials fi (x), i = 1, . . . , n, are linearly disjoint over k .

If X is the Kummer variety attached to a 2-covering of A,

then
Br(X )[2]Γ = 0.

More!!! If k is a number field and X is everywhere locally soluble,
then X (Ak)Br 6= ∅.



Generalization of this example

Theorem (S-Z, 2016). Let k be a field of characteristic zero.
Let A be the product of Jacobians of the hyperelliptic curves

y 2 = fi (x),
where fi (x) ∈ k[x ], i = 1, . . . , n, is a separable polynomial of
either odd degree di ≥ 5 with Galois group Sdi or Adi ,
or of degree 3 with Galois group S3.
Assume that g =

∑n
i=1(di − 1)/2 ≥ 2 and the splitting fields of

the polynomials fi (x), i = 1, . . . , n, are linearly disjoint over k .

If X is the Kummer variety attached to a 2-covering of A, then
Br(X )[2]Γ = 0.

More!!! If k is a number field and X is everywhere locally soluble,
then X (Ak)Br 6= ∅.



Generalization of this example

Theorem (S-Z, 2016). Let k be a field of characteristic zero.
Let A be the product of Jacobians of the hyperelliptic curves

y 2 = fi (x),
where fi (x) ∈ k[x ], i = 1, . . . , n, is a separable polynomial of
either odd degree di ≥ 5 with Galois group Sdi or Adi ,
or of degree 3 with Galois group S3.
Assume that g =

∑n
i=1(di − 1)/2 ≥ 2 and the splitting fields of

the polynomials fi (x), i = 1, . . . , n, are linearly disjoint over k .

If X is the Kummer variety attached to a 2-covering of A, then
Br(X )[2]Γ = 0.

More!!!

If k is a number field and X is everywhere locally soluble,
then X (Ak)Br 6= ∅.



Generalization of this example

Theorem (S-Z, 2016). Let k be a field of characteristic zero.
Let A be the product of Jacobians of the hyperelliptic curves

y 2 = fi (x),
where fi (x) ∈ k[x ], i = 1, . . . , n, is a separable polynomial of
either odd degree di ≥ 5 with Galois group Sdi or Adi ,
or of degree 3 with Galois group S3.
Assume that g =

∑n
i=1(di − 1)/2 ≥ 2 and the splitting fields of

the polynomials fi (x), i = 1, . . . , n, are linearly disjoint over k .

If X is the Kummer variety attached to a 2-covering of A, then
Br(X )[2]Γ = 0.

More!!! If k is a number field and X is everywhere locally soluble,
then

X (Ak)Br 6= ∅.



Generalization of this example

Theorem (S-Z, 2016). Let k be a field of characteristic zero.
Let A be the product of Jacobians of the hyperelliptic curves

y 2 = fi (x),
where fi (x) ∈ k[x ], i = 1, . . . , n, is a separable polynomial of
either odd degree di ≥ 5 with Galois group Sdi or Adi ,
or of degree 3 with Galois group S3.
Assume that g =

∑n
i=1(di − 1)/2 ≥ 2 and the splitting fields of

the polynomials fi (x), i = 1, . . . , n, are linearly disjoint over k .

If X is the Kummer variety attached to a 2-covering of A, then
Br(X )[2]Γ = 0.

More!!! If k is a number field and X is everywhere locally soluble,
then X (Ak)Br 6= ∅.



Brauer-Manin sets, k is a number field.

We write Ak for the ring of adèles of k .

If X is a projective variety over k we have X (Ak) =
∏

X (kv ),
where v ranges over all places of k.

The Brauer–Manin pairing X (Ak)× Br(X )→ Q/Z is given
by the sum of local invariants of class field theory.

For a subgroup B ⊂ Br(X ) we denote by X (Ak)B ⊂ X (Ak)
the orthogonal complement to B under this pairing.

The multiplicativity property of Brauer - Manin sets (S-Z, 2014).
X and Y are absolutely irreducible smooth projective varieties /k
⇒ X (Ak)Br(X ) × Y (Ak)Br(Y ) = (X × Y )(Ak)Br(X×Y )
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the orthogonal complement to B under this pairing.

The multiplicativity property of Brauer - Manin sets (S-Z, 2014).
X and Y are absolutely irreducible smooth projective varieties /k
⇒ X (Ak)Br(X ) × Y (Ak)Br(Y ) = (X × Y )(Ak)Br(X×Y )
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Brauer-Manin sets, k is a number field.

Let A be an abelian variety of dimension g ≥ 2;
Let X be the Kummer variety attached to a 2-covering of A;

1 (S-Z, 2016)
X (Ak) 6= ∅⇒ X (Ak)Br(X )(non−2) 6= ∅;

2 (B. Creutz - B. Viray, 2017)
X (Ak)Br(X ){2} 6= ∅⇒ X (Ak)Br(X ) 6= ∅;.

3 (S, 2017) Let B be a subgroup of Br(X ) such that
X (Ak)B 6= ∅⇒ X (Ak)B+Br(X )(non−2) 6= ∅.
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Degeneration of a spectral sequence at H≤2

Our calculation uses the following fact.

Let n be an odd integer. Then there is a canonical decomposition
of abelian groups

H2
ét(Y ,Z/n) = H2(k ,Z/n)⊕H1(k ,H1

ét(Y ,Z/n))⊕ H2
ét(Y ,Z/n)Γ

compatible with the natural action of the involution, so that

H2
ét(Y ,Z/n)+ = H2(k ,Z/n)⊕ H2

ét(Y ,Z/n)Γ,

H2
ét(Y ,Z/n)− = H1(k ,H1(Y ,Z/n)).

This allows one to represent elements of Br(X )(non− 2) by
explicit cup-products, and so evaluate them at local points.
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