Index of fibrations and Brauer classes that never obstruct the Hasse principle

Masahiro Nakahara

Rice University
mn24@rice.edu

May 2, 2018

Hasse Principle

k number field.
k_{v} completion of k at a place v.

Hasse Principle

k number field.
k_{v} completion of k at a place v. X smooth projective variety over k.

$$
X(k) \subset X(\mathbb{A}):=\prod X\left(k_{v}\right)
$$

Hasse Principle

k number field.
k_{v} completion of k at a place v.
X smooth projective variety over k.

$$
X(k) \subset X(\mathbb{A}):=\prod_{v} X\left(k_{v}\right)
$$

Hasse principle

A collection \mathcal{C} of varieties is said to satisfy the Hasse principle if

$$
X(\mathbb{A}) \neq \emptyset \Longrightarrow X(k) \neq \emptyset
$$

for all $X \in \mathcal{C}$.

Brauer-Manin obstruction

Lind-Reichardt (1941): $2 z^{2}=x^{4}-17 y^{4}$ fails the Hasse principle.

Brauer-Manin obstruction

Lind-Reichardt (1941): $2 z^{2}=x^{4}-17 y^{4}$ fails the Hasse principle.
$\operatorname{Br}(X):=\mathrm{H}_{\text {êt }}^{2}\left(X, \mathbb{G}_{m}\right)_{\text {tors }}$ Brauer group of X. Brauer-Manin pairing:

$$
\text { ev: } \operatorname{Br}(X) \times X(\mathbb{A}) \rightarrow \mathbb{Q} / \mathbb{Z}
$$

Brauer-Manin obstruction

Lind-Reichardt (1941): $2 z^{2}=x^{4}-17 y^{4}$ fails the Hasse principle.
$\operatorname{Br}(X):=\mathrm{H}_{\text {êt }}^{2}\left(X, \mathbb{G}_{m}\right)_{\text {tors }}$ Brauer group of X. Brauer-Manin pairing:

$$
\mathrm{ev}: \operatorname{Br}(X) \times X(\mathbb{A}) \rightarrow \mathbb{Q} / \mathbb{Z}
$$

For each subset $H \subseteq \operatorname{Br}(X)$ one can define the obstruction set

$$
X(\mathbb{A})^{H}:=\{P \in X(\mathbb{A}) \mid \operatorname{ev}(\mathcal{A}, P)=0 \forall \mathcal{A} \in H\}
$$

such that

$$
X(k) \subset X(\mathbb{A})^{H} \subset X(\mathbb{A})
$$

Brauer-Manin obstruction

Lind-Reichardt (1941): $2 z^{2}=x^{4}-17 y^{4}$ fails the Hasse principle.
$\operatorname{Br}(X):=\mathrm{H}_{\text {êt }}^{2}\left(X, \mathbb{G}_{m}\right)_{\text {tors }}$ Brauer group of X. Brauer-Manin pairing:

$$
\mathrm{ev}: \operatorname{Br}(X) \times X(\mathbb{A}) \rightarrow \mathbb{Q} / \mathbb{Z}
$$

For each subset $H \subseteq \operatorname{Br}(X)$ one can define the obstruction set

$$
X(\mathbb{A})^{H}:=\{P \in X(\mathbb{A}) \mid \operatorname{ev}(\mathcal{A}, P)=0 \forall \mathcal{A} \in H\}
$$

such that

$$
X(k) \subset X(\mathbb{A})^{H} \subset X(\mathbb{A})
$$

If $X(\mathbb{A})^{H}=\emptyset$ but $X(\mathbb{A}) \neq \emptyset$ then we say there is a Brauer-Manin obstruction (to the Hasse principle) given by H.

Properties of the obstruction sets

If $H_{1} \subseteq H_{2}$ then $X(\mathbb{A})^{H_{1}} \supseteq X(\mathbb{A})^{H_{2}}$.

Properties of the obstruction sets

If $H_{1} \subseteq H_{2}$ then $X(\mathbb{A})^{H_{1}} \supseteq X(\mathbb{A})^{H_{2}}$.
Define $\operatorname{Br}_{0}(X):=\operatorname{im}(\operatorname{Br}(k) \rightarrow \operatorname{Br}(X))$ (constant algebras).

$$
X(\mathbb{A})^{\mathrm{Br}_{0}(X)}=X(\mathbb{A})
$$

One often considers the quotient $\operatorname{Br}(X) / \operatorname{Br}_{0}(X)$ for Brauer-Manin obstructions.

Investigating the obstruction

Challenges in computing $X(\mathbb{A})^{\mathrm{Br}}$:

- The quotient $\operatorname{Br}(X) / \operatorname{Br}_{0}(X)$ can be large.
- Need to compute evaluation maps $\operatorname{ev}(\mathcal{A},-)$ for any $\mathcal{A} \in \operatorname{Br}(X)$.

Investigating the obstruction

Challenges in computing $X(\mathbb{A})^{\mathrm{Br}}$:

- The quotient $\operatorname{Br}(X) / \operatorname{Br}_{0}(X)$ can be large.
- Need to compute evaluation maps ev $(\mathcal{A},-)$ for any $\mathcal{A} \in \operatorname{Br}(X)$.

Many counterexamples to the Hasse principle explained by a Brauer-Manin obstruction require only one element $\mathcal{A} \in \operatorname{Br}(X)$, i.e., $X(\mathbb{A})^{\mathcal{A}}=\emptyset$.

Investigating the obstruction

Challenges in computing $X(\mathbb{A})^{\mathrm{Br}}$:

- The quotient $\operatorname{Br}(X) / \operatorname{Br}_{0}(X)$ can be large.
- Need to compute evaluation maps ev $(\mathcal{A},-)$ for any $\mathcal{A} \in \operatorname{Br}(X)$. Many counterexamples to the Hasse principle explained by a Brauer-Manin obstruction require only one element $\mathcal{A} \in \operatorname{Br}(X)$, i.e., $X(\mathbb{A})^{\mathcal{A}}=\emptyset$.

Question

Is there a subset $H \subset \operatorname{Br}(X)$ that is irrelevant to the Brauer-Manin obstruction?

Investigating the obstruction

Given $n \in \mathbb{Z}, \operatorname{Br}(X)\left[n^{\perp}\right]=$ subgroup of elements whose order is prime to n.

Investigating the obstruction

Given $n \in \mathbb{Z}, \operatorname{Br}(X)\left[n^{\perp}\right]=$ subgroup of elements whose order is prime to n.

Question

Given a class \mathcal{C} of varieties over k, does there exist $n \in \mathbb{Z}$ such that $\operatorname{Br}(X)\left[n^{\perp}\right]$ never gives a Brauer-Manin obstruction? i.e., $X(\mathbb{A}) \neq \emptyset \Longrightarrow X(\mathbb{A})^{\operatorname{Br}(X)\left[n^{\perp}\right]} \neq \emptyset$?

Investigating the obstruction

Given $n \in \mathbb{Z}, \operatorname{Br}(X)\left[n^{\perp}\right]=$ subgroup of elements whose order is prime to n.

Question

Given a class \mathcal{C} of varieties over k, does there exist $n \in \mathbb{Z}$ such that $\operatorname{Br}(X)\left[n^{\perp}\right]$ never gives a Brauer-Manin obstruction? i.e., $X(\mathbb{A}) \neq \emptyset \Longrightarrow X(\mathbb{A})^{\operatorname{Br}(X)\left[n^{\perp}\right]} \neq \emptyset$?

A similar question $\left(X(\mathbb{A})^{\operatorname{Br}}=\emptyset \Longrightarrow X(\mathbb{A})^{\operatorname{Br}(X)\left[n^{\infty}\right]}=\emptyset\right.$?) was asked by Creutz and Viray (2017) where they focused on the case where n is the degree of the variety.

For cubic surfaces, we have the following answer

Theorem (Swinnerton-Dyer 1993)

Let X be a smooth cubic surface over a number field k. The possibilities for $\operatorname{Br}(X) / \operatorname{Br}_{0}(X)$ are

$$
\{1\}, \mathbb{Z} / 3 \mathbb{Z},(\mathbb{Z} / 3 \mathbb{Z})^{2}, \mathbb{Z} / 2 \mathbb{Z},(\mathbb{Z} / 2 \mathbb{Z})^{2}
$$

Moreover, $X(\mathbb{A}) \neq \emptyset \Longrightarrow X(\mathbb{A})^{\operatorname{Br}(X)\left[3^{\perp}\right]} \neq \emptyset$.

For cubic surfaces, we have the following answer

Theorem (Swinnerton-Dyer 1993)

Let X be a smooth cubic surface over a number field k. The possibilities for $\operatorname{Br}(X) / \operatorname{Br}_{0}(X)$ are

$$
\{1\}, \mathbb{Z} / 3 \mathbb{Z},(\mathbb{Z} / 3 \mathbb{Z})^{2}, \mathbb{Z} / 2 \mathbb{Z},(\mathbb{Z} / 2 \mathbb{Z})^{2}
$$

Moreover, $X(\mathbb{A}) \neq \emptyset \Longrightarrow X(\mathbb{A})^{\operatorname{Br}(X)\left[3^{\perp}\right]} \neq \emptyset$.
Other rational surfaces?

Rational surfaces

The question is invariant under birational morphisms for smooth projective surfaces: $X \xrightarrow{\text { bir }} Y$ then $X(\mathbb{A})^{\operatorname{Br}(X)\left[n^{\perp}\right]} \neq \emptyset \Longleftrightarrow Y(\mathbb{A})^{\operatorname{Br}(Y)\left[n^{\perp}\right]} \neq \emptyset$.

Rational surfaces

The question is invariant under birational morphisms for smooth projective surfaces: $X \xrightarrow{\text { bir }} Y$ then $X(\mathbb{A})^{\operatorname{Br}(X)\left[n^{\perp}\right]} \neq \emptyset \Longleftrightarrow Y(\mathbb{A})^{\operatorname{Br}(Y)\left[n^{\perp}\right]} \neq \emptyset$.

So consider minimal rational surfaces. We can classify minimal rational surfaces over a number field into the following:
(1) Quadric surfaces
(2) Conic bundle over a rational curve
(3) Del Pezzo surfaces of degree $1 \leq d \leq 9$

Rational surfaces

The question is invariant under birational morphisms for smooth projective surfaces: $X \xrightarrow{\text { bir }} Y$ then $X(\mathbb{A})^{\operatorname{Br}(X)\left[n^{\perp}\right]} \neq \emptyset \Longleftrightarrow Y(\mathbb{A})^{\operatorname{Br}(Y)\left[n^{\perp}\right]} \neq \emptyset$.

So consider minimal rational surfaces. We can classify minimal rational surfaces over a number field into the following:
(1) Quadric surfaces
(2) Conic bundle over a rational curve
(3) Del Pezzo surfaces of degree $1 \leq d \leq 9$

When X is either (1) or (2) above, it is well known that $\operatorname{Br}(X) / \operatorname{Br}_{0}(X)$ is a 2-torsion group. So $\operatorname{Br}(X)\left[2^{\perp}\right]$ does not give a Brauer-Manin obstruction (trivially).
Note that here X has an ample divisor of even degree.

del Pezzo surfaces

Divide into cases based on degree d.

del Pezzo surfaces

Divide into cases based on degree d.

- $(5 \leq d \leq 9)$ Satisfies the Hasse principle

del Pezzo surfaces

Divide into cases based on degree d.

- $(5 \leq d \leq 9)$ Satisfies the Hasse principle
- $(d=4) \operatorname{Br}(X) / \operatorname{Br}_{0}(X)$ is 2-torsion group

del Pezzo surfaces

Divide into cases based on degree d.

- $(5 \leq d \leq 9)$ Satisfies the Hasse principle
- ($d=4) \operatorname{Br}(X) / \operatorname{Br}_{0}(X)$ is 2-torsion group
- $(d=3)$ Cubic surface (Swinnerton-Dyer's result)

del Pezzo surfaces

Divide into cases based on degree d.

- $(5 \leq d \leq 9)$ Satisfies the Hasse principle
- $(d=4) \operatorname{Br}(X) / \operatorname{Br}_{0}(X)$ is 2-torsion group
- $(d=3)$ Cubic surface (Swinnerton-Dyer's result)
- $(d=1)$ Always has a rational point

del Pezzo surfaces

Divide into cases based on degree d.

- $(5 \leq d \leq 9)$ Satisfies the Hasse principle
- $(d=4) \operatorname{Br}(X) / \operatorname{Br}_{0}(X)$ is 2-torsion group
- $(d=3)$ Cubic surface (Swinnerton-Dyer's result)
- $(d=1)$ Always has a rational point

In the remaining case of del Pezzo surfaces of degree 2, the possible $\operatorname{Br}(X) / \operatorname{Br}_{0}(X)$ are as follows (Corn 2007):

$$
\begin{gathered}
\{1\}, \mathbb{Z} / 3 \mathbb{Z},(\mathbb{Z} / 3 \mathbb{Z})^{2},(\mathbb{Z} / 2 \mathbb{Z})^{s}(1 \leq s \leq 6) \\
\mathbb{Z} / 4 \mathbb{Z} \times(\mathbb{Z} / 2 \mathbb{Z})^{t}(0 \leq t \leq 2),(\mathbb{Z} / 4 \mathbb{Z})^{2}
\end{gathered}
$$

Main result

The index of a variety X / k is the gcd of all degrees of extensions K / k where X has a K-point.

Main result

The index of a variety X / k is the gcd of all degrees of extensions K / k where X has a K-point.
We say that a variety Y / k satisfies property $(Z C)$ if for any field extension K / k and $Q \in Y(K)$, the natural map $Y(K) \rightarrow A_{0}\left(Y_{K}\right)$ given by $P \mapsto(P)-(Q)$ is surjective. E.g., smooth projective curves of genus 1 and k-rational varieties.

Main result

The index of a variety X / k is the gcd of all degrees of extensions K / k where X has a K-point.
We say that a variety Y / k satisfies property $(Z C)$ if for any field extension K / k and $Q \in Y(K)$, the natural map $Y(K) \rightarrow A_{0}\left(Y_{K}\right)$ given by $P \mapsto(P)-(Q)$ is surjective. E.g., smooth projective curves of genus 1 and k-rational varieties.

Theorem (N 2017)

Let $\pi: X \rightarrow Z$ be a morphism of smooth projective geometrically integral varieties over a number field k. Suppose Z satisfies weak approximation and a Zariski dense set of the fibers of π satisfy (ZC). Suppose that the generic fiber over $k(Z)$ has index d. If $B \subset \operatorname{Br}(X)$ is a subset such that $X(\mathbb{A})^{B} \neq \emptyset$, then $X(\mathbb{A})^{B+\operatorname{Br}(X)\left[d^{\perp}\right]} \neq \emptyset$.

Applications

Any deg 2 del Pezzo X over number field k can be given by equation

$$
w^{2}=f(x, y, z)
$$

in $\mathbb{P}[2,1,1,1]$, where $f \in k[x, y, z]$ is homogeneous quartic.

Applications

Any deg 2 del Pezzo X over number field k can be given by equation

$$
w^{2}=f(x, y, z)
$$

in $\mathbb{P}[2,1,1,1]$, where $f \in k[x, y, z]$ is homogeneous quartic.

$$
\begin{aligned}
& \pi([w: x: y: z])=[y: z] \\
& \beta \text { blow up along the } \pi \text {-indeterminacy. } \\
& \widetilde{\pi} \text { genus } 1 \text { fibration with generic fiber } \\
& \text { index } d \mid 2 \text {. }
\end{aligned}
$$

Applications

Any deg 2 del Pezzo X over number field k can be given by equation

$$
w^{2}=f(x, y, z)
$$

in $\mathbb{P}[2,1,1,1]$, where $f \in k[x, y, z]$ is homogeneous quartic.

$$
\begin{aligned}
& \pi([w: x: y: z])=[y: z] \\
& \beta \text { blow up along the } \pi \text {-indeterminacy. } \\
& \widetilde{\pi} \text { genus } 1 \text { fibration with generic fiber } \\
& \text { index } d \mid 2 \text {. }
\end{aligned}
$$

Corollary

X deg 2 del Pezzo surface over number field k, then $X(\mathbb{A}) \neq \emptyset \Longrightarrow X(\mathbb{A})^{\operatorname{Br}(X)\left[2^{\perp}\right]} \neq \emptyset$.

Applications

A smooth diagonal quartics in \mathbb{P}_{k}^{3} is defined by

$$
a x^{4}+b y^{4}+c z^{4}+d w^{4}=0,
$$

where $a, b, c, d \in k^{\times}$.

Applications

A smooth diagonal quartics in \mathbb{P}_{k}^{3} is defined by

$$
a x^{4}+b y^{4}+c z^{4}+d w^{4}=0
$$

where $a, b, c, d \in k^{\times}$.
Theorem (leronymou-Skorobogatov 2015)
Let X be a smooth diagonal quartic over \mathbb{Q}. Then $X(\mathbb{A}) \neq \emptyset \Longrightarrow X(\mathbb{A})^{\operatorname{Br}(X)\left[2^{\perp}\right]} \neq \emptyset$.

Applications

A smooth diagonal quartics in \mathbb{P}_{k}^{3} is defined by

$$
a x^{4}+b y^{4}+c z^{4}+d w^{4}=0
$$

where $a, b, c, d \in k^{\times}$.
Theorem (leronymou-Skorobogatov 2015)
Let X be a smooth diagonal quartic over \mathbb{Q}. Then $X(\mathbb{A}) \neq \emptyset \Longrightarrow X(\mathbb{A})^{\operatorname{Br}(X)\left[2^{\perp}\right]} \neq \emptyset$.

Corollary

Let X be a smooth diagonal quartic over a number field k, with abcd $\in k^{\times 2}$. If $B \subset \operatorname{Br}(X)$ is a subgroup such that $X(\mathbb{A})^{B} \neq \emptyset$, then $X(\mathbb{A})^{B+\operatorname{Br}(X)\left[2^{\perp}\right]} \neq \emptyset$.

Main result

k number field.

Theorem (Creutz-Viray 2017)

Let X be a k-torsor under an abelian variety, let $B \subset \operatorname{Br}(X)$ be any subgroup, and let d be the period of X. In particular, d could be taken to be the degree of a k-rational globally generated ample line bundle. If $X(\mathbb{A})^{B} \neq \emptyset$ then $X(\mathbb{A})^{B+\operatorname{Br}(X)\left[d^{\perp}\right]} \neq \emptyset$.

Main result

k number field.

Theorem (Creutz-Viray 2017)

Let X be a k-torsor under an abelian variety, let $B \subset \operatorname{Br}(X)$ be any subgroup, and let d be the period of X. In particular, d could be taken to be the degree of a k-rational globally generated ample line bundle. If $X(\mathbb{A})^{B} \neq \emptyset$ then $X(\mathbb{A})^{B+\operatorname{Br}(X)\left[d^{\perp}\right]} \neq \emptyset$.

Theorem (N 2017)

Let $\pi: X \rightarrow Z$ be a morphism between smooth projective geometrically integral varieties over k. Suppose that Z satisfies weak approximation. Suppose that the generic fiber Y is a $k(Z)$-torsor under an abelian variety $A / k(Z)$, and d be its period. If $B \subset \operatorname{Br}(X)$ is a subgroup such that $X(\mathbb{A})^{B} \neq \emptyset$, then $X(\mathbb{A})^{B+\operatorname{Br}(X)\left[d^{\perp}\right]} \neq \emptyset$.

Applications

Given an abelian variety A of dimesion ≥ 2 and a 2-covering of $f: Y \rightarrow A$. Let Y^{\prime} be the blow up of Y along $f^{-1}(0)$. The antipodal involution ι on A induces an involution on Y^{\prime}; The quotient Y^{\prime} / ι is called the Kummer variety $\operatorname{Kum}(Y)$ attached to Y

Applications

Given an abelian variety A of dimesion ≥ 2 and a 2-covering of $f: Y \rightarrow A$. Let Y^{\prime} be the blow up of Y along $f^{-1}(0)$. The antipodal involution ι on A induces an involution on Y^{\prime}; The quotient Y^{\prime} / ι is called the Kummer variety $\operatorname{Kum}(Y)$ attached to Y

Corollary (Skorobogatov-Zarhin, N 2017)

Let A be an abelian variety defined over a number field k. Let X be the Kummer variety attached to a 2-covering of A. If $B \subset \operatorname{Br}(X)$ is a subgroup such that $X(\mathbb{A})^{B} \neq \emptyset$, then $X(\mathbb{A})^{B+\operatorname{Br}(X)\left[2^{\perp}\right]} \neq \emptyset$.

Applications

Given an abelian variety A of dimesion ≥ 2 and a 2-covering of $f: Y \rightarrow A$. Let Y^{\prime} be the blow up of Y along $f^{-1}(0)$. The antipodal involution ι on A induces an involution on Y^{\prime}; The quotient Y^{\prime} / ι is called the Kummer variety $\operatorname{Kum}(Y)$ attached to Y

Corollary (Skorobogatov-Zarhin, N 2017)

Let A be an abelian variety defined over a number field k. Let X be the Kummer variety attached to a 2-covering of A. If $B \subset \operatorname{Br}(X)$ is a subgroup such that $X(\mathbb{A})^{B} \neq \emptyset$, then $X(\mathbb{A})^{B+\operatorname{Br}(X)\left[2^{\perp}\right]} \neq \emptyset$.

Proof of Theorem 1

Ideas for proof of Theorem 1.

Proof of Theorem 1

Ideas for proof of Theorem 1.
For simplicity, assume $B=\{1\}$. If $X(\mathbb{A})^{\operatorname{Br}(X)\left[d^{\perp}\right]}=\emptyset$, there exists as finite subgroup $H \subset \operatorname{Br}(X)\left[d^{\perp}\right]$ such that $X(\mathbb{A})^{H}=\emptyset$. Let $N=|H|$.

Proof of Theorem 1

Ideas for proof of Theorem 1.
For simplicity, assume $B=\{1\}$. If $X(\mathbb{A})^{\operatorname{Br}(X)\left[d^{\perp}\right]}=\emptyset$, there exists as finite subgroup $H \subset \operatorname{Br}(X)\left[d^{\perp}\right]$ such that $X(\mathbb{A})^{H}=\emptyset$. Let $N=|H|$. S finite set of places pairing nontrivially with elements in H. Find $P \in Z(k)$ with $Q_{v} \in X_{P}\left(k_{v}\right)$ for all $v \in S$. D a k-rational zero cycle of degree d on X_{P}.

Proof of Theorem 1

Ideas for proof of Theorem 1.
For simplicity, assume $B=\{1\}$. If $X(\mathbb{A})^{\operatorname{Br}(X)\left[d^{\perp}\right]}=\emptyset$, there exists as finite subgroup $H \subset \operatorname{Br}(X)\left[d^{\perp}\right]$ such that $X(\mathbb{A})^{H}=\emptyset$. Let $N=|H|$. S finite set of places pairing nontrivially with elements in H. Find $P \in Z(k)$ with $Q_{v} \in X_{P}\left(k_{v}\right)$ for all $v \in S$. D a k-rational zero cycle of degree d on X_{P}.
Define

$$
C_{v}:=n D+m\left(Q_{v}\right)
$$

where n, m are so that C_{v} has degree 1 and $N \mid m$. By property (ZC) each $C_{v} \sim\left(R_{v}\right)$ for some $R_{v} \in X_{P}\left(k_{v}\right)$. Choose arbitrary points $R_{v} \in X\left(k_{v}\right)$ for $v \notin S$. Then $\left\{R_{v}\right\} \in X(\mathbb{A})^{H}$, a contradiction.

The End

