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We report on results of a collaboration

Everything today is joint work with Jennifer Berg.



Brauer–Manin recap

X/k a nice variety over a number field.

H ⊆Br(X ) :=H2
et(X ,Gm)tors gives rise to an obstruction set

X (k)⊆ X (A)H ⊆ X (A) :=∏
v
X (kv )

that contains X (k) (for product topology).



Brauer–Manin recap

Brauer–Manin obstruction to Hasse Principle:

X (A) 6= ; but X (A)H =; for some H ⊆Br(X ).

Brauer–Manin obstruction to Weak Approximation:

X (A) \ X (A)H 6= ; for some H ⊆Br(X ).



A conjecture of Skorobogatov

Conjecture (Skorobogatov, 2009)
The Brauer–Manin obstruction accounts for failures of the Hasse
Principle and Weak Approximation on K3 surfaces.

More precisely, if X/k is a locally soluble K3 surface over a number
field, then

X (k)=X (A)Br(X ).



K3 surface examples
X/k a projective K3 surface over a number field.

H =Br(X )[2] can obstruct the Weak Approximation:

Ï Wittenberg, 2004
Ï Ieronymou, 2010.
Ï Hassett, V.-A., 2011.
Ï Elsenhans, Jahnel, 2013.
Ï Mckinnie, Sawon, Tanimoto, V.-A., 2017.

H =Br(X )[2] can obstruct the Hasse principle:

Ï Martin Bright, 2002.
Ï Hassett, V.-A., 2013.

H =Br(X )[3] or Br(X )[5] can obstruct the Weak Approximation:

Ï Preu, 2013.
Ï Ieronymou–Skorobogatov, 2015.



What about odd torsion and the Hasse Principle?

Question (Ieronymou–Skorobogatov, 2015)
Does there exist a locally soluble K3 surface X/k over a number
field with X (A)Br(X )odd =;?
Theorem (Corn–Nakahara, 2017)
The degree 2 K3 surface X/Q

w2 =−3x6+97y6+97 ·28 ·7z6

is locally soluble. The cyclic algebra

A :=
(
Q(

3p28,ζ3)/Q(ζ3),
w −p−3x3

w +p−3x3

)
∈BrQ(ζ3)(X )

extends to an element of Br(XQ(ζ3)) that gives rise to a
Brauer-Manin obstruction to the Hasse Principle on X .



What about odd torsion in the Brauer group?

The class A in Corn–Nakahara is algebraic.

Recall there is a filtration

Br0(X )︸ ︷︷ ︸
im(Brk→BrX )
constant classes

⊆ Br1(X )︸ ︷︷ ︸
ker(Br(X )→Br(X ))

algebraic classes

⊆Br(X ).

CFT =⇒ X (A)Br0(X ) =X (A), so we often consider the quotients

Br1(X )/Br0(X ) and Br(X )/Br1(X )

when computing Brauer–Manin obstructions.



Ideas in Corn–Nakahara

Invert isomorphism

Br1(X )/Br0(X )
∼−→H1(Gal(Q/Q),Pic(X ))

coming from Hochschild–Serre spectral sequence.

Hardest step: writing down an explicit basis for Pic(X )'Z20:
Ï Use readily available divisors to produce rank 20 sublattice.
Ï Add a special divisor from Dino Festi’s 2016 PhD Thesis.
Ï Check the lattice obtained is saturated using intersection
numbers from extra divisors at primes of supersingular
reduction.



Can odd transcendental classes obstruct HP on a K3?

Theorem (Berg, V.-A., 2018)
There exists a K3 surface X over Q of degree 2, together with an
A ∈Br(X )[3], such that

X (A) 6= ; and X (A)A =;.

Moreover, we have Pic(X )'Z, and hence Br1(X )/Br0(X )= 0.
In particular, there is no algebraic Brauer–Manin to the Hasse
Principle on X .



Can odd transcendental classes obstruct HP on a K3?

How can we find transcendental 3-torsion in Br(X )?

X/C: a complex projective K3 surface with NS(X )=Zh, h2 = 2d .
Let

TX :=NS(X )⊥ ⊆ H2(X ,Z)∼=U3⊕E8(−1)2 =:ΛK3

be the transcendental lattice of X .

Br(X )'T ∗
X ⊗Q/Z, so there is a one-to-one correspondence

{〈α〉 ⊂BrX of order n}
1−1←→ {surjections TX →Z/nZ}

Hence, to α as above, we may associate Tα ⊆TX :

Tα = ker(α : TX →Z/nZ).



Sublattices of index 3 in TX

Theorem (Mckinnie, Sawon, Tanimoto, V.-A., 2017)
Let X be a complex projective K3 surface with PicX ∼=Zh, h2 = 2,
and let α ∈ (BrX )[3]. Then either

1. there is a unique primitive embedding Tα ,→ΛK3. This gives a
degree 18 K3 surface Y associated to the pair (X ,〈α〉); OR

2. Tα(−1)∼= 〈h2,T 〉⊥ ⊆ H4(Y ,Z), where Y is a cubic fourfold of
discriminant 18 (h is the hyperplane class); OR,

3. Tα(−1) is a lattice with discriminant group Z/2Z× (Z/3Z)2.



Cubic fourfolds of discriminant 18
Hence, lattice theory suggests:

Y cubic fourfold of discriminant 18 (X ,〈α〉),

where X is a K3 surface of degree 2 and 〈α〉 ⊂Br(X )[3].

A cubic fourfold of discriminant 18 is a smooth cubic fourfold
Y ⊆P5, together with a rank two saturated lattice

〈h2,T 〉 ⊂H2,2(Y )∩H4(Y ,Z)

of discriminant 18, where h is the hyperplane class,

h2 T

h2 3 0
T 0 6

Hassett, 2000: such fourfolds exist.



Cubic fourfolds of discriminant 18

Hence, lattice theory suggests:

Y cubic fourfold of discriminant 18 (X ,〈α〉),

where X is a K3 surface of degree 2 and 〈α〉 ⊂Br(X )[3].

A cubic fourfold of discriminant 18 is a smooth cubic fourfold
Y ⊆P5, together with a rank two saturated lattice

〈h2,T 〉 ⊂H2,2(X )∩H4(Y ,Z)

of discriminant 18, where h is the hyperplane class,

h2 T

h2 3 6
T 6 18

Hassett, 2000: such fourfolds exist.



What is the surface T?

Theorem (Addington, Hassett, Tschinkel, V.-A., 2016)
A general cubic fourfold Y of discriminant 18 contains an elliptic
ruled surface T of degree 6, and the linear system of quadrics in P5

containing T is 3-dimensional.

Let Q0,Q1,Q2 ∈C[x0, . . . ,x5]2 be a basis for H0(T ,IT (2))

BlT (Y )

��

π

))
Y // P(H0(T ,IT (2))∗)=P2

~x = [x0, . . . ,x5]
� // [Q0(~x),Q1(~x),Q2(~x)]



Fibers of π

Key insight:

General fiber of π : BlT (Y )→P2 is a del Pezzo surface of degree 6.

Geometrically, a dP6 is a blow-up of P2 at 3 non-colinear points.

The locus of fibers that are geometrically blow-ups of P2 at three
distinct colinear points has image a sextic curve under π:

C : f (x ,y ,z)= 0.

The extension K :=C(P2)(
p
f ) splits the two triples of pairwise

skew exceptional curves in the generic fiber S of π.

K is the function field of our K3 surface X of degree 2!



Brauer elements of order 3

Let SK be the (dP6) generic fiber of π base extended to K .

SK contains two triples of pairwise skew exceptional curves:

{E1,E2,E3} and {L−E1−E2,L−E2−E3,L−E1−E3}.

These can be blown-down, respectively, with the morphisms
associated to the linear systems

|L| and |2L−E1−E2−E3|.



Brauer elements of order 3

We get

φ|L| : SK →X1 and φ|2L−E1−E2−E3| : SK →X2

X1 and X2 are Severi-Brauer varieties of dimension 2 over K .

Hence X1 and X2 give rise to two classes A1 and A2 ∈ (BrK )[3].

Proposition (Corn, 2005)
A1A2 = Id in BrK .

Combining work of Corn, Kollár, and [AHTVA], can spread these
classes to our K3 surface X .

We have recovered a pair (X ,
{
Id,A1,A2

}
)!



Brauer elements of order 3: alternatively...

In each smooth fiber S of π, there are two families of twisted
cubics, each one two dimensional, parametrized by

P(H0(S ,OS(L)))=P2 and P(H0(S ,OS(2L−E1−E2−E3)))=P2.

These two P2’s come together over the locus f (x ,y ,z)= 0 of the
base P2 of π.

Let H be the relative Hilbert scheme that parametrizes twisted
cubics in the fibers of π.

The Stein factorization of H →P2 is

H →X →P2

where X is our K3 surface, and H is an étale P2 bundle over X .



Brauer elements of order 3: alternatively...

Hence H gives rise to an element A ∈Br(X ).

Notes:

1. The covering involution ι : X →X sending w 7→ −w induces

ι∗ : Br(X )→Br(X )

sending A 7→A −1, so H actually encodes the group 〈A 〉.

2. If (Y ,T ) are defined over a field k (e.g., a number field), then
so are H and X .



Computing the obstruction

Theorem (Wedderburn)
Every central simple algebra of degree 3 over a field is cyclic.

In principle, can write down cyclic representatives for A1 and A2.

Challenge
Do it.



Computing the obstruction

X (A)A =
{
(Pv ) ∈X (A) :

∑
v
invv A (Pv )= 0

}
.

To produce an example with X (A)A =;, we rig (X ,A ) so that

invv A (Pv )=
{
0 if v 6= 3,

1/3 or 2/3 if v = 3.

Key observation:

invv A (Pv )= 0 if and only if the fiber in H above Pv ∈X (kv ) is a
split P2, i.e., is isomorphic to P2 over kv .



Lang–Nishimura to the rescue

Lemma (Lang–Nishimura)
Let X and Y be birational smooth projective k-varieties. Then

X (k) 6= ; ⇐⇒ Y (k) 6= ;.

The fiber above Pv ∈X (Qv ) is birational to the dP6 fiber of π
above the image of Pv in P2.

Apply Lang-Nishimura: to have inv3 A (P) 6= 0 for all P ∈X (Q3), it
suffices to have BlT (Y )(Q3)=;.

Applying Lang-Nishimura again, it suffices to have Y (Q3)=;.



Construction of the cubic fourfold

Thus, the hardest part of our task is to produce a cubic fourfold
Y /Q of discriminant 18, such that Y (Q3)=;.

Let P5 :=ProjQ[x0,x1,x2,x3,x4,x5], and define quadrics cut out by

Q1 :=−x0x3+x2x3−x0x4+x1x4+3x2x4+5x0x5−x1x5

Q2 :=−x1x3+5x0x4−2x2x4−2x0x5+5x1x5+x2x5

Q3 :=−2x2x3−x0x4−2x1x4−2x2x4+x1x5

Each quadric contains the planes

Π1 = {x0 = x1 = x2 = 0} and Π2 = {x3 = x4 = x5 = 0}.



Construction of the cubic fourfold

The sextic elliptic surface T is obtained by saturating the ideal
〈Q1,Q2,Q3〉 with respect to I (Π1)I (Π2). It is cut out by Q1,Q2,Q3
and the two cubics

2x3
3 +5x2

3x4+x3x
2
4 +14x3

4 −20x2
3x5−26x3x4x5

−11x2
4x5+47x3x

2
5 +30x4x

2
5 +5x3

5 ,

2x3
0 −x2

0x1−2x0x
2
1 −x3

1 +47x2
0x2+10x0x1x2

+x2
1x2−11x0x

2
2 −18x1x

2
2 −4x3

2



Lang-Nishimura to the rescue

The surface T is contained in the cubic fourfold Y cut out by

2x3
0 −x2

0x1−2x0x
2
1 −x3

1 +47x2
0x2+10x0x1x2

+x2
1x2−11x0x

2
2 −18x1x

2
2 −4x3

2 +18x2
0x3+18x0x1x3

+9x2
1x3+18x0x2x3+18x1x2x3+18x2

2x3+9x1x
2
3 +6x3

3

+36x2
0x4+9x0x1x4+18x2

1x4−9x0x2x4+18x1x2x4+18x2
2x4

−27x0x3x4+18x2x3x4+15x2
3x4+27x0x

2
4 −36x2x

2
4 +3x3x

2
4

+42x3
4 −90x2

0x5−72x0x1x5−45x2
1x5−18x1x2x5+36x0x3x5

−45x1x3x5+9x2x3x5−60x2
3x5−54x0x4x5+27x1x4x5−18x2x4x5

−78x3x4x5−33x2
4x5−90x0x

2
5 +141x3x

2
5 +90x4x

2
5 +15x3

5 = 0.

We check that Y (Z/27Z)=;, so Y (Q3)=;.



The K3 surface

The K3 surface X ⊂P(1,1,1,3) is given by

w2 = 17279788x6+21966980x5y +5209685x4y2−10091766x3y3

−9449085x2y4−3512294xy5−510755y6+81563000x5z

+46799342x4yz −48304566x3y2z −68669390x2y3z −29936552xy4z

−4960696y5z +132675265x4z2−24537700x3yz2−153420566x2y2z2

−94604246xy3z2−18001746y4z2+88262884x3z3−116707356x2yz3

−139178230xy2z3−36604266y3z3+12231034x2z4−90599148xyz4

−40695955y2z4−11073000xz5−22207274yz5−3652475z6.

We show Pic(X )'Z. Hence Br1(X )/Br0(X )= 0.



Primes of bad reduction of Y

3, 5, 29, 2851, 1647622003,

8990396491695741359,

381640024919828593698301,

2329843929357212310902171133509290569012
6256356826741414312843163784586626801847,

7063057306288478297872948874470665724682
4151776978742375050861454515493652288934
3534041032125651313541554759455608434088
0768251657255814972524891.



Main Theorem

Theorem (Berg, V.-A., 2018)
There exists a K3 surface X over Q of degree 2, together with an
A ∈Br(X )[3], such that

X (A) 6= ; and X (A)A =;.

Moreover, we have Pic(X )'Z, and hence Br1(X )/Br0(X )= 0.
In particular, there is no algebraic Brauer–Manin to the Hasse
Principle on X .



A question

Definition (Creutz–Viray, 2017)
Let X be smooth projective geometrically integral variety over a
number field k . We say degrees capture the Brauer-Manin
obstruction on X if for any d that is the degree of a k-rational
globally generated ample line bundle on X , we have

X (A)Br(X ) =; =⇒ X (A)Br(X )[d ] =;.

Question
The surface X/Q in Berg–V.-A. has a Q-rational globally generated
ample line bundle of degree 32. Is it true that

X (A)Br(X )[2∞] =;?


