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» Y /F is smooth projective (more generally: a pure motive)

We want to study H"(Y)(m) for some n, m.

» Hg := H"(Yc,Q(m)): polarizable Hodge structure
» Hp:= H"(Yg,Qy(m)): Galois representation
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Hodge-theoretic side

» QHS := category of polarizable Q-Hodge structures
» QHS D (Hg) := tensor subcategory generated by Hg

This means: (Hg) is the smallest subcategory that contains Hg and is
stable under &, ®, ()" and taking subquotients.

Mumford—Tate group: algebraic group
Gg C GL(HB)
(over Q) with the property that

(Hg) ~ Rep(Gg; Q)



For Te (Hg)and t € T:
t is a Hodge class <= t is invariant under the action of Gg

(Hodge class = rational class of Hodge type (0,0))
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Galois side
We have p;: Gal(F/F) — GL(H;) and define

G == [Im(pe)] >

Let
(Hg) C (¢-adic representations of Gal(F/F))

be the tensor subcategory generated by H,. Then

(Hg) ~ Rep(Gy; Qy) .
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» Gy is not connected in general; however, after replacing F with a
finite extension, G, becomes connected, and then G; does not change
if we replace F with a finitely generated field extension.

From now on we assume F is such that Gy is connected.
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Basic properties:

>
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>

Gg is a connected reductive group over Q

Gy is an algebraic group over Qy

Gy is not connected in general; however, after replacing F with a
finite extension, G, becomes connected, and then G; does not change
if we replace F with a finitely generated field extension.

From now on we assume F is such that Gy is connected.
Conjecturally Gy is reductive; this is not known in general (OK for
abelian motives)

If T, € <Hg> and t € T, then

t is a Tate class := t is invariant under Gy



MUMFORD—TATE CONJECTURE:
Under the comparison isomorphism Hg ® Q = H; we have
?
Ge®Qr = Gy

as algebraic subgroups of GL(H;).
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Why believe the MTC?

» [Hodge Conjecture + Tate Conjecture] — MTC
» MTC = [HC <= T(]

Remark: if we take H = H?(Y)(1) then the Hodge conjecture is known
(Lefschetz theorem on divisor classes); in this case

MTC = TC for divisor classes



Status of the MTC

» For abelian varieties: MTC known in many cases under assumptions
on the dimension and/or the structure of the endomorphism algebra
(Serre, Ribet, Tankeev, Larsen, Pink, Zarhin, BM, ...)



Status of the MTC

» For abelian varieties: MTC known in many cases under assumptions
on the dimension and/or the structure of the endomorphism algebra
(Serre, Ribet, Tankeev, Larsen, Pink, Zarhin, BM, ...)

» MTC known for K3 surfaces (Tankeev, André)



Status of the MTC

» For abelian varieties: MTC known in many cases under assumptions
on the dimension and/or the structure of the endomorphism algebra
(Serre, Ribet, Tankeev, Larsen, Pink, Zarhin, BM, ...)

» MTC known for K3 surfaces (Tankeev, André)
» MTC known for many classes of surfaces with p; =1 (BM)



Status of the MTC

» For abelian varieties: MTC known in many cases under assumptions
on the dimension and/or the structure of the endomorphism algebra
(Serre, Ribet, Tankeev, Larsen, Pink, Zarhin, BM, ...)

» MTC known for K3 surfaces (Tankeev, André)
» MTC known for many classes of surfaces with p; =1 (BM)

» But: still open for abelian fourfolds; essentially nothing is known
beyond abelian motives



Status of the MTC

» For abelian varieties: MTC known in many cases under assumptions
on the dimension and/or the structure of the endomorphism algebra
(Serre, Ribet, Tankeev, Larsen, Pink, Zarhin, BM, ...)

» MTC known for K3 surfaces (Tankeev, André)
» MTC known for many classes of surfaces with p; =1 (BM)

» But: still open for abelian fourfolds; essentially nothing is known
beyond abelian motives

For abelian varieties (more generally: abelian motives):
» Gy C Gg ® Qg (Borovoi, Piatetski-Shapiro, Deligne)



Status of the MTC

» For abelian varieties: MTC known in many cases under assumptions
on the dimension and/or the structure of the endomorphism algebra
(Serre, Ribet, Tankeev, Larsen, Pink, Zarhin, BM, ...)

» MTC known for K3 surfaces (Tankeev, André)
» MTC known for many classes of surfaces with p; =1 (BM)

» But: still open for abelian fourfolds; essentially nothing is known
beyond abelian motives

For abelian varieties (more generally: abelian motives):
» Gy C Gg ® Qg (Borovoi, Piatetski-Shapiro, Deligne)
» If MTC true for one ¢ then for all ¢ (Larsen—Pink)



Status of the MTC

» For abelian varieties: MTC known in many cases under assumptions
on the dimension and/or the structure of the endomorphism algebra
(Serre, Ribet, Tankeev, Larsen, Pink, Zarhin, BM, ...)

» MTC known for K3 surfaces (Tankeev, André)
» MTC known for many classes of surfaces with p; =1 (BM)

» But: still open for abelian fourfolds; essentially nothing is known
beyond abelian motives

For abelian varieties (more generally: abelian motives):
» Gy C Gg ® Qg (Borovoi, Piatetski-Shapiro, Deligne)
» If MTC true for one ¢ then for all ¢ (Larsen—Pink)

» MTC is “true on centers” (Vasiu, Ullmo—Yafaev)



MAIN RESULTS
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Throughout the following discussion:

» [ C C a finitely generated field of characteristic 0
» Y /F smooth projective (mainly: AV or K3)
H = H'(Y(C),Z(m)) and H, = H'(Yg, Z¢(m))

v

py: Gal(F/F) — GL(H)(Z)

the Galois representation on H ® Z = I, He

py i Gal(F/F) — GL(H)(Z)

the /-component of py
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Suppose the MTC is true: Gg ® Qp = Gy. This means:

the image of py ¢ is Zariski-dense in Gg(Qy)

Bogomolov + Faltings (p-adic Hodge theory) in fact gives:

the image of py 4 is ¢-adically open in Gg(Qy)

Question: Can we make this more precise, also varying £ ?



Example (Serre, Inventiones 1972):

E/F elliptic curve with End(Ez) = Z then the image of
pe: Gal(F/F) — GL(L@ E[n](l—:)) = GLy(2)

is open in GLo(Z).
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MAIN THEOREM (ABELIAN VARIETIES)

» Y /F an abelian variety, H = Hi(Y,Z)
» &g := Zariski closure of Gg in GL(H)
> p=py: Gal(F/F) — GL(H)(2)

pe is the ¢-adic component of p
Assumption: the MTC is true for Y

v

v

(1) The index [9&(Z¢) : Im(pe)] is bounded when ¢ varies.
(2) For almost all ¢ the image of p; contains (Z; - id) - [98(Z¢), 9a(Z)].
(3) If Hg is Hodge-maximal, Im(p) is open in Gg(Af).

This confirms a conjecture of Serre (1976). Parts (1), (2) have
independently been obtained by Hindry and Ratazzi.



Hodge-maximality
Definition. — Let V' be a Q-Hodge structure, given by
h:S — GL(V)g,

and
M C GL(V)

the Mumford—Tate group. Then V is Hodge-maximal if there does not
exist a non-trivial isogeny M’ — M of connected Q-groups such that
h: S — Mg lifts to h': S — M.



Remark. Hodge-maximality is a necessary condition for Im(p) C Gg(A¢)
to be open.

Sketch: Suppose we do have an isogeny M’ — M with h lifting to A’.

> Wintenberger: the (-adic Galois representations p lift to
Py Gal(F/F) — M'(Qy)
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Remark. Hodge-maximality is a necessary condition for Im(p) C Gg(A¢)
to be open.

Sketch: Suppose we do have an isogeny M’ — M with h lifting to A’.
> Wintenberger: the (-adic Galois representations p lift to
Py Gal(F/F) — M'(Qy)
» For almost all #: using Galois cohomology one sees that
M'(Q¢) — M(Qy) is not surjective

» We find: Im(p) is contained in the image of M'(Af) — M(A¢), which
is not open in M(Ay).

For abelian varieties: H; is not always Hodge-maximal
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COROLLARY OF THE MAIN THEOREM FOR ABELIAN VARIETIES

For n>0let F C F[n]_ be the field extension generated by the coordinates
of the points in Y[n](F). Assume the MTC for Y is true. Then:

(1) Given ¢ there is a constant C(¢) = C(Y,¥) such that
[FI¢']: F] = C(¢) - ¢7im(Ce)

for all i big enough.
(2) If Hy is Hodge-maximal then there is a constant C = C(Y) such that

[F[n] : F] = C . n9im(Ge)

for all n divisible enough.
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MAIN THEOREM (K3 SURFACES)

» Y/F is a K3 surface
» H=H?(Y(C),Q(1))
> p: Gal(F/F) — GL(H)(A¢)

Then Im(p) is open in Gg(As).

Note:
» The MTC is known for K3's.
» H?(Y(C),Q(1)) is Hodge-maximal (!)
» H?(Y(C),Q) is not Hodge-maximal.



THE (GALOIS REPRESENTATION

ASSOCIATED WITH A SHIMURA VARIETY



OUTLINE OF THE PROOF OF THE MAIN THEOREMS

» To a component of a Shimura variety Sy C Shi (G, X) we are going
to associate a representation

o 7T1(50) — K C G(Af)

of the étale fundamental group.
» Main technical result: the image of ¢ is “big".

» We deduce the main theorems about AV and K3's by using that their
moduli spaces (essentially) are Shimura varieties, and by using a
result of Cadoret—Kret about Galois generic points.
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Let (G, X) be a Shimura datum, and let E C C be its reflex field. We
assume: G is the generic Mumford—Tate group on X.

For K C G(Af) a compact open subgroup we have the associated scheme
Shk (G, X) over E
with
Shi(G. X)(C) = GQ\[X x G(A0)/K].
If K1 C K5 then we have an associated morphism
Shk, K, : Shi, (G, X) — Shy, (G, X)

and if Ky is normal in K3 this is a Galois cover with group K /Kj.
(Assume K3 is neat.)
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CONSTRUCTION OF THE HOMOMORPHISM ¢

» Fix: Ko C G(Af) neat compact open subgroup
» Fix: Soc C Shk,(G, X)c irreducible component

» Let F C C be the field of definition of Sy ¢, so that we have a
geometrically integral 5S¢ over F

» For K C Ko compact open, let Sk C Shi(G, X)r be the inverse
image of Sg under Shg ;.

By construction, for K C Ky compact open we then have an étale cover
SK — 50

and if K < Kp then this is Galois with group Koy/K.



For K < Kp, let
(Z)K: 7r1(50) — Ko/K

be the homomorphism corresponding with the Galois cover Sk — Sg.



For K < Kp, let
(Z)K: 7r1(50) — Ko/K

be the homomorphism corresponding with the Galois cover Sk — Sg.

Taking the limit over all K we obtain

d): 7'&'1(50) — Ko
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Example:
(G, X) = (CSng@7 5?) )
Kn={g € CSpy,(Z) | g =1 mod n}

then
Shi, (G, X) = Agn

moduli space of ppav with Jacobi level n structure.

What does this actually mean?
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(Y, A) principally polarized abelian variety, dim(Y) = g,

Weil pairing:
e: Y[n] x Y[n] = pn

We want to compare this with the standard symplectic pairing

VYn: (Z/nZ7)%€ x (Z/nZ)* — (Z/n7Z)



Definition. — A Jacobi level n structure on (Y, \) is a pair (o, ()
consisting of isomorphisms of group schemes

a: (Z/nZ)%€ = Y[n], ¢ (Z/nZ) = un
such that the diagram
(Z/nZ)%& x (Z/nZ)8 —2" (Z/nZ)
Y[n] x Y] — 1,

is commutative.



The scheme Ag , is irreducible over Q.



The scheme Ag , is irreducible over Q.

Over Q(e2™/™) it splits up into (n) geometrically irreducible components,
corresponding to the various choices of the isomorphism (: (Z/nZ) =5 .



The scheme Ag , is irreducible over Q.

Over Q(e2™/™) it splits up into (n) geometrically irreducible components,
corresponding to the various choices of the isomorphism (: (Z/nZ) =5 .

We have a diagram
1 —— m(Ag1®Q) —— m1(Ag1) — Gal

(Q/Q
lqsgeom ld) L
7~

l —— Sp2g(z) - CSp2g(Z)




The homomorphism
x: Gal(Q/Q) — Z*

(in this case the cyclotomic character) describes the action of Galois on
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The homomorphism
x: Gal(Q/Q) — 2~

(in this case the cyclotomic character) describes the action of Galois on
the set of irreducible components of |<i_rgn Agz.n ® Q.

If we choose roots of unity (, for all n in a compatible manner, we have a
tower of irreducible moduli schemes Ag ;) ® Q parametrizing ppav with
symplectic level n structure, and Ag7(n)7@ — Ag7(1)7@ is Galois with group

szg(Z/nZ).
This tower corresponds with the homomorphism
¢geom: 771(Ag,1 & @) - Sp2g(z) 5

which is surjective because the A g are all irreducible.

g.(n),



Back to the general case: to the Shimura datum (G, X) and the
geometrically irreducible component

So C ShKO(G,X)/:
over the number field F we have associated the homomorphism
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Back to the general case: to the Shimura datum (G, X) and the
geometrically irreducible component

So C ShKO(G,X)/:
over the number field F we have associated the homomorphism

(;5: 7T1(50) — Ko C G(Af)

Using Deligne’s description of the action of Galois on the set of geometric
irreducible components of the tower of Shimura varieties, we prove:
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MAIN THEOREM ABOUT THE HOMOMORPHISM ¢
Let ¢ be an integral model of G such that Ky C 4(7).

(1) The index [4(Z) : Im(¢¢)] is bounded when ¢ varies. (¢ = (-adic
component of ¢)

(2) For almost all £ the image of ¢, contains [4(Z),¥(Zy)].

(3) If (G, X) is maximal, Im(¢) C G(A¢) is open.
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Some technical details on the proof.

Set
Sh(G, X) = I@ Shk(G, X).
K

The set of geometric irreducible components together with the action of
Gal(E/E) on it allows a purely group-theoretic description:

Let ad: G — G2? be the adjoint map, let G*4(R)* C G*¢(R) be the
topological identity component, and let

G(Q)+ = {g € G(Q) | ad(g) € G*(R)*"}.

Then 7o(Sh(G, X)g) is a torsor under

G(As)/G(Q)5 -

This is an abelian profinite group.
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The Galois group Gal(E/E) acts on the set of geometric irreducible
components through its maximal abelian quotient, and the action is given
by a reciprocity homomorphism

rec: Gal(E**/E) — G(Af)/G(Q);,

which is a continuous homomorphism of abelian profinite groups.

We reduce our main theorem about the homomorphism ¢ to the following
result about the reciprocity homomorphism:

THEOREM

The cokernel of the reciprocity map has finite exponent, and if (G, X) is
maximal then it is a finite discrete group.
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The abstract yoga of Shimura varieties allows to do this in steps:

(1) The case of a Shimura datum (G, X) with G a torus.

(2) The case of a Shimura variety (G, X) such that G is simply
connected.

(3) The general case.
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DEDUCING THE MAIN THEOREMS ABOUT AV AND K3’s

We focus on the result for abelian varieties; the case of K3 surfaces is
analogous.

Let (Y, A) be a ppav over F C C, let G = Gg be the Mumford—Tate
group. We obtain a Shimura datum (G, X) and, as before,

(b: 7T1(50) — Ko C G(Af)

We may arrange everything in such a way that (Y, \) corresponds to a
point y € So(F). This gives

TN

1 — 7T1(50®:E) — 7T1(50) E— GaI(I:_/F) — 1
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We show: ¢ oy, is the usual Galois representation of Gal(F/F) on Hi(Y).
(This gives an easy new proof of the fact that Gy C Gg ® Qy.)

In our main result we assume that the MTC for Y is true. By the result of
Bogomolov mentioned earlier, it follows that the image of ¢y o y, is open
in the image of ¢,.

THEOREM (CADORET-KRET)

If, for some £, the image of ¢y o y, is open in the image of ¢, then in fact
the image of ¢ o y, is open in the image of ¢.
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Together with our results about the image of ¢, the main theorem follows:

» Assumption that MTC is true + Bogomolov =

the image of ¢y o y, is open in the image of ¢y
» Cadoret—Kret =

the image of ¢ o y, is open in the image of ¢

» The representation ¢ o y, is (isomorphic to) the usual Galois
representation py on the adelic H; of Y.

» Our result on Shimura varieties: The image of ¢ is "big".

Combining these we obtain that the image of py is “big".
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