Index of fibrations and Brauer classes that never obstruct the Hasse principle

Masahiro Nakahara

Rice University

mn24@rice.edu

May 2, 2018

Hasse Principle

k number field. k_v completion of k at a place v.

Hasse Principle

k number field.

 k_{ν} completion of k at a place ν .

X smooth projective variety over k.

$$X(k) \subset X(\mathbb{A}) := \prod_{\nu} X(k_{\nu})$$

Hasse Principle

k number field.

 k_{ν} completion of k at a place ν .

X smooth projective variety over k.

$$X(k) \subset X(\mathbb{A}) := \prod_{\nu} X(k_{\nu})$$

Hasse principle

A collection ${\mathcal C}$ of varieties is said to satisfy the Hasse principle if

$$X(\mathbb{A}) \neq \emptyset \implies X(k) \neq \emptyset$$

for all $X \in \mathcal{C}$.

Lind-Reichardt (1941): $2z^2 = x^4 - 17y^4$ fails the Hasse principle.

Lind-Reichardt (1941): $2z^2 = x^4 - 17y^4$ fails the Hasse principle.

 $\mathrm{Br}(X):=\mathrm{H}^2_{\mathrm{\acute{e}t}}(X,\mathbb{G}_m)_{\mathsf{tors}}$ Brauer group of X. Brauer–Manin pairing:

$$\operatorname{\sf ev} \colon \operatorname{Br}(X) imes X(\mathbb{A}) o \mathbb{Q}/\mathbb{Z}.$$

Lind-Reichardt (1941): $2z^2 = x^4 - 17y^4$ fails the Hasse principle.

 $\mathrm{Br}(X):=\mathrm{H}^2_{\mathrm{\acute{e}t}}(X,\mathbb{G}_m)_{\mathsf{tors}}$ Brauer group of X. Brauer–Manin pairing:

$$\operatorname{ev} \colon \operatorname{Br}(X) \times X(\mathbb{A}) \to \mathbb{Q}/\mathbb{Z}.$$

For each subset $H \subseteq Br(X)$ one can define the obstruction set

$$X(\mathbb{A})^H := \{ P \in X(\mathbb{A}) \mid \text{ev}(\mathcal{A}, P) = 0 \ \forall \mathcal{A} \in H \}$$

such that

$$X(k) \subset X(\mathbb{A})^H \subset X(\mathbb{A}).$$

Lind-Reichardt (1941): $2z^2 = x^4 - 17y^4$ fails the Hasse principle.

 $\operatorname{Br}(X) := \operatorname{H}^2_{\operatorname{\acute{e}t}}(X,\mathbb{G}_m)_{\operatorname{tors}}$ Brauer group of X. Brauer–Manin pairing:

$$\operatorname{ev} \colon \operatorname{Br}(X) \times X(\mathbb{A}) \to \mathbb{Q}/\mathbb{Z}.$$

For each subset $H \subseteq Br(X)$ one can define the obstruction set

$$X(\mathbb{A})^H := \{ P \in X(\mathbb{A}) \mid \text{ev}(\mathcal{A}, P) = 0 \ \forall \mathcal{A} \in H \}$$

such that

$$X(k) \subset X(\mathbb{A})^H \subset X(\mathbb{A}).$$

If $X(\mathbb{A})^H = \emptyset$ but $X(\mathbb{A}) \neq \emptyset$ then we say there is a *Brauer–Manin obstruction* (to the Hasse principle) given by H.

Properties of the obstruction sets

If $H_1 \subseteq H_2$ then $X(\mathbb{A})^{H_1} \supseteq X(\mathbb{A})^{H_2}$.

Properties of the obstruction sets

If $H_1 \subseteq H_2$ then $X(\mathbb{A})^{H_1} \supseteq X(\mathbb{A})^{H_2}$.

Define $\operatorname{Br}_0(X) := \operatorname{im}(\operatorname{Br}(k) \to \operatorname{Br}(X))$ (constant algebras).

$$X(\mathbb{A})^{\mathrm{Br}_0(X)} = X(\mathbb{A})$$

One often considers the quotient ${\rm Br}(X)/{\rm Br}_0(X)$ for Brauer–Manin obstructions.

Challenges in computing $X(\mathbb{A})^{Br}$:

- The quotient $Br(X)/Br_0(X)$ can be large.
- Need to compute evaluation maps ev(A, -) for any $A \in Br(X)$.

Challenges in computing $X(\mathbb{A})^{Br}$:

- The quotient $Br(X)/Br_0(X)$ can be large.
- Need to compute evaluation maps ev(A, -) for any $A \in Br(X)$.

Many counterexamples to the Hasse principle explained by a Brauer–Manin obstruction require only one element $\mathcal{A} \in \operatorname{Br}(X)$, i.e., $X(\mathbb{A})^{\mathcal{A}} = \emptyset$.

Challenges in computing $X(\mathbb{A})^{Br}$:

- The quotient $Br(X)/Br_0(X)$ can be large.
- Need to compute evaluation maps ev(A, -) for any $A \in Br(X)$.

Many counterexamples to the Hasse principle explained by a Brauer–Manin obstruction require only one element $\mathcal{A} \in \operatorname{Br}(X)$, i.e., $X(\mathbb{A})^{\mathcal{A}} = \emptyset$.

Question

Is there a subset $H \subset Br(X)$ that is irrelevant to the Brauer–Manin obstruction?

Given $n \in \mathbb{Z}$, $Br(X)[n^{\perp}] = \text{subgroup of elements whose order is prime to } n$.

Given $n \in \mathbb{Z}$, $Br(X)[n^{\perp}] = \text{subgroup of elements whose order is prime to } n$.

Question

Given a class \mathcal{C} of varieties over k, does there exist $n \in \mathbb{Z}$ such that $\operatorname{Br}(X)[n^{\perp}]$ never gives a Brauer–Manin obstruction? i.e.,

$$X(\mathbb{A}) \neq \emptyset \implies X(\mathbb{A})^{\operatorname{Br}(X)[n^{\perp}]} \neq \emptyset$$
?

Given $n \in \mathbb{Z}$, $Br(X)[n^{\perp}] = \text{subgroup of elements whose order is prime to } n$.

Question

Given a class C of varieties over k, does there exist $n \in \mathbb{Z}$ such that $\operatorname{Br}(X)[n^{\perp}]$ never gives a Brauer–Manin obstruction? i.e.,

$$X(\mathbb{A}) \neq \emptyset \implies X(\mathbb{A})^{\operatorname{Br}(X)[n^{\perp}]} \neq \emptyset$$
?

A similar question $(X(\mathbb{A})^{\operatorname{Br}} = \emptyset \implies X(\mathbb{A})^{\operatorname{Br}(X)[n^{\infty}]} = \emptyset$?) was asked by Creutz and Viray (2017) where they focused on the case where n is the degree of the variety.

For cubic surfaces, we have the following answer

Theorem (Swinnerton-Dyer 1993)

Let X be a smooth cubic surface over a number field k. The possibilities for ${\rm Br}(X)/{\rm Br}_0(X)$ are

$$\{1\}, \mathbb{Z}/3\mathbb{Z}, (\mathbb{Z}/3\mathbb{Z})^2, \mathbb{Z}/2\mathbb{Z}, (\mathbb{Z}/2\mathbb{Z})^2.$$

Moreover,
$$X(\mathbb{A}) \neq \emptyset \implies X(\mathbb{A})^{\operatorname{Br}(X)[3^{\perp}]} \neq \emptyset$$
.

For cubic surfaces, we have the following answer

Theorem (Swinnerton-Dyer 1993)

Let X be a smooth cubic surface over a number field k. The possibilities for $\mathrm{Br}(X)/\mathrm{Br}_0(X)$ are

$$\{1\}, \mathbb{Z}/3\mathbb{Z}, (\mathbb{Z}/3\mathbb{Z})^2, \mathbb{Z}/2\mathbb{Z}, (\mathbb{Z}/2\mathbb{Z})^2.$$

Moreover,
$$X(\mathbb{A}) \neq \emptyset \implies X(\mathbb{A})^{\operatorname{Br}(X)[3^{\perp}]} \neq \emptyset$$
.

Other rational surfaces?

Rational surfaces

The question is invariant under birational morphisms for smooth projective surfaces: $X \xrightarrow{bir} Y$ then $X(\mathbb{A})^{\operatorname{Br}(X)[n^{\perp}]} \neq \emptyset \iff Y(\mathbb{A})^{\operatorname{Br}(Y)[n^{\perp}]} \neq \emptyset$.

Rational surfaces

The question is invariant under birational morphisms for smooth projective surfaces: $X \xrightarrow{bir} Y$ then $X(\mathbb{A})^{\operatorname{Br}(X)[n^{\perp}]} \neq \emptyset \iff Y(\mathbb{A})^{\operatorname{Br}(Y)[n^{\perp}]} \neq \emptyset$.

So consider minimal rational surfaces. We can classify minimal rational surfaces over a number field into the following:

- Quadric surfaces
- Conic bundle over a rational curve
- **1** Del Pezzo surfaces of degree $1 \le d \le 9$

Rational surfaces

The question is invariant under birational morphisms for smooth projective surfaces: $X \xrightarrow{bir} Y$ then $X(\mathbb{A})^{\operatorname{Br}(X)[n^{\perp}]} \neq \emptyset \iff Y(\mathbb{A})^{\operatorname{Br}(Y)[n^{\perp}]} \neq \emptyset$.

So consider minimal rational surfaces. We can classify minimal rational surfaces over a number field into the following:

- Quadric surfaces
- Conic bundle over a rational curve
- **1** Del Pezzo surfaces of degree $1 \le d \le 9$

When X is either (1) or (2) above, it is well known that ${\rm Br}(X)/{\rm Br}_0(X)$ is a 2-torsion group. So ${\rm Br}(X)[2^{\perp}]$ does not give a Brauer–Manin obstruction (trivially).

Note that here X has an ample divisor of even degree.

Divide into cases based on degree d.

• $(5 \le d \le 9)$ Satisfies the Hasse principle

- $(5 \le d \le 9)$ Satisfies the Hasse principle
- $(d = 4) \operatorname{Br}(X)/\operatorname{Br}_0(X)$ is 2-torsion group

- $(5 \le d \le 9)$ Satisfies the Hasse principle
- $(d = 4) \operatorname{Br}(X)/\operatorname{Br}_0(X)$ is 2-torsion group
- (d = 3) Cubic surface (Swinnerton-Dyer's result)

- $(5 \le d \le 9)$ Satisfies the Hasse principle
- $(d = 4) \operatorname{Br}(X)/\operatorname{Br}_0(X)$ is 2-torsion group
- (d = 3) Cubic surface (Swinnerton-Dyer's result)
- \bullet (d=1) Always has a rational point

Divide into cases based on degree d.

- $(5 \le d \le 9)$ Satisfies the Hasse principle
- $(d = 4) \operatorname{Br}(X)/\operatorname{Br}_0(X)$ is 2-torsion group
- (d = 3) Cubic surface (Swinnerton-Dyer's result)
- \bullet (d=1) Always has a rational point

In the remaining case of del Pezzo surfaces of degree 2, the possible ${\rm Br}(X)/{\rm Br}_0(X)$ are as follows (Corn 2007):

$$\{1\}, \mathbb{Z}/3\mathbb{Z}, (\mathbb{Z}/3\mathbb{Z})^2, (\mathbb{Z}/2\mathbb{Z})^s (1 \le s \le 6),$$

 $\mathbb{Z}/4\mathbb{Z} \times (\mathbb{Z}/2\mathbb{Z})^t (0 \le t \le 2), (\mathbb{Z}/4\mathbb{Z})^2$

The *index* of a variety X/k is the gcd of all degrees of extensions K/k where X has a K-point.

The *index* of a variety X/k is the gcd of all degrees of extensions K/k where X has a K-point.

We say that a variety Y/k satisfies property (ZC) if for any field extension K/k and $Q \in Y(K)$, the natural map $Y(K) \to A_0(Y_K)$ given by $P \mapsto (P) - (Q)$ is surjective. E.g., smooth projective curves of genus 1 and k-rational varieties.

The *index* of a variety X/k is the gcd of all degrees of extensions K/k where X has a K-point.

We say that a variety Y/k satisfies property (ZC) if for any field extension K/k and $Q \in Y(K)$, the natural map $Y(K) \to A_0(Y_K)$ given by $P \mapsto (P) - (Q)$ is surjective. E.g., smooth projective curves of genus 1 and k-rational varieties.

Theorem (N 2017)

Let $\pi\colon X\to Z$ be a morphism of smooth projective geometrically integral varieties over a number field k. Suppose Z satisfies weak approximation and a Zariski dense set of the fibers of π satisfy (ZC). Suppose that the generic fiber over k(Z) has index d. If $B\subset \operatorname{Br}(X)$ is a subset such that $X(\mathbb{A})^B\neq\emptyset$, then $X(\mathbb{A})^{B+\operatorname{Br}(X)[d^\perp]}\neq\emptyset$.

Any deg 2 del Pezzo X over number field k can be given by equation

$$w^2 = f(x, y, z)$$

in $\mathbb{P}[2,1,1,1]$, where $f \in k[x,y,z]$ is homogeneous quartic.

Any deg 2 del Pezzo X over number field k can be given by equation

$$w^2 = f(x, y, z)$$

in $\mathbb{P}[2,1,1,1]$, where $f \in k[x,y,z]$ is homogeneous quartic.

 $\pi([w:x:y:z]) = [y:z]$ β blow up along the π -indeterminacy. $\widetilde{\pi}$ genus 1 fibration with generic fiber index $d \mid 2$.

Any deg 2 del Pezzo X over number field k can be given by equation

$$w^2 = f(x, y, z)$$

in $\mathbb{P}[2,1,1,1]$, where $f \in k[x,y,z]$ is homogeneous quartic.

 $\pi([w:x:y:z]) = [y:z]$ β blow up along the π -indeterminacy. $\widetilde{\pi}$ genus 1 fibration with generic fiber index $d \mid 2$.

Corollary

X deg 2 del Pezzo surface over number field k, then $X(\mathbb{A}) \neq \emptyset \implies X(\mathbb{A})^{\operatorname{Br}(X)[2^{\perp}]} \neq \emptyset$.

A smooth diagonal quartics in \mathbb{P}^3_k is defined by

$$ax^4 + by^4 + cz^4 + dw^4 = 0,$$

where $a, b, c, d \in k^{\times}$.

A smooth diagonal quartics in \mathbb{P}^3_k is defined by

$$ax^4 + by^4 + cz^4 + dw^4 = 0,$$

where $a, b, c, d \in k^{\times}$.

Theorem (Ieronymou-Skorobogatov 2015)

Let X be a smooth diagonal quartic over \mathbb{Q} . Then $X(\mathbb{A}) \neq \emptyset \implies X(\mathbb{A})^{\operatorname{Br}(X)[2^{\perp}]} \neq \emptyset$.

A smooth diagonal quartics in \mathbb{P}^3_k is defined by

$$ax^4 + by^4 + cz^4 + dw^4 = 0,$$

where $a, b, c, d \in k^{\times}$.

Theorem (Ieronymou-Skorobogatov 2015)

Let X be a smooth diagonal quartic over \mathbb{Q} . Then $X(\mathbb{A}) \neq \emptyset \implies X(\mathbb{A})^{\operatorname{Br}(X)[2^{\perp}]} \neq \emptyset$.

Corollary

Let X be a smooth diagonal quartic over a number field k, with $abcd \in k^{\times 2}$. If $B \subset \operatorname{Br}(X)$ is a subgroup such that $X(\mathbb{A})^B \neq \emptyset$, then $X(\mathbb{A})^{B+\operatorname{Br}(X)[2^{\perp}]} \neq \emptyset$.

k number field.

Theorem (Creutz-Viray 2017)

Let X be a k-torsor under an abelian variety, let $B \subset \operatorname{Br}(X)$ be any subgroup, and let d be the period of X. In particular, d could be taken to be the degree of a k-rational globally generated ample line bundle. If $X(\mathbb{A})^B \neq \emptyset$ then $X(\mathbb{A})^{B+\operatorname{Br}(X)[d^{\perp}]} \neq \emptyset$.

k number field.

Theorem (Creutz-Viray 2017)

Let X be a k-torsor under an abelian variety, let $B \subset \operatorname{Br}(X)$ be any subgroup, and let d be the period of X. In particular, d could be taken to be the degree of a k-rational globally generated ample line bundle. If $X(\mathbb{A})^B \neq \emptyset$ then $X(\mathbb{A})^{B+\operatorname{Br}(X)[d^{\perp}]} \neq \emptyset$.

Theorem (N 2017)

Let $\pi\colon X\to Z$ be a morphism between smooth projective geometrically integral varieties over k. Suppose that Z satisfies weak approximation. Suppose that the generic fiber Y is a k(Z)-torsor under an abelian variety A/k(Z), and d be its period. If $B\subset \operatorname{Br}(X)$ is a subgroup such that $X(\mathbb{A})^B\neq\emptyset$, then $X(\mathbb{A})^{B+\operatorname{Br}(X)[d^\perp]}\neq\emptyset$.

Given an abelian variety A of dimesion ≥ 2 and a 2-covering of $f\colon Y\to A$. Let Y' be the blow up of Y along $f^{-1}(0)$. The antipodal involution ι on A induces an involution on Y'; The quotient Y'/ι is called the Kummer variety Kum(Y) attached to Y

Given an abelian variety A of dimesion ≥ 2 and a 2-covering of $f\colon Y\to A$. Let Y' be the blow up of Y along $f^{-1}(0)$. The antipodal involution ι on A induces an involution on Y'; The quotient Y'/ι is called the Kummer variety Kum(Y) attached to Y

Corollary (Skorobogatov-Zarhin, N 2017)

Let A be an abelian variety defined over a number field k. Let X be the Kummer variety attached to a 2-covering of A. If $B \subset \operatorname{Br}(X)$ is a subgroup such that $X(\mathbb{A})^B \neq \emptyset$, then $X(\mathbb{A})^{B+\operatorname{Br}(X)[2^{\perp}]} \neq \emptyset$.

Given an abelian variety A of dimesion ≥ 2 and a 2-covering of $f\colon Y\to A$. Let Y' be the blow up of Y along $f^{-1}(0)$. The antipodal involution ι on A induces an involution on Y'; The quotient Y'/ι is called the Kummer variety Kum(Y) attached to Y

Corollary (Skorobogatov-Zarhin, N 2017)

Let A be an abelian variety defined over a number field k. Let X be the Kummer variety attached to a 2-covering of A. If $B \subset \operatorname{Br}(X)$ is a subgroup such that $X(\mathbb{A})^B \neq \emptyset$, then $X(\mathbb{A})^{B+\operatorname{Br}(X)[2^{\perp}]} \neq \emptyset$.

Ideas for proof of Theorem 1.

Ideas for proof of Theorem 1.

For simplicity, assume $B = \{1\}$. If $X(\mathbb{A})^{\operatorname{Br}(X)[d^{\perp}]} = \emptyset$, there exists as finite subgroup $H \subset \operatorname{Br}(X)[d^{\perp}]$ such that $X(\mathbb{A})^H = \emptyset$. Let N = |H|.

Ideas for proof of Theorem 1.

For simplicity, assume $B=\{1\}$. If $X(\mathbb{A})^{\operatorname{Br}(X)[d^{\perp}]}=\emptyset$, there exists as finite subgroup $H\subset\operatorname{Br}(X)[d^{\perp}]$ such that $X(\mathbb{A})^H=\emptyset$. Let N=|H|. S finite set of places pairing nontrivially with elements in H. Find $P\in Z(k)$ with $Q_v\in X_P(k_v)$ for all $v\in S$. D a k-rational zero cycle of degree d on X_P .

Ideas for proof of Theorem 1.

For simplicity, assume $B=\{1\}$. If $X(\mathbb{A})^{\operatorname{Br}(X)[d^{\perp}]}=\emptyset$, there exists as finite subgroup $H\subset\operatorname{Br}(X)[d^{\perp}]$ such that $X(\mathbb{A})^H=\emptyset$. Let N=|H|. S finite set of places pairing nontrivially with elements in H. Find $P\in Z(k)$ with $Q_v\in X_P(k_v)$ for all $v\in S$. D a k-rational zero cycle of degree d on X_P .

Define

$$C_{v} := nD + m(Q_{v})$$

where n, m are so that C_v has degree 1 and $N \mid m$. By property (ZC) each $C_v \sim (R_v)$ for some $R_v \in X_P(k_v)$. Choose arbitrary points $R_v \in X(k_v)$ for $v \notin S$. Then $\{R_v\} \in X(\mathbb{A})^H$, a contradiction.

The End