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Abstract

The first part of this paper further refines the methodology for 2-descents on elliptic curves
with rational 2-division points which was introduced in [J.-L. Colliot-Thélène, A.N. Skoroboga-
tov, Peter Swinnerton-Dyer, Hasse principle for pencils of curves of genus one whose Jacobians
have rational 2-division points, Invent. Math. 134 (1998) 579–650]. To describe the rest, let
E(1) and E(2) be elliptic curves, D(1) and D(2) their respective 2-coverings, and X be the
Kummer surface attached to D(1) ×D(2). In the appendix we study the Brauer–Manin obstruc-
tion to the existence of rational points on X. In the second part of the paper, in which we
further assume that the two elliptic curves have all their 2-division points rational, we obtain
sufficient conditions for X to contain rational points; and we consider how these conditions
are related to Brauer–Manin obstructions. This second part depends on the hypothesis that the
relevent Tate–Shafarevich group is finite, but it does not require Schinzel’s Hypothesis.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we are primarily concerned with elliptic curves E defined over an
algebraic number field k which have all their 2-division points defined over k. In §2
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we remind the reader of the current machinery for finding the 2-Selmer group of E,
including the refinements recently introduced in [4]; this section also establishes our
notation. In §3 we introduce further refinements to this process; the main result here
is Lemma 3, which leads up to Theorem 2. This shows that under suitable conditions
the bilinear functions introduced in [4] are not merely symmetric but alternating; we
expect this result to be useful in other contexts as well as in the present one. In §4 we
prove a lemma about the effect of twisting on the parity of the rank of the 2-Selmer
group of E which we shall need in §6.

In §§5 and 6 we address the question which actually gave rise to this whole inves-
tigation. The study of rational points on pencils of curves of genus 1 has already been
applied to prove the existence of rational points on certain K3 surfaces (see [4, pp.
585, 626]; [17]). However, the proof of those results depended both on the finiteness of
the relevant Tate–Shafarevich groups and on Schinzel’s Hypothesis. The first of those
hypotheses is widely regarded as a respectable one to assume, but that is much less true
of the second. The first paper about such pencils which did not depend on Schinzel’s
Hypothesis was [18], but there the underlying surfaces were only Del Pezzo. In §§5
and 6 we consider a family (1) of K3 surfaces quite different from that in [17], for
which we can again exhibit sufficient conditions for the Hasse principle to hold. To
prove this we still need the finiteness of the relevant Tate–Shafarevich groups, but we
do not need Schinzel’s Hypothesis. The possibility of doing this for the surfaces (1)
was suggested to us some 5 years ago by Colliot–Thélène, but at that time neither he
nor we foresaw the difficulties involved.

The K3 surfaces studied here have the form

Z2 = f (1)(X)f (2)(Y ), (1)

where the f (s) are quartic polynomials defined over k, having no repeated roots. In
order to simplify the definition of the set of bad places for (1), we shall assume that
we are given f (1) and f (2) separately, rather than merely their product. Geometri-
cally, surfaces (1) can be described as Kummer surfaces attached to products of two
elliptic curves. In order to prove that solubility of (1) in kv for each place v of k
implies solubility in k, we expect to need further conditions on the surface (1)—not
least because of the likely existence of non-trivial Brauer–Manin obstructions. It is
not absurd to hope that these are the only obstructions to the Hasse principle for
surfaces (1). But with our present fragmentary understanding of Brauer–Manin obstruc-
tions for K3 surfaces, it would be unrealistic to try to prove this. What the reader
can reasonably ask for is as follows. Clearly a proof of the solubility of (1) under
certain extra conditions implies indirectly that under these extra conditions there is no
Brauer–Manin obstruction. But we should also exhibit a direct proof that the extra
conditions imply that those parts of the Brauer–Manin obstruction which we know
how to describe are trivial, and this direct proof should actually make use of all the
extra conditions. In other words, we should show (and do show in the appendix to this
paper) that though the extra conditions may be too strong, they are not outrageously
too strong.
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In §6, but not in §5, one of the further conditions which we impose is that the
Jacobians E(1) and E(2), respectively, of the curves

D(1) : U2 = f (1)(X) and D(2) : V 2 = f (2)(Y ) (2)

have all their 2-division points defined over k. It is well known that the Jacobian
of z2 = f (x), where f is a quartic polynomial with no repeated roots, is given by
v2 = g(u) where g is the resolvent cubic of f. (See [1]; a short proof is given in
Appendix A of [13]. Explicitly, the cubic resolvent of f (x) = ax4 + cx2 + dx + e is
g(u) = u3 − 27Iu − 27J where I = 12ae + c2 and J = 72ace − 27ad2 − 2c3.) Thus if
ks is the least splitting field of f (s) over k the conditions that the E(s) have all their
2-division points defined over k can also be expressed as follows: Gal(ks/k) ⊂ V4 for
each s, where V4 is the subgroup of order 4 of the alternating group A4.

An elliptic curve with rational 2-division points can be written in the form

E : Y 2 = (X − c1)(X − c2)(X − c3), (3)

where without loss of generality we can assume that the ci are integers. The twist of
E by an element b in k∗ is

Eb : Y 2 = (X − bc1)(X − bc2)(X − bc3), (4)

where we can require b and the bci to be integers. An equivalent form, probably more
common in the literature, is

V 2 = b(U − c1)(U − c2)(U − c3).

Similarly, if D : y2 = f (x) is a 2-covering of E then Db will denote its twist y2 =
bf (x), which is a 2-covering of Eb.

The primes of bad reduction for E are those which divide

R = 2(c1 − c2)(c2 − c3)(c3 − c1); (5)

the additional bad primes for Eb are those which divide b to an odd power.
Our investigation of (1) falls naturally into two parts. The hypothesis that (1) is

everywhere locally soluble is equivalent to the assertion that for each place v of k
there exists av in k∗

v such that both the equations

U2 = avf
(1)(X) and V 2 = avf

(2)(Y )

are soluble in kv . However for (1) to be soluble in k there must exist a in k∗ such that
both

U2 = af (1)(X) and V 2 = af (2)(Y ) (6)
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are soluble in each kv . (These curves are D
(1)
a and D

(2)
a , respectively, and their Jacobians

are E
(1)
a and E

(2)
a .) For the existence of a to follow from that of the av is a local-

to-global assertion, and the obstruction to it is the Brauer–Manin obstruction given by
the quaternion algebras (c, f (1)(X)), where c is an element of k∗ whose image in the
k-algebra k[X]/(f (1)(X)) ⊗k k[Y ]/(f (2)(Y )) is a square. This step is a particular case
of a general set-up discussed in §5 (see Theorem 3 and its Corollary), culminating in
Lemma 6. If both Jacobians have rational 2-torsion then the classes of these quaternion
algebras come from Br k and hence produce no Brauer–Manin obstruction; this is
proved in Lemma 7.

Because we have to consider Eqs. (6) as a varies, we need information about the
effect of twisting on the 2-Selmer group. The result which we need in §6 is a special
case of stronger and more general results due to Kramer [8]; for ease of reference it
is stated in §4. We recall that the elements of the 2-Selmer group of E can be written
as triples m = (m1, m2, m3) where the mi are in k∗/k∗2 and m1m2m3 = 1. A detailed
exposition of this can be found at (7). We denote the triple associated with D

(s)
a by

m(s) = (m
(s)
1 , m

(s)
2 , m

(s)
3 ). We shall assume that neither of the m(s) is (1, 1, 1); for if for

example m(1) = (1, 1, 1) then we could choose any value of Y and (1) would become
an elliptic curve with rational 2-torsion, which would therefore have finite solutions.

Once we have proved that there does exist a such that (6) is soluble in each kv ,
the methods which we use are similar to those used in [18]; the key idea was first
introduced in [15] and [4]. What we do is to modify the value of a which appears in (6)
so that the 2-Selmer groups of the two E

(s)
a both have order 8; the order cannot be less

than 8 because the 2-Selmer group of E
(s)
a contains D

(s)
a and the curves corresponding

to the 2-division points, and after Lemma 8 and the assumption that neither m(s) is
(1, 1, 1), these are all distinct. Hence the order of that part of each Tate–Shafarevich
group which is killed by 2 must be at most 2, and it cannot be equal to 2 because of
the assumed finiteness of the Tate–Shafarevich group and the known properties of the
Cassels–Tate skew-symmetric form. Thus the image of D

(s)
a in the Tate–Shafarevich

group is zero, and D
(s)
a must therefore be soluble.

This process, which constitutes the proof of the solubility of (1) under suitable con-
ditions, is best described as an algorithm. To make it work we need further conditions
on the f (s). One of these we call Condition E. It is analogous to Condition D on p.
583 of [4] and Conditions D and E of other previous papers; see for example p. 521
and p. 525 of [16]. Like them it is related to the Brauer–Manin condition. (Condition
E is weaker than Condition D; it is essentially arithmetical, whereas Condition D can
be written in purely algebraic form.) In [18] Condition E appears as Condition 5 (p.
905, see also Theorem 3); in Theorem 1 of [18] it is replaced by a condition which
is simpler but not unreasonably stronger. In the present paper no such replacement
for Condition E seems to be feasible. In [18] there is also nothing corresponding to
Conditions Z1 and Z2 below.

We shall need several sets of bad places of k. In the definitions which follow, an even
prime will be one which divides 2 and an odd prime will be one which does not divide 2.

• S0, which depends only on k, consists of the infinite places, the even primes, and a
set of generators for the ideal class group of k.
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• S(E) is obtained from S0 by adjoining the odd primes of bad reduction for the
elliptic curve E.

• S(D(s)), s = 1, 2, is obtained from S(E(s)), where E(s) is the Jacobian of D(s), by
adjoining the primes at which some m

(s)
i is not a unit.

• S(D(1), D(2)) = S(D(1))∪S(D(2)). This set can be regarded as the set of bad places
for surface (1).

• Sc = Sc(D
(1), D(2)) for any c in k∗ is obtained from S(D(1), D(2)) by adjoining

those primes for which c is not a unit.
• B will always denote a finite set of places such that B ⊃ S0. We often write B

as the disjoint union of two sets B′ and B′′, in which case we shall require that
B′ ⊃ S0.

Let M be the set of triples m each of whose components mi lies in the subgroup of
k∗/k∗2 generated by the m

(s)
i for s = 1, 2 and i = 1, 2, 3; see (39) for a cohomological

interpretation of M. The reason for introducing M is that it consists of those 2-
coverings which cannot be rendered insoluble by twisting by an element c of k∗ which
is in k∗2

v for every place v in S(D(1), D(2)) and which does not render insoluble either
of the D

(s)
c . Condition E is as follows:

For every place v in S(D(1), D(2)) there exists av ∈ k∗
v with the following property:

for each v both D
(1)
av

and D
(2)
av

are soluble in kv , but for each s = 1, 2 and for each
m ∈ M \ {(1, 1, 1), m(s)} there exists w in S(D(1), D(2)) such that the 2-covering of
E

(s)
aw

given by m is not soluble in kw.

In Theorem A.1 of the appendix we show that Condition E implies the triviality of
the algebraic Brauer–Manin obstruction for (1).

Conditions Z1 and Z2 were originally invented because we were unable to prove
Theorem 1 without postulating some such properties; they are stronger than we need,
but weaker conditions of the same kind would lead to further complications in the
arguments in §6. We have subsequently observed that they imply that the 2-component
of the transcendental Brauer–Manin obstruction is trivial; see Theorem A.2 of the
appendix. Condition Z1 is as follows, where the c

(s)
i are defined by writing the curves

E(s) in form (3).

For some permutation i, j, k of 1, 2, 3 there exist odd primes p(1)
ij , p(1)

ik not in S(D(2))

such that the elements of the triple m(1) are units at p(1)
ij and p(1)

ik , and

p
(1)
ij ‖(c(1)

i − c
(1)
j ) and (c

(1)
i − c

(1)
k ), (c

(1)
j − c

(1)
k ) are units at p(1)

ij ,

p
(1)
ik ‖(c(1)

i − c
(1)
k ) and (c

(1)
i − c

(1)
j ), (c

(1)
j − c

(1)
k ) are units at p(1)

ik .

Condition Z2 is obtained from Condition Z1 by interchanging 1 and 2.

Theorem 1. Suppose that (1) is everywhere locally soluble, that the 2-division points
of E(1) and E(2) are defined over k, and that Conditions E, Z1 and Z2 hold. If the
relevant Tate–Shafarevich groups are finite, (1) is soluble in k.
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It is noteworthy that the surfaces studied in [17] are fibred by pencils of curves
of genus 1, and that we study surfaces (1) by lifting them to threefolds which are
fibred by pencils of products of two curves of genus 1. These facts are fundamental
to the approach in both papers; but they do raise the question whether it is only in the
presence of such fibrations that there exist reasonably simple sufficient conditions for
the Hasse principle to hold for families of K3 surfaces.

2. Preliminaries

We start by summarizing the standard theory of 2-descents on the elliptic curve (3).
The notation introduced in this section will be used, with minor exceptions, throughout
the paper. In the notation of (3), to any triple m = (m1, m2, m3) of elements of k∗
with m1m2m3 = 1 we associate the 2-covering Em of E given by

miY
2
i = X − ci for i = 1, 2, 3 and Y = Y1Y2Y3. (7)

Twisting Em does not alter the value of m; that is, (Em)b = (Eb)
m.

We ought to treat the mi as elements of k∗/k∗2 since the group of triples m is really
a way of describing H 1(k, E[2]); treating the mi as elements of k∗ is convenient but
involves some abuse of notation. In particular, the valuations vp(mi) for primes p of k
really take values in Z/2. We shall say that m is a unit at p if all the vp(mi) are even.
There is an isomorphism between the F2-vector space of all 2-coverings of E and the
group of triples m, the addition of two 2-coverings corresponding to componentwise
multiplication of the triples m. The 2-coverings associated with the 2-division points
are given by the triples

((c1 − c2)(c1 − c3), c1 − c2, c1 − c3) for (c1, 0),

(c2 − c1, (c2 − c3)(c2 − c1), c2 − c3) for (c2, 0),

(c3 − c1, c3 − c2, (c3 − c1)(c3 − c2)) for (c3, 0). (8)

For every finite set B ⊃ S0 of places of k we shall as usual denote by o∗B the group
consisting of the elements of k∗ which are units outside B. We now define various
sets, each of which is a vector space over F2. Write

XB = o∗B/o∗2
B , Yv = k∗

v/k∗2
v , YB =

⊕
v∈B Yv,

with a convention for VB, TB, WB and KB similar to that for YB, where V, T , W

and K will be defined shortly; but note that the spaces o∗B and XB do not follow this
convention, nor does UB which will be defined later. If n is the order of B then XB has
dimension n by Dirichlet’s unit theorem, and YB has dimension 2n because Yv contains
4/|2|v elements. It is known from class field theory that XB → YB is injective. Write

Vv = Yv ⊕ Yv, VB =
⊕

v∈B Vv = YB ⊕ YB.
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It is customary to identify the group of triples m with (k∗/k∗2)2, though this iden-
tification is not canonical and has the disadvantage of destroying the symmetry. This
accounts for the way in which VB and its subspaces are defined; but we shall almost
always write elements of VB as triples, the product of whose three components is 1.

Let UB be the image of XB ⊕ XB in VB. Thus dim UB = 1
2 dim VB = 2n. Define

the non-degenerate alternating bilinear form eB on VB by

eB =
∑

v∈B ev where ev((a, b), (c, d)) = (a, d)v + (b, c)v, (9)

the factors on the right being additive Hilbert symbols. If we write elements of VB as
triples m = (m1, m2, m3) with m1m2m3 = 1 and the mi in YB, then

ev(m
′, m′′) = (m′

1, m1
′′)v + (m′

2, m2
′′)v + (m′

3, m3
′′)v (10)

in an obvious notation. If we identify Vv with H 1(kv, E[2]) then the bilinear form ev

is induced by the Weil pairing E[2] × E[2] → F2.
The Hilbert product formula shows that UB is isotropic with respect to eB, and

comparison of dimensions shows that it is maximal isotropic in VB. Let Tv be the
image of (o∗v/o∗2

v )2 in Vv , where ov is the ring of integers of kv , and let Wv be the
image of E(kv) in Vv under the Kummer map

P = (X, Y ) �→ (X − c1, X − c2, X − c3) (11)

in the notation of (3). Tate has shown that Wv is a maximal isotropic subspace of Vv

for the alternating form ev , and Wv = Tv if v is not an infinite place, an even prime
or an odd prime of bad reduction for E. A 2-covering of E is soluble in kv if and only
if the corresponding point of Vv is in Wv .

Provided that B ⊃ S(E), a 2-covering of E is soluble in kv for all v not in B if and
only if the corresponding point of (k∗/k∗2)2 is in UB. Hence in this case the 2-Selmer
group of E can be identified with UB ∩ WB. Since UB and WB are both maximal
isotropic in VB, UB ∩ WB is both the left and the right kernel of the bilinear map
UB × WB → F2 induced by eB.

So far this is traditional folklore, first systematically described by Tate. The next
step was introduced in [4]. For any B ⊃ S(E) we construct inside each Vv a maximal
isotropic subspace Kv such that VB = UB ⊕ KB. Let tB : VB → UB be the projection
along KB and write

U ′
B = UB ∩ (WB + KB), W ′

B = WB/(WB ∩ KB) =
⊕

v∈B W ′
v,

where W ′
v = Wv/(Wv ∩ Kv). The map tB induces an isomorphism

�B : W ′
B → U ′

B
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and the bilinear function eB induces a bilinear function

e′
B : U ′

B × W ′
B → F2.

(An explicit description of �−1
B will be given in the proof of Lemma 3.) The bilinear

functions U ′
B × U ′

B → F2 and W ′
B × W ′

B → F2 defined, respectively, by

��

B(u′
1, u

′
2) = e′

B(u′
1, �

−1
B (u′

2)) and ��

B(w′
1, w

′
2) = e′

B(�Bw′
1, w

′
2) (12)

are symmetric. (For the proof, see [4] or [16].) We have ��

B(w′
1, w

′
2) = ��

B(�Bw′
1, �Bw′

2).

If B ⊃ S(E) the 2-Selmer group of E is isomorphic to both the left and the right
kernel of e′

B, and hence also to the kernels of the two maps (12). We have now two
descriptions of the 2-Selmer group—one as UB ∩ WB, which can be identified with
the kernel of eB restricted to UB × WB, and the other as either kernel of e′

B. These
are essentially the same. For U ′

B is orthogonal to WB ∩ KB, so that e′
B induces a map

U ′
B×WB �→ F2 whose left kernel is the same as the left kernel of e′

B. This is contained
in the left kernel of eB acting on UB × WB; and these two left kernels have the same
order, so they must be equal. In particular the left kernel of e′

B can be identified with
UB ∩ WB.

3. Refining the 2-descent process

In [4] there is considerable freedom in choosing the Kv , and this raises three obvious
questions:

• Is there a canonical choice of the Kv?
• How small can we make U ′ and W ′?
• Can we ensure that functions (12) are not merely symmetric but alternating?

The answer to the first question appears to be negative, even after we have fixed
the decomposition of the Vv in Lemma 1. Since U ′

B ⊃ UB ∩ WB, the best possible
response to the second question would be to achieve U ′

B = UB ∩ WB; we shall do this
by satisfying the requirement

WB = (UB ∩ WB) ⊕ (KB ∩ WB) (13)

which is stronger. For suppose that (13) holds; then

WB + KB = (UB ∩ WB) + KB

and it follows immediately that

U ′
B = UB ∩ (WB + KB) = UB ∩ WB. (14)
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The proof that (13) implies (14) makes no assumptions about B other than B ⊃ S(E);
we shall use this fact with B′ instead of B in the proof of Lemma 3. Since the 2-
Selmer group is UB ∩ WB and can be identified with the left and right kernels of
each of functions (12), these functions vanish identically and are therefore alternating.
However in the proof of Theorem 2 below we shall need to consider other recipes for
choosing the Kv , for which (13) does not hold but we can still prove that functions
(12) are alternating.

The construction of the Kv in this paper depends on two vector space lemmas, whose
setting generalizes the structure described in §2. We have stated Lemma 2 in a more
general form than we need for the applications, so that the notation makes it easier to
use Lemma 1. In doing this we follow [4], but Lemma 2 is considerably more powerful
than the corresponding result there or in [16]; however Lemma 1 can already be found
in [16].

Lemma 1. Let � be a non-degenerate alternating bilinear form on a finite-dimensional
F2-vector space V, and let W be a maximal isotropic subspace of V. Then V can be
expressed as a direct sum ⊕Vi of mutually orthogonal subspaces, each of dimension 2,
such that the restriction of � to any Vi is non-degenerate, each Vi ∩ W has dimension
1 and W is the direct sum of the Vi ∩ W .

Proof. The existence of � shows that dim V is even; so let dim V = 2n with n > 1,
the case n = 1 being trivial. It is enough to show that if w1 is a non-trivial element
of W then w1 lies in a subspace V1 satisfying the conditions of the lemma, and that
if V ′ is the orthogonal complement of V1 in V then dim(V ′ ∩ W) = n − 1; for
we can then complete the proof by induction on n. For this, choose x1 in V not
orthogonal to w1. Let V1 be the vector space generated by w1 and x1 and let V ′ be
its orthogonal complement in V. Thus dim(V1 ∩ W) = 1 and the restriction of � to
V1 is non-degenerate, because V1 is not isotropic. Now V ′ ∩ W is the subspace of W
orthogonal to x1; so dim(V ′ ∩ W)�n − 1. On the other hand, w1 is not in V ′ ∩ W ; so
dim(V ′ ∩ W)�n − 1. �

Lemma 2. Let the Vi be n vector spaces over F2, each equipped with a non-degenerate
additive alternating bilinear form �i with values in F2. Denote by � the sum of the �i ,
which is a non-degenerate bilinear form on V = ⊕Vi . For each i let Wi be maximal
isotropic in Vi , and let U be maximal isotropic in V with respect to �. Then there exist
maximal isotropic subspaces Ki ⊂ Vi such that V = U ⊕ K and

W = (U ∩ W) ⊕ (K ∩ W), (15)

where W = ⊕Wi and K = ⊕Ki . Moreover U ∩ (W + K) = U ∩ W .
Suppose also that there are functions �i on Vi with values in F2 which satisfy

�i (� + �) = �i (�) + �i (�) + �i (�, �) (16)
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for any �, � in Vi , and let � on V be the sum of the �i . Assume that � is trivial on
U and �i is trivial on Wi . Then the Ki can be so chosen that in addition �i is trivial
on Ki and therefore � is trivial on K.

Proof. We consider first the special case in which every Vi has dimension 2 and
therefore every Wi has dimension 1. Let I be maximal among those subsets of {1, . . . , n}
for which U ∩ WI is trivial, and let J be the complement of I. For i ∈ I we choose
Ki = Wi ; this will automatically ensure that �i is trivial on Ki and that U +⊕i∈IKi is
a direct sum. For any j ∈ J the maximality of I shows that U∩(WI +Wj) is non-trivial,
whence Wj ⊂ U ⊕ WI because Wj is one-dimensional; so U ⊕ WI ⊃ W . Choose each
Kj so that Vj = Wj ⊕ Kj and suppose that u + ∑

wi = ∑
kj is in (U ⊕ WI) ∩ KJ .

If for � ∈ J we write the non-trivial element w� of W� as w� = u′ + ∑
w′

i in U ⊕ WI

then

�(k�, w�) = �
(∑

kj , w�

)
= �(u, w�) = �

(
u,

∑
w′

i

)

= �
(∑

kj −
∑

wi,
∑

w′
i

)
= 0;

so k� = 0. Since this is true for each �, (U ⊕WI)+KJ is a direct sum. By comparison
of dimensions V = U ⊕ K . Again K ∩ W = WI , so that

(U ∩ W) ⊕ (K ∩ W) = (U ∩ W) ⊕ WI = (U ⊕ WI) ∩ W = W.

It only remains to show that if the �i exist then we can choose the Kj for j ∈ J

so that �j vanishes on Kj . Let �j be the non-trivial element of Wj , and let �′
j and

�′′
j = �′

j + �j be the elements of Vj \ Wj . Since �j (�j ) = 0 it follows from (16) and
the non-degeneracy of �j that

�j (�
′
j ) + �j (�

′′
j ) = �j (�

′
j , �j ) = 1;

we now generate Kj by whichever of �′
j and �′′

j satisfies �j (�j ) = 0.
To deduce the lemma in general, we use Lemma 1 to decompose each Vi as the

direct sum of mutually orthogonal subspaces Vij of dimension 2, on each of which the
bilinear form �i is non-degenerate and each of which meets Wi in a subspace Wij of
dimension 1. By what we have already proved, we can find spaces Kij having (with
respect to this finer decomposition) all the properties stated in the lemma. Now take
Ki to be the sum of the Kij . �

We now revert to the notation of §2. Let B1 ⊂ B and let VB1 be a vector subspace of
VB1 . There are two (and sometimes three) vector spaces in VB which we can naturally
associate with VB1 , and we need a notation which distinguishes them. One, which
we shall denote again by VB1 , is simply VB1 ⊕ {0} where {0} is the trivial vector
subspace of VB\B1 . A second is VB1 ⊕VB\B1 ; this is ™∗VB1 where ™ : VB → VB1 is the
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projection map. The third can only be defined when VB1 ⊂ UB1 . Now the pull-back
of VB1 under the injection XB1 ×XB1 ↪→ VB1 is a vector subspace of XB ×XB, so its
image in VB is a vector space which we call E∗VB1 ⊂ UB. This construction induces a
natural isomorphism VB1 → E∗VB1 , and we shall frequently identify these two spaces.
If VB1 ⊂ U ′

B1
and KB\B1 = TB\B1 then E∗VB1 ⊂ U ′

B; in this case the image of E∗VB1

under �−1
B lies in W ′

B1
⊕ {0} ⊂ W ′

B, which we identify with W ′
B1

, and the diagram

E∗VB1 ↪→ E∗U ′
B1

→ W ′
B1↑ ↑ ‖

VB1 ↪→ U ′
B1

→ W ′
B1

commutes, where U ′
B1

→ W ′
B1

is �−1
B1

.
From here until the end of this section we require that B ⊃ S(E). Let B be the

disjoint union of the sets B′ ⊃ S0 and B′′, and replace �i by ev . It is not easy to make
use of the construction of the Kv given in the proof of Lemma 2. In what follows, we
shall therefore usually apply Lemma 2 to B′ rather than B, and we shall use a simpler
but less powerful recipe for choosing Kv when v is in B′′. The new recipe does not
yield (13), but we shall see in Theorem 2 that it does still make ��

B alternating. The
first part of Lemma 2, which does not involve the �i , gives the following result.

Lemma 3. In the notation of §2, we can take Kv = Tv for all v in B′′, and we can
choose the Kv for v in B′ so that

WB′ = (UB′ ∩ WB′) ⊕ (KB′ ∩ WB′) ⊂ VB′ , (17)

which implies U ′
B′ = UB′ ∩ WB′ . Moreover

U ′
B = E∗U ′

B′ ⊕ �BW ′
B′′ = E∗U ′

B′ ⊕
(
⊕q∈B′′�BW ′

q

)
⊂ VB, (18)

and the restriction of ��

B to E∗U ′
B′ is trivial.

Proof. For B = B′ this follows from Lemma 2. In the general case, let the Kv for
v in B′ be those already constructed for B = B′ and let Kv = Tv for v in B′′. By
dimension count, to prove that VB = UB ⊕ KB it is enough to prove that KB ∩ UB is
trivial. But if 	 = (	1, 	2, 	3) is an element of KB ∩ UB then the 	i must be units at
p for any p in B′′; so 	 belongs to the image of UB′ in VB = VB′ ⊕ VB′′ . Hence the
projection onto VB′ of 	 lies in KB′ ∩ UB′ , which is trivial; so each 	i is trivial and
KB ∩ UB is indeed trivial. As we noted after (14), the assertion that U ′

B′ = UB′ ∩ WB′
follows from (17). Again

dim U ′
B = dim W ′

B = dim W ′
B′ + dim W ′

B′′ = dim U ′
B′ + dim W ′

B′′ . (19)
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Consider the map

U ′
B ↪→ VB = WB + KB → W ′

B = W ′
B′ ⊕ W ′

B′′ → W ′
B′′ , (20)

where the second map is projection along KB, since W ′
B = WB/(WB ∩ KB). Suppose

that u is in the kernel of map (20). Because the map U ′
B → W ′

B which is a factor

of (20) is the isomorphism �−1
B and KB′′ = TB′′ , this implies that u is in E∗UB′ and

therefore in E∗UB′ ∩ U ′
B = E∗U ′

B′ . Relation (19) now shows that map (20) is onto and
its kernel is precisely E∗U ′

B′ .

For use later, it is convenient to calculate �−1
B u for any u in U ′

B, though for the

proof of Lemma 3 we only need to do this for u in E∗U ′
B′ . To obtain �−1

B u we project
u to an element uv of Vv for each v in B and then add to each uv whatever element
of Kv is needed for the sum to lie in Wv; this sum is then projected into W ′

v . If u is in
E∗U ′

B′ then uv is in Wv for each v in B′, by the sentence before (19), and in Tv = Kv

for each v in B′′. So the component of �−1
B u in W ′

v for v in B′ is just the coset of

Wv ∩ Kv containing uv; and the component of �−1
B u in W ′

v for v in B′′ is trivial. To
compute the first function (12) we add an element of KB to u′

2 in such a way as to
obtain an element w2 of WB, and we then evaluate

��

B(u′
1, u

′
2) = eB(u′

1, w2) = eB′(u′
1, w2) + eB′′(u′

1, w2).

If u′
1 and u′

2 are both in E∗U ′
B′ then the first summand on the right vanishes because

U ′
B′ ⊂ WB′ and eB′ is trivial on WB′ × WB′ , and the second summand on the right

vanishes because the projection of w2 on VB′′ is trivial. �

The map �−1
B : W ′

B → U ′
B depends on the choice of B′ and of the Kv , and so

does the composite map WB → W ′
B → U ′

B → UB. Lemma 3 enables us to write

the matrix representing �� or �� in the form

(
0 ∗
∗ ∗

)
, and we already know that this

matrix is symmetric. In Theorem 2 we obtain sufficient conditions for the matrix to be
alternating; this result is useful primarily because alternating matrices have even rank.
Our main application of Theorem 2 is to twisted curves Eb where B′ contains S(E)

and the primes in B′′ are bad only because they divide b. But it costs nothing to prove
a slightly more general result.

For the rest of this paper, we always choose the Kv in accordance with the recipe
in Lemma 3. When we apply the second paragraph of Lemma 2, we replace i by v

and �i by ev; and for (m1, m2, m3) in Vv where v ∈ B′ we take �v((m1, m2, m3)) to
be any one of the three expressions

(mi(ci − cj )(ci − ck), mj (cj − ci)(cj − ck))v, (21)

which can easily be seen to be equal. The significance of �v is as follows: The antipodal
involution (X, Y ) �→ (X, −Y ) on (3) determines an involution on the 2-covering Em;
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in the notation of (7) this involution reverses the signs of Y1, Y2, Y3. The quotient of
Em by this involution is a smooth projective curve Cm of genus 0, which is given by

(c2 − c3)m1Y
2
1 + (c3 − c1)m2Y

2
2 + (c1 − c2)m3Y

2
3 = 0; (22)

and �v(m) is just the class [Cm] as an element of Br kv . We must check that these
�v satisfy the conditions of Lemma 2. Straightforward calculation, starting from (21)
and using the bilinearity of the Hilbert symbol, shows that if we write � = (�1, �2, �3)

and � = (�1, �2, �3) then

�v(� + �) + �v(�) + �v(�) = (�1, �2)v + (�1, �2)v

+((c1 − c2)(c1 − c3), (c2 − c1)(c2 − c3))v.

Here the sum of the first two terms on the right is ev(�, �), and the third term vanishes
because the sum of its two arguments is (c1 − c2)

2. The triviality of � on UB′ follows
from the Hilbert product formula, and the triviality on Wv follows from the fact that
for m ∈ Wv the conic Cm has a kv-point, whence [Cm] = 0. Alternatively, we can
argue as follows. It follows from (22) that

(c2 − c1)(c2 − c3)m2(m1Y1)
2 + (c1 − c2)(c1 − c3)m1(m2Y2)

2

= m1m2m3((c1 − c2)Y3)
2.

If the 2-covering (7) is soluble, then since m1m2m3 = 1 this implies

((c1 − c2)(c1 − c3)m1, (c2 − c1)(c2 − c3)m2)v = 0, (23)

which is just the result that we need.

Theorem 2. Suppose that B ⊃ S(E) is the disjoint union of B′ ⊃ S0 and B′′. Suppose
that for each q in B′′ all the vq(ci − cj ) have the same parity. Choose the Kv as in
Lemma 3 so that in particular

WB′ = (UB′ ∩ WB′) ⊕ (KB′ ∩ WB′) (24)

and Kv = Tv for all v in B′′. Then ��

B is alternating on U ′
B.

Proof. For v in B′, �v vanishes on Kv because the Kv have been chosen as in Lemma
2. For p in B′′ and m in Kp = Tp the mi are units at p. Hence (22) has good reduction
at p because the vp(ci − cj ) are all congruent mod 2; so �p again vanishes on Kp.
Thus �B(k) = 0 for all k in K.
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Now let u be in U ′
B; thus u = w + k with w in WB and k in KB, and �−1

B u is the
image of w in W ′

B. Now

��

B(u, u) = e′
B(u, �−1

B u) = eB(u, w) = �B(u) + �B(w) + �B(u − w),

where the right-hand equality is (16). The Hilbert product formula, applied for example
to (21), shows that �B(u) = 0. If m is in Wv then Em is soluble in kv and hence so
is Cm; so �v(m) = [Cm] = 0. This proves that �B(w) = 0; finally u − w = k and we
have already shown that �B(k) = 0. �

For later use we need detailed information about Wq for odd q in B. The following
lemma provides a complete dictionary, though in what follows we shall only use part
of it. (Unfortunately it does not seem possible to use the corresponding information
when v is an infinite place, nor even to describe it when v comes from an even prime;
indeed the result over Q for the prime 2 is already extremely intricate.) In the statement
and proof of the following lemma a1 ∼ a2 will mean that a1/a2 is in k∗2

q , and classes

will mean classes in k∗
q/k∗2

q .

Lemma 4. Let q be an odd prime.
If q divides all the ci − cj to the same even power, then Wq = (o∗q/o∗2

q )2.
If q divides all the ci − cj to the same odd power, then Wq consists of the

classes of

(1, 1, 1) and the three triples (8). (25)

Now suppose that q does not divide all the ci − cj to the same power. After renum-
bering, let

v(c1 − c2) > v(c1 − c3) = v(c2 − c3). (26)

Denote by � the class of c1 − c2, by 
 the class of c1 − c3 (which by (26) is the same
as the class of c2 − c3), and by � the class of quadratic non-residues mod q. If v(
)
is odd then Wq consists of the classes of

(1, 1, 1), (�
, �, 
), (−�, −�
, 
), (−
, −
, 1). (27)

If v(�) is odd and v(
) even then Wq consists of the classes of

(1, 1, 1), (�
, �, 
), (�, �, 1), (��
, ��, 
). (28)

If v(�) and v(
) are both even and 
 ∼ � then Wq consists of the classes of

(1, 1, 1), (�, �, 1), (�, 1, �), (1, �, �). (29)
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If v(�) and v(
) are both even and 
 ∼ 1 then Wq consists of the classes of

(1, 1, 1), (�, �, 1), (�, �, 1), (��, ��, 1) (30)

where � is a uniformizing variable for q.

Proof. Since Wq is maximal isotropic in Vq and q is odd, Wq contains exactly four
elements. Hence it is enough to show in each case that the elements exhibited in-
duce distinct elements of Vq and lie in Wq; and the first of these statements is al-
ways obvious. If the ci − cj are all divisible by the same even power of q we can
rescale Eq. (3) so that q becomes a prime of good reduction, and the assertion is then
well-known. The three expressions (8) are all in Wq; this proves the assertions in the
lemma whenever v(
) is odd, and also shows that the second expression (28) is in Wq.
If v(
) is even we can find � in o∗q such that � ∼ �(c1 −c3) and 1+� ∼ c1 −c3. Indeed,

the conic (c1 − c3)X
2
1 = �(c1 − c3)X

2
2 + 1 has good reduction, and so is solvable in

oq by Hensel’s lemma. Moreover, we can arrange that X2 is in o∗q; then we choose

� = �(c1 − c3)X
2
2. Now take X = c1 + �(c1 − c3) in (11), so that

Y 2 = �(1 + �)(c1 − c3)
2{(c1 − c2) + �(c1 − c3)} ∼ (c1 − c3)

3�2(1 + �)

is in k∗2; thus (�, �, 1) is in Wq, which completes the proof of (28). The same argument
also shows that (�, �, 1) is in Wq under the hypotheses of (29). One of the last two
triples (29) is an expression (8), and this completes the proof of (29). Finally, under
the hypotheses of (30) the same argument as before shows that (�, �, 1) is in Wq. Since
now v(�) > v(
) + 1, we can take

X = c1 + �(c1 − c3) or X = c1 + ��(c1 − c3)

and this shows that the last two elements of (30) are also in Wq. �

Remark. When the smallest v(ci − cj ) is odd, E has additive reduction. When all the
v(ci −cj ) are equal to the same even number E has good reduction. All the other cases
correspond to multiplicative reduction.

4. An effect of twisting

For b ∈ k∗ let Eb be the quadratic twist (4) of an elliptic curve E with Eq. (3), and
let db be the rank of the 2-Selmer group of Eb. We now address a special case of the
problem of the variation of the parity of db with b.

Lemma 5. Let q be an odd prime in S(E) such that

vq(c1 − c2) > 0, vq(c1 − c3) = vq(c2 − c3) = 0.
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Let b, c in k∗ be such that b ∈ k∗2
v for all v in S(E) other than q, b is a quadratic

non-residue at q, and c is a unit at q. Then dc and dcb have opposite parities.

Proof. Eq. (4) shows that without loss of generality we can assume c = 1. The parity
of db +d1 is that of the rank of the 2-Selmer group of E over k(

√
b) ([10, Lemma 1.2],

which uses the skew-symmetric Cassels–Tate form, but not the conjectural finiteness
of the Tate–Shafarevich groups). By Theorem 1 of [8] this rank has the same parity as
the (finite) sum of the iv = dim Wv/(Wv ∩ W

(b)
v ), where W

(b)
v is the image of Eb(kv)

in Vv (see [8, (11) and Proposition 7]). In our case if v �= q is in S(E) then E and
Eb are isomorphic over kv , and hence iv = 0. The reduction of E at q is multiplicative
and k(

√
b)/k is inert, thus iq = 1 by the formulae on p. 128 of [8]. If v /∈ S(E) is a

prime dividing b to an odd power, then the reduction of E at v is good and k(
√

b)/k

is ramified; in this case iv = 0 by Proposition 3 of [8]. If both E and Eb have good
reduction at v, then Wv = W

(b)
v , so that iv = 0. Alternatively, dimWv ∩ W

(b)
v in all

these cases can be easily found from Lemma 4. �

5. The local-to-global step and the vertical obstruction

Let k be a field of characteristic 0 with algebraic closure k; � = Gal (k/k). Let X
and Y be smooth projective varieties over k, and � : Y → X a ramified double covering.
For an irreducible divisor D ⊂ X we write valD : k(X)∗ → Z for the corresponding
valuation, and write kD for the algebraic closure of k in the function field k(D). Choose
f ∈ k(X) such that k(Y ) = k(X)(

√
f ). Define a separable k-algebra L as the direct sum

of kD such that valD(f ) is odd; L is well defined since f is unique up to multiplication
by an element of k(X)∗2.

Let Y be the quotient of Y ×k Gm by 2 = {±1} acting on Gm by multiplica-
tion and on Y as the Galois group of the covering Y → X. The generic fibre of
Y → X is a k(X)-torsor under Gm; it is trivial by Hilbert’s Theorem 90. Hence
Y is birationally equivalent to X ×k P1

k over X. If t is a multiplicative coordinate
on Gm, then Y is given by the equation y2 = tf . The fibres of the natural map
Y → Gm are the quadratic twists Ya of Y, for all a ∈ k∗. By Hironaka’s theo-
rem there exists a smooth compactification Y ⊂ X such that the following diagram
commutes:

Y ↪→ X⏐⏐	 p

⏐⏐	
Gm ↪→ P1

k

We refer the reader to §1 of [5] for a convenient survey of the basic properties of
the Brauer group. By definition the vertical Brauer group BrvertX attached to the mor-
phism p : X → P1

k is the intersection of p∗Br k(P1
k) = p∗Br k(t) and Br X in Br k(X ).
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The commutative diagram

Br k(X) ↪→ Br k(X ×k P1
k) = Br k(X )

∪ ∪ ∪
Br X = Br (X ×k P1

k) = Br X

shows that Br X is naturally isomorphic to Br X . Thus we can consider BrvertX as a
subgroup of Br X. Recall the standard notation

Br 0X = Im[Br k → Br X], Br 1X = Ker [Br X → Br X].

Theorem 3. In the above notation BrvertX /Br 0X consists of the classes of quaternion
algebras (c, f ), where c belongs to the finite group Ker [k∗/k∗2 → L∗/L∗2].

The theorem also holds for � unramified provided that c ranges over all of k∗/k∗2.

Proof of Theorem 3. By the definitions of Y and X the base change f : P1
k → P1

k

given by t = z2 turns X into a variety birationally equivalent to Y ×k P1
k over P1

k . We
have a commutative diagram

Br k(z)
p′∗

−−−→ Br k(Y ×k P1
k) ⊃ Br (Y ×k P1

k)

f ∗

⏐⏐ 
⏐⏐ 
⏐⏐

Br k(t)
p∗

−−−→ Br k(X ) ⊃ Br X

where the Brauer groups in the right-hand column are identified with the unramified
(over k) subgroups of their ambient groups. Let A ∈ Br k(t) be such that p∗A ∈ Br X .
The fibres of Y → Gm are geometrically irreducible, thus A can be ramified only
at 0 and ∞. By the diagram p′∗f ∗A is in Br (Y ×k P1

k). However, the fibres of the
projection Y ×k P1

k → P1
k are geometrically irreducible, which implies that already

f ∗A is unramified over k, so that f ∗A ∈ Br P1
k = Br k. The covering f : P1

k → P1
k is

ramified only at 0 and ∞, with ramification index 2, hence the equal residues of A at
0 and ∞ are the classes in k∗/k∗2 of some c ∈ k∗. It follows that up to an element
of Br k we have A = (c, t) (see [5, §1.2]). The natural injection Br k(X) → Br k(X )

sends (c, f ) to (c, f ) = (c, t), since tf ∈ k(X )∗2. This map restricted to Br X is an
isomorphism onto Br X , hence (c, t) ∈ Br X if and only if (c, f ) ∈ Br X. The purity
theorem of Grothendieck ([6, II, Theorem 6.1], see also [5, Theorem 1.3.2]), gives the
following exact sequence:

0 → Br X → Br k(X)
res−→ ⊕H 1(k(D), Q/Z),

where the sum is over all irreducible divisors D ⊂ X. If valD(f ) is even then
resD((c, f )) = 0; if valD(f ) is odd, then resD((c, f )) is the class of c in k∗

D/k∗2
D ⊂
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k(D)∗/k(D)∗2 = H 1(k(D), 1
2 Z/Z) ⊂ H 1(k(D), Q/Z) (see [5, Proposition 1.1.3]). This

shows that (c, f ) ∈ Br X = Br X precisely when c goes to zero in L∗/L∗2. �

Now assume that k is a number field, and X has points in all completions of k.

Lemma 6. (i) The obstruction related to BrvertX , which we call the vertical Brauer–
Manin obstruction, vanishes if and only if for each place v of k there exists av ∈ k∗

v

such that Yav (kv) is non-empty and

∑
v

invv((c, av)) = 0 for all c ∈ Ker [k∗/k∗2 → L∗/L∗2]. (31)

(ii) Let {av} be a family satisfying the conditions of (i), and let B be a finite set of
places of k. Then there exists a ∈ k∗ arbitrarily close to av for each v ∈ B, and in
particular with a/av ∈ k∗2

v , such that for each place v of k the set Ya(kv) is non-empty.

Proof. (i) The vertical obstruction vanishes if and only if there exists {Pv} in
∏

v X (kv)

such that
∑

v invv(A(Pv)) = 0 for all A ∈ BrvertX . Theorem 3 shows that the quotient
of BrvertX by the image of Br k is finite; and for fixed A the function invv(A(Pv))

with values in Q/Z is locally constant. Thus for each v we can find Qv in a small
neighbourhood of Pv in X (kv) such that p(Qv) ∈ Gm and invv(A(Qv)) = invv(A(Pv))

for all A in BrvertX . Let av ∈ k∗
v be the coordinate of p(Qv). Now (i) follows from

Theorem 3.
(ii) See the proof of Theorem A of [2], which uses torsors and strong approximation.

Alternatively, if L contains a factor which is an abelian extension of k we can apply
Theorem 2.2.1(a) of [3] to an appropriate model X (this theorem uses Dirichlet’s
theorem on primes in an arithmetic progression). For both theorems it is essential that
at most two geometric fibres of p are degenerate. �

Similar results were obtained by David Harari by a different method (unpublished).
We now consider a particular case of the above set-up. In the rest of this section

f (1)(x1) and f (2)(x2) will be any separable quartic polynomials. We remind the reader
that the curves D(s), s = 1, 2, are defined by y2

s = f (s)(xs), and that E(s) is the
Jacobian of D(s). Let Y be the blowing-up of the 16 points of D(1) × D(2) given by
y1 = y2 = 0, and let X be the minimal desingularization of the quotient of D(1) ×D(2)

by the involution which changes the signs of y1 and y2. This involution extends to
Y and defines a double covering � : Y → X ramified at the 16 exceptional curves.
We can choose either of f (1) and f (2) as our function f. For s = 1, 2 let Ls be the
separable k-algebra k[x]/(f (s)(x)); then L = L1 ⊗k L2.

Lemma 7. (i) Suppose that the group Ker[k∗/k∗2 → L∗/L∗2] is generated by Ker[k∗/
k∗2 → L∗

1/L
∗2
1 ] and Ker[k∗/k∗2 → L∗

2/L
∗2
2 ]. Then BrvertX = Br 0X.

(ii) The condition of (i) is satisfied when each f (i) is irreducible with a biquadratic
splitting field or is the product of two irreducible quadratic polynomials.
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(iii) Let k be a number field. Suppose that X has points in all completions of k, and
each E(s) has all its 2-division points in k. Let B be a finite set of places of k and for
each v in B let av in k∗

v be such that each D
(s)
av

(kv) is non-empty. Then there exists a
in k∗ arbitrarily close to av for each v in B such that for each place v of k neither
of the D

(s)
a (kv) is empty.

Proof. (i) The quaternion algebra (c, f ) = (c, f (s)(xs)) with c ∈ Ker [k∗/k∗2 →
L∗

s /L
∗2
s ] is in Br X and belongs to the image of Br k(xs); and k(xs) ⊂ k(X ). The

algebra (c, f (s)(x)) is unramified away from the closed points of A1
k given by the

monic irreducible factors P(x) of f (s)(x). The residue at P(x) = 0 is the class of c in
H 1(kP , Z/2) = k∗

P /k∗2
P , where kP = k[x]/(P (x)). Since Ls = ⊕P kP where the sum is

taken over all irreducible monic P(x) dividing f (s)(x), we have L∗
s /L

∗2
s = ⊕P k∗

P /k∗2
P .

Hence (c, f (s)(x)) is unramified everywhere on A1
k . It is also unramified at infinity since

the degree of f (s) is even. Thus (c, f (s)(x)) represents an element of Br P1
k = Br k.

(ii) In this case L is a direct sum of composita of factors of L1 and L2. All these
fields are pluriquadratic extensions of k, and the statement follows at once.

(iii) We are in the situation of (ii), thus we have the conclusion of (i). Since the
vertical Brauer–Manin obstruction vanishes, (31) holds for any family {av} such that
D

(s)
av

(kv) is not empty. Now the statement follows from Lemma 6(ii). �

Note that the condition in (i) of this lemma is not always satisfied. Indeed, Ker[k∗/
k∗2 → L∗/L∗2] consists of the classes of those a in k∗ such that L ⊃ k(

√
a). Hence

it is enough to show that there exist extensions k1 and k2, both of degree 4, such that
each of them contains the same quadratic extension k0 of k and no other subextension,
but the compositum K = k1k2 also contains a different quadratic extension of k. To
construct such an example we start with a Galois extension K/k with Galois group
D4, the dihedral group of order 8 generated by (1234) and (13). Let H1 and H2
be the subgroups of D4 generated by (13) and (24), respectively, and let k1 and k2
be the fixed fields of H1 and H2, respectively; then K = k1k2. The fields L with
K ⊃ L ⊃ k correspond to the subgroups G = Gal(K/L) ⊂ D4, and L ⊂ ki if and
only if G ⊃ Hi = Gal(K/ki). The subgroups of index 2 in D4 are G1 = 〈(1234)〉,
G2 = 〈(12)(34), (13)(24)〉 and G3 = 〈(13)(24)〉; and G3 contains both Hi , whereas G1
and G2 contain neither Hi . Hence there are three quadratic extensions of k contained
in K, but only one of them is contained in either of the ki .

Corollary. Assume that surface (1) is everywhere locally soluble and Condition E
holds. Then there exists a ∈ k∗ such that for s = 1, 2 the 2-covering of E

(s)
a given by

m ∈ M is everywhere locally soluble if and only if m = (1, 1, 1) or m = m(s).

Proof. Condition E gives us av ∈ k∗
v for every place v of bad reduction of (1). By

Lemma 7(iii) we can find a ∈ k∗ such that a/av ∈ k∗2 for all these places, and such
that both curves D

(s)
a are everywhere locally soluble. However, the 2-covering of E

(s)
a

given by m ∈ M other than (1, 1, 1) or m(s) is not soluble at the place w provided by
Condition E. �
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The proof of Lemma 7(iii) is not constructive. But for any particular pair f (1), f (2)

defined over k, regardless of whether it satisfies the conditions of Lemma 7(ii) or (iii),
the search for a suitable a, and therefore the decision whether such an a exists, is
finite. The argument is as follows. Let � be the natural map k∗ → ∏

S(k∗
v/k∗2

v ) where
S = S(D(1), D(2)), and for any a in k∗/k∗2 decompose the ideal (a) as a′a′′ where
a′ is a product of ideals in S and a′′ is a product of ideals outside S; here a′ and
a′′ are really ideals modulo squares of ideals. Suppose we choose one of the finitely
many values of �(a) for which both D

(s)
a are locally soluble at each place in S; this

in particular determines a′. Let p be a prime with vp(a
′′) odd; then f (s)(X) = 0 must

be soluble in kp for D
(s)
a to be soluble in kp. The only other condition which we need

to impose on a′′ is that a′a′′ is principal and can be written as (a) with �(a) having
the chosen value. For given a′ the question whether there exists an a′′ satisfying these
conditions is decidable.

6. Proof of Theorem 1

We need to impose some extra constraints on the value of a given by the Corollary
to Lemma 7. Once we have chosen a, the twists E

(s)
c which will appear in this section

will all be such that c/a is a unit at each prime in Sa = Sa(D
(1), D(2)). The first

additional property in Lemma 8 ensures that Conditions Z1 and Z2 hold for all those
D

(s)
c and not merely for the D(s). The second additional property ensures that for each

s the three triples (8) are distinct from each other, from (1, 1, 1) and from m(s); we
have already required each m(s) to be distinct from (1, 1, 1). Recall that the m(s) are
units outside Sa .

Lemma 8. Assume that surface (1) is everywhere locally soluble and Condition E
holds. Then there exists a ∈ k∗ such that for s = 1, 2 the 2-covering of E

(s)
a given

by m ∈ M is everywhere locally soluble if and only if m = (1, 1, 1) or m = m(s).
Moreover, we can arrange that in addition

• a is a unit at p(s) for each p(s) in Conditions Z1 and Z2,
• there is a prime ideal p not in S(D(1), D(2)) such that vp(a) is odd.

Proof. Choose a as in the Corollary to Lemma 7. If the first additional property does
not hold, suppose for example that some such p(1) does divide a to an odd power, and
let p be a prime ideal not in Sa such that we can write p/p(1) = (b) where b is in
k∗2
v for every v in Sa other than p(1). The solubility of D

(1)
a at p(1) implies that we

are in case (27) of Lemma 4 and therefore m(1) is in the class of (1, 1, 1) because by
hypothesis m(1) is a unit at p(1). Hence D

(1)
ab is soluble at p(1). Similarly D

(2)
a is in

case (25) of Lemma 4, so that m(2) is in the class of (1, 1, 1) and D
(2)
ab is soluble at

p(1). For any v in Sa other than p(1), D
(s)
ab is isomorphic to D

(s)
a over kv and therefore

soluble in kv . The Hilbert product formula applied to each symbol (m
(s)
i , b) shows that

each m
(s)
i is a square at p; thus the curves D

(s)
ab are soluble at p. Since both curves
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D
(s)
ab are everywhere locally soluble we can replace a by ab, and p(1) divides ab to an

even power.
To satisfy the second condition we multiply a by �, where p = (�) is a principal

prime ideal such that � is in k∗2
v for every v in Sa .

It remains to check that no 2-covering of E
(s)
ab defined by a triple m �= (1, 1, 1),

m �= m(s), is everywhere locally soluble. By Corollary to Lemma 7 the 2-covering of
E

(s)
a is insoluble at some prime v ∈ Sa , and v �= p(1) since each m

(s)
i is a square at

p(1). Now E
(s)
ab and E

(s)
a are isomorphic over kv , so that their 2-coverings given by m

are both soluble or both insoluble. �

We denote the rank of the 2-Selmer group of E
(s)
a by d

(s)
a . From now on a has

the fixed value given by Lemma 8; thus Sa is also fixed. At later stages the constant
actually used for the twisting will be denoted by c, and to change the twisting we shall
replace c by cb where b will be a unit at every prime in Sc. As was noted in §1, the
components mi of a triple m are really elements of k∗/k∗2, though it is convenient
to represent them as elements of k∗; so vq(mi) for any prime q is really an element
of Z/2.

We express the proof of Theorem 1 as an algorithm for choosing a value of c such
that every D

(s)
c is everywhere locally soluble and each d

(s)
c = 3. The reader to whom

algorithms are repellent can choose that value of c satisfying the conditions of Lemma 8
for which the pair d

(1)
c , d

(2)
c is minimal under the lexicographic ordering. The arguments

which follow then enable him or her to obtain a contradiction unless d
(1)
c = d

(2)
c = 3.

Of course recasting the argument in this form renders it non-constructive.
Define the restricted 2-Selmer group of E

(s)
c to be the subgroup of the 2-Selmer

group consisting of those triples which are units outside Sa . The restricted 2-Selmer
group contains D

(s)
c and the trivial element E

(s)
c . In the first stage of the algorithm,

which is Lemma 9(i), we reduce the restricted 2-Selmer group of each E
(s)
c for this

value of c to these two elements. In the second stage we reduce d(1) to 3, possibly at
the price of increasing d(2); and in the third stage we reduce d(2) to 3 while preserving
d(1) = 3.

Lemma 9(ii) will show that the twistings involved in these stages leave the restricted
2-Selmer groups of the two E(s) unchanged. For at each step the change in the twisting
will be given either by the Corollary to Lemma 10 or by Lemma 12. In the former
case it will satisfy the conditions of Lemma 9(ii); in the latter case it will be the
compositum of a twisting which obviously does not change the restricted 2-Selmer
groups and a twisting which satisfies the conditions of Lemma 9(ii). Indeed Lemma
9(ii) has been tailored to these applications.

Lemma 9. Let a satisfy the conclusions of Lemma 8.

(i) We can choose b in k∗ so that b is a unit at each prime in Sa and for s = 1, 2
the restricted 2-Selmer group of E

(s)
ab consists of E

(s)
ab and D

(s)
ab .

(ii) Let c, c′ be such that c/a is a unit at each prime in Sa and
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• c′/c is a unit at each prime in Sc,
• c′/c is in k∗2

v for each v in Sa other than possibly the p(1) and p(2) of Conditions
Z1 and Z2,

• every m
(s)
i is in k∗2

q for all q at which c′/c is not a unit.

Then c′/a is a unit at each prime in Sa . Moreover, if the restricted 2-Selmer group of
E

(s)
c consists of E

(s)
c and D

(s)
c then the restricted 2-Selmer group of E

(s)

c′ consists of

E
(s)

c′ and D
(s)

c′ .

Proof. Suppose that m is a triple which is a unit outside Sa but which is not in the
M defined in Condition E in §1. By the Tchebotarev density theorem we can choose a
prime p not in Sa which splits completely in the field obtained by adjoining the square
roots of all the m

(s)
i to k, but does not split completely in the field obtained by also

adjoining the square roots of the mi . For such a p all the m
(s)
i for either s are in k∗2

p but

not all the mi are in k∗2
p . Using Dirichlet’s theorem on primes in arithmetic progression,

choose a further prime p′ �= p not in Sa such that pp′ = (x) for some x in k∗ which is
in k∗2

v for every v in Sa . The Hilbert product formula applied to each symbol (m
(s)
i , x)

shows that each m
(s)
i is a square at p′. Choose p, p′, x for each m ∈ USa

\ M, with
all the p, p′ distinct, and let b be the product of all the factors x. For each of s = 1, 2
the curves D

(s)
a and D

(s)
ab are isomorphic over kv for all v ∈ Sa . This and the fact that

each m
(s)
i is a square at p and p′ imply that the curves D

(s)
ab are everywhere locally

soluble. The 2-covering of E
(s)
ab associated with m is locally insoluble at p because we

are in the case (25) of Lemma 4; here the mi are units at p and not all squares at
p, whereas the components of triples (8) are not all units at p. Hence the restricted
Selmer group of E

(s)
ab is contained in M. But if m ∈ M\{(1, 1, 1), m(s)} then Condition

E implies that the corresponding 2-covering of E
(s)
a is not locally soluble in kw for

some w ∈ Sa . Hence neither is the 2-covering of E
(s)
ab corresponding to m, because

b is in k∗2
w and therefore the 2-coverings of E

(s)
a and E

(s)
ab corresponding to m are

isomorphic over kw. So the restricted 2-Selmer group of E
(s)
ab consists of E

(s)
ab and D

(s)
ab .

This proves (i).
The first conclusion in (ii) is obvious because Sc ⊃ Sa . Now D

(s)

c′ is isomorphic

to D
(s)
c in kv for each v in Sa except possibly for the p(1) and p(2), and therefore is

locally soluble at such v. For p(1)
12 for example, D(1) is in case (28) of Lemma 4, so

that the local solubility of D
(1)
c implies that m

(1)
3 is locally a square, which implies the

local solubility of D
(1)

c′ ; and D
(2)

c′ is locally soluble because p(1)
12 is a prime of good

reduction for E
(2)

c′ at which m(2) is a unit. Again, D
(s)

c′ is locally soluble for each q for
which c′/a is not a unit, by case (25) of Lemma 4; here we must consider separately
the case when c is a unit at q (when solubility follows from the third condition in the
lemma) and when c is not a unit at q (when solubility of D

(s)

c′ follows from solubility

of D
(s)
c ). Hence D

(s)

c′ is everywhere locally soluble. For any triple m in M other than
m(s) or (1, 1, 1), arguments like those in the first half of this paragraph show that if
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the 2-covering corresponding to m for E
(s)

c′ is everywhere locally soluble, so is that

corresponding to m for E
(s)
c ; and this we know is false. Finally, if m is in USa

\ M
then the associated 2-covering of E

(s)
c is locally insoluble at a prime p which is not in

Sa and must therefore divide c/a; so by case (25) of Lemma 4 not all the mi are in
k∗2
p and therefore the 2-covering of E

(s)

c′ corresponding to m is also not locally soluble
at p. �

We now take ab, with the b of Lemma 9(i), to be the initial value of c; subject to
what is said in the proof of Lemma 12, all subsequent changes of c will satisfy the
conditions of Lemma 9, so that the restricted 2-Selmer group of E

(s)
c will continue to

consist of E
(s)
c and D

(s)
c . To prove Theorem 1 it is enough to show that we can modify

a so as to satisfy the additional condition that both d
(s)
a are equal to 3; for in that case

each D
(s)
a must be soluble in k, for reasons given in the Introduction.

At each step we have to consider the two curves E
(s)
c for some c which has already

been chosen, and we further twist these curves by some b which is prime to c. Here b
and c, like a, are really elements of k∗/k∗2. At the end of the step we replace c by cb,
which will be the new twisting constant. Thus Sc changes as the algorithm proceeds,
but Sa is fixed.

The details of the second stage are determined by how the choice of b at each step
affects E(1), and those of the third stage are similarly determined by E(2); thus we
can in many places drop the superfix (s), though this will not apply to the primes p(s)

introduced in Conditions Z1 and Z2 in §1, nor to the d(s). Each of the second and
third stages consists of several steps, each of which will be of one of two kinds. A
step of the first kind will always be possible, and it will either strictly decrease d(s)

or increase it by 1. In the latter case it will be followed by a step of the second kind,
and this will decrease d(s) by 2. To fix ideas, we describe these steps as applied to
E(1). We can assume that d

(1)
c > 3, because otherwise there is nothing to do. For the

following lemma we note that if a triple m is not a unit at some prime q then exactly
two of its components are divisible to an odd power by q.

Lemma 10. Assume that d
(1)
c > 3, and that the restricted 2-Selmer group of E

(1)
c

consists of E
(1)
c and D

(1)
c . Then we can choose q0 in Sc \Sa so that there is a triple u

in the 2-Selmer group of E
(1)
c which is a unit at q0 but is not a unit for at least one

of the two primes p(1) in Condition Z1.

Proof. Since the 2-Selmer group of E
(1)
c has dimension d

(1)
c > 3, it strictly contains

the product of the restricted 2-Selmer group and the group of order 4 coming from the
2-division points; so we can choose an element u of the 2-Selmer group which is not
in that product. Choose a prime q1 in Sc \ Sa . After multiplying by one of triples (8)
if necessary, we can assume that u is a unit at q1. If some component of u is divisible
to an odd power by one of the two p(1), then we can choose q0 = q1 and the proof is
complete. Suppose not; since u is not in the restricted 2-Selmer group, there exists q2
in Sc \ Sa which divides some component of u to an odd power. By multiplying u by
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one of triples (8), we can get rid of the factors q2 in the components of u. But each
of triples (8) has two components which are divisible to an odd power by each of the
two p(1); so in this case we can take q0 = q2. �

The triples attached to the 2-division points of Ec are

u(1)
c = ((c1 − c2)(c1 − c3), c(c1 − c2), c(c1 − c3)),

u(2)
c = (c(c2 − c1), (c2 − c1)(c2 − c3), c(c2 − c3)),

u(3)
c = (c(c3 − c1), c(c3 − c2), (c3 − c1)(c3 − c2)),

and u
(1)
c u

(2)
c u

(3)
c is trivial. Denote by w

(i)
q the image of u

(i)
c in Vq. Despite the notation,

the u
(i)
c and w

(i)
q do depend on s. For q in Sc \ Sa any two of the w

(i)
q form a base

of Wq.
From now on we shall write B = Sc; this will be the B which we use in applying

the results of §3. For an odd prime q denote by �(·, q) the quadratic character mod q
with values in F2. The following corollary implements a step of the first kind for the
second stage.

Corollary. Let q0 ∈ B \ Sa and p(1) satisfy Lemma 10. Let p = (�) be a principal
prime ideal not in B such that �(�, p(1)) = �(�, q0) = 1 and � is in k∗2

v for all other
v in B. Then we have either

(i) d
(1)
c� < d

(1)
c or

(ii) d
(1)
c� = d

(1)
c +1 and the 2-Selmer group of E

(1)
c� contains elements w2, w3 such that

the image of wi in Wp is w
(i)
p and its image in Wq0

is trivial.

Proof. The existence of such � follows from Dirichlet’s theorem on primes in arithmetic
progression, or from the Tchebotarev density theorem. Replacing c by c� alters Wv for
v = p(1) and for v = q0 but leaves it unchanged for all other v in B. To check that
both curves D

(s)
c� are everywhere locally soluble we need to prove local solubility at

p(1), q0 and p. At p(1) both m(s) are units, and it follows from case (28) of Lemma
4 that although Wp(1) is altered on replacing c by c�, the local solubility conditions

at p(1) on the two D(s) are unaltered. Since D
(s)
c is soluble in kq0

, the components of

both m(s) are in k∗2
q0

by case (25) of Lemma 4. Thus D
(s)
c� is also soluble in kq0

. The

components of both m(s) are in k∗2
p by the Hilbert product formula applied to each

(m
(s)
i , �), since � is a square at all v ∈ Sa except p(1); thus D

(s)
c� is soluble in kp, by

case (25) of Lemma 4 again.
Now we show that one of (i) or (ii) holds. In this paragraph and again in the proof

of Lemma 11, for any B0 ⊂ B ∪ {p} and any place v of k we shall denote by UB0(v)

for Ec the vector space consisting of those triples in UB0 for which the associated
2-covering is soluble in kv; similarly UB0(B�) for Ec will consist of those triples
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in UB0 which lie in UB0(v) for every v in B�. Write B1 = B \ {q0} and note that
UB1(q0) for Ec and for Ec� are the same, because by case (25) of Lemma 4 each
of them consists of those elements of UB1 whose components are all in k∗2

q0
. Simi-

larly UB1(p) for Ec� consists of those elements of UB1 whose components are all in
k∗2
p , and an element x of o∗B1

is in k∗2
p if and only if it is not divisible to an odd

power by p(1), by the Hilbert product formula applied to (x, �). Hence UB1(p) =
UB1\{p(1)} for Ec�. The local solubility condition at p(1) on triples which are units at

p(1) is the same for Ec� and Ec, by case (28) of Lemma 4, so UB1({p, p(1)}) for
Ec� is equal to UB1\{p(1)}(p(1)) for Ec. Thus UB1(B) for Ec contains UB1(B ∪ {p}) for
Ec� as a proper subspace, because we have deleted the u of Lemma 10. The codi-
mension of UB1(B ∪ {p}) in UB1∪{p}(B ∪ {p}) is at most 2, hence d

(1)
c� < d

(1)
c + 2.

By Lemma 5 the parity of d
(1)
c� is opposite to that of d

(1)
c . Hence either we have

strictly decreased d(1) or we have increased d(1) by 1. In the latter case, the codi-
mension just described must be equal to 2, and the existence of w2, w3 follows
immediately. �

If we have decreased d(1) by 1, we have made progress. But if we have increased
d(1) by 1, we show in the next few paragraphs how the existence of w2, w3 allows
a step of the second kind, which will diminish d(1) by 2; thus by means of the
two steps taken together we again make progress so far as the second stage is con-
cerned. The second stage terminates when we reach the value d(1) = 3. For the third
stage we also have to ensure that this value of d(1) is not increased by the steps
which we use to diminish d(2). For a step of the first kind we show this now; for
a step of the second kind we do so in Lemma 13. To reduce confusion of notation,
we state and prove the next lemma with E(1) and E(2) having the same roles as in
Lemma 10 and its Corollary; in the application we shall reverse the roles of E(1)

and E(2).

Lemma 11. With the notation of Lemma 10 and its Corollary, d
(2)
c� = d

(2)
c .

Proof. Write B2 = S(E
(2)
c ), the set of bad places for E

(2)
c ; thus B2 does not contain

any p(1)
ij , and the only place v in B2 for which � is not in k∗2

v is q0. Hence UB2(p)

for E
(2)
c� is just UB2\{q0}. It follows that

UB2(B2 ∪ {p}) = UB2\{q0}(B2)

for E
(2)
c� . But the right-hand side is the same for E

(2)
c� and E

(2)
c ; for these two curves

can be identified in kv for any v in B2 \ {q0}, and the projection of m ∈ UB2\{q0} to
Vq0

is in Wq0
if and only if the components of this projection are in k∗2

q0
. Moreover

the left-hand side has dimension d
(2)
c� − 2 because we have to take into account the

existence of the u
(i)
c� , and similarly the right-hand side for E

(2)
c has dimension d

(2)
c − 2

because of the existence of the u
(i)
c . �
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It is now convenient to work with �� rather than ��, where �� and �� are the functions
defined by (12). To simplify the notation, we shall henceforth write ��

c for ��

B; this will
depend on the choice of the Kv .

We now describe a step of the second kind. In accordance with our conventions, we
write c for c�, so that the new B is the union of the old B and {p}.

Lemma 12. Suppose that we are in case (ii) of the Corollary to Lemma 10. Let p′ =
(�′) be a prime ideal not dividing c such that �′ is a square at all v ∈ B except p
and perhaps q0, and that �(�′, p) = 1. Let q′0 = �q0 be a prime ideal not dividing c�′
such that �(�, p) = 1, � is a square at all v ∈ B except p and q0, and �(�′, q′0) has a

pre-assigned value. Set c′ = c��′. Then d
(1)

c′ = d
(1)
c − 2.

Proof. As usual, the existence of �′ and � follows from Dirichlet’s theorem. Which
value we need to assign to �(�′, q′0) will only become evident in Lemma 13. The
operation of going from c to c� in effect replaces q0 by q′0; since �(�, q′0) = �(�, q0)

for any � which is a unit outside Sa , this does not alter the two restricted 2-Selmer
groups. Going from c� to c′ also does not alter either of these groups, by
Lemma 9(ii).

We take B′ = Sa , B′′ = B \ B′ and keep the notation B1 = B \ {q0}. Then W ′
B is

the direct sum of the subspace of dimension 2 coming from the 2-division points and
the space W ′

B1
= �−1U ′

B′ ⊕ W ′
B′′\{q0}. The ranks of ��

c and of its restriction to W ′
B1

are equal. Let Kc be the kernel of this restriction; this is a vector space of dimension
d

(1)
c − 2. Take a base for Kc whose last two elements are the w2 and w3 in (ii) of

the Corollary to Lemma 10, in such a way that no w
(i)
p is a factor of any element

other than w2 and w3 of this base. The use of the 2-division points has already en-
sured that no w

(i)
q0

is a factor of any element of the base. Now extend this base for

Kc to a base for W ′
B1

. The matrix which represents ��
c with respect to this base has

the form

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 A

⎞
⎟⎟⎟⎟⎟⎟⎠

, (32)

where A is non-singular.
The set B for the curve Ec′ is B1 ∪ {q′0, p′}. Since c/c′ is a square at all v ∈ B1,

the spaces WB1 and KB1 and hence also W ′
B1

and U ′
B1

for the curves Ec and Ec′ can
be identified. Now we extend our base for W ′

B1
to a base for W ′

B1∪{p′} for the curve

Ec′ by adjoining w
(2)

p′ and w
(3)

p′ . This time we have ensured that no w
(i)

q′
0

is a factor of

any element of the base. The matrix which represents the restriction of ��

c′ to W ′
B1∪{p′}
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with respect to our base has the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 A ∗ ∗
0 0 1 ∗ 0 ∗
0 1 0 ∗ ∗ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (33)

Indeed, the fact that c/c′ is a square at all v ∈ B1 implies that the 4 × 4 submatrix in
the top left-hand corner of (33) is the same as (32). We have

�c′w(2)

p′ = (�′, 1, �′) and �c′w(3)

p′ = (�′, �′, 1)

since �′ is a square at all the places of Sa . It follows that

��

c′(w
(2)

p′ , w2) = e′
B((�′, 1, �′), w2) = 2�(�′, p) = 0,

��

c′(w
(3)

p′ , w2) = e′
B((�′, �′, 1), w2) = �(�′, p) = 1,

which explains the last two elements in the second row of (33); and the calculations
for the last two elements of the third row are similar. Each of the last two elements
in the first row of (33) is a sum of terms �(�′, a) where a is in B1 \ {p}, and all such
terms are 0.

The rank of matrix (33) is 4 + dim A. To see this, delete the first row and column;
in the expansion of the resulting determinant any non-zero monomial must involve one
non-zero factor from each row and column. In particular it must involve the 1’s in
the second and third rows and those in the second and third columns. So the value of
the determinant which we are considering is det A �= 0. We conclude that the corank
of (33), which is equal to d

(1)

c′ − 2, is the corank of (32) minus 2. Hence d
(1)

c′ =
d

(1)
c − 2. �

Repeated use of steps of these two kinds implements the second stage. For the third
stage we have also to ensure that a step of the second kind preserves d(1) = 3; this
is a weaker assertion than the one in Lemma 11, but it is adequate for our needs. As
before, we state and prove the next lemma with E(1) and E(2) having the same roles
as in Lemma 12; in the application the roles of E(1) and E(2) are reversed.

Lemma 13. With the notation of Lemma 12, suppose that d
(2)
c = 3. Then there exists

a value of �(�′, q′0) such that d
(2)

c′ = 3.
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Proof. In a notation corresponding to that of (33) the assumption d
(2)
c = 3 implies that

Kc is generated by m(2). Thus the restricted matrix associated with E
(2)

c′ has the form

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 B ∗ ∗
0 ∗ 0 x

0 ∗ x 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (34)

where B is non-singular and does not depend on the q′0 of Lemma 12. The reason for the
zeros in the first row is that the 2-covering corresponding to m(2) is everywhere locally
soluble. For the same reasons as in the previous proof we have �c′w(2)

p′ = (�′, 1, �′)
and �c′w(3)

p′ = (�′, �′, 1); these elements do not depend on q′0. Taking into account the
symmetry of (34) this proves that the entries denoted by asterisks do not depend on
q′0. We have

x = ��

c′(w
(2)

p′ , w
(3)

p′ ) = e′
B((�′, 1, �′), w(3)

p′ ).

The only non-trivial term in the sum is that for v = p′, which is

ep′((�′, 1, �′), u(3)

c′ ) = (�′, c′(c3 − c2))p′ = (�′, c′(c3 − c2))q′
0
+ 1 = �(�′, q′0) + 1.

Here the middle equality comes from the Hilbert product formula and the facts that �′
is locally a square at all places in B \ {q0, p}, that c′ is a unit at q0 but not at p, and
�(�′, p) = 1. If we delete the first row and column of (34), the determinant of what is
left is

−x2 det B + constant = �(�′, q′0) + constant,

where by ‘constant’ we mean something independent of the choice of q′0. Here we
have used the fact that in characteristic 2 the determinant of a symmetric matrix
contains no non-symmetric terms. Since �(�′, q′0) played no part in the calculations of
Lemma 12 for the curve E(1), we can ensure that (34) has corank 1 by suitable choice of
�(�′, q′0). �

This completes the specification of the third stage, and so completes the proof of
Theorem 1.
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Appendix

In the first section of this appendix we show in Theorem A.1, without assuming that
the 2-division points of our elliptic curves are rational, that an appropriate generaliza-
tion of Condition E implies the triviality of the algebraic part of the Brauer–Manin
obstruction for X, the minimal projective desingularization of surface (1). In the second
section we prove that Conditions Z1 and Z2 imply that no element of exact order 2
in Br X comes from Br X. In particular, the transcendental Brauer–Manin obstruction
defined by elements of the 2-primary torsion subgroup of Br X is trivial.

A.1. Condition E and the algebraic Brauer–Manin obstruction

Let k be a field of characteristic 0, � = Gal (k/k). Let E(1) and E(2) be elliptic
curves which are not isogenous over k. Let

m = (m(1), m(2)) ∈ H 1(k, E(1)[2]) ⊕ H 1(k, E(2)[2])

and let D(s) be the 2-covering of E(s) given by m(s), for s = 1, 2. Write A = E(1)×E(2),
D = D(1) ×D(2). The antipodal involution � : x �→ −x on A commutes with the action
of A[2] by translations, hence there is a natural action of the k-group scheme A[2]×Z/2
on A. The antipodal involution acts on D, so that the corresponding twisted forms Dc

are 2-coverings of quadratic twists Ac for c ∈ k∗. We consider Kummer surfaces X
obtained by blowing-up the sixteen singular points of D/�. These points correspond to
the 16 fixed points of � on D. The fixed point set D� is a principal homogeneous space
of A[2] defined by m. In the notation of §5 we have D� = Spec(L). Let V = D \ D�

and U = V/�. Since V ⊂ D is a complement to a finite set, the natural restriction maps
Pic D → Pic V and Br D → Br V are isomorphisms (the last one by Grothendieck [6,
II, Theorem 6.1], see also [5, Theorem 1.3.2]). We obtain the natural composed maps

Pic X → Pic U → Pic V = Pic D, Br X → Br U → Br V = Br D. (35)

Since E(1) and E(2) are not isogenous over k we have an isomorphism of Galois
modules Pic D = Pic D(1)⊕Pic D(2). Each �-module Pic D(s) fits into an exact sequence
of �-modules

0 → E(s) → Pic D(s) → Z → 0;
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here the third arrow is the degree map. Each �-module (Pic D(s))� fits into an exact
sequence of �-modules

0 → E(s)[2] → (Pic D(s))� → Z → 0 (36)

and (Pic D)� = (Pic D(1))�⊕(Pic D(2))�. The class of this extension in Ext1
k(Z, E(s)[2]) =

H 1(k, E(s)[2]) is m(s); this is the same as saying that the differential sends 1 ∈ Z to
m(s) ∈ H 1(k, E(s) [2]). This implies that

H 1(k, Pic D(s)) = H 1(k, E(s))/〈[D(s)]〉,
H 1(k, (Pic D(s))�) = H 1(k, E(s)[2])/〈m(s)〉,

where the class [D(s)] is the image of m(s) in H 1(k, E(s)). Note that the submodule
(Pic D(s))� ⊂ Pic D(s) is generated by the k-points of (D(s))�.

Since X is a K3 surface the abelian group Pic X is finitely generated and torsion
free. Let F be the smallest extension of k such that Gal (k/F ) acts trivially on Pic X;
then it also acts trivially on the k-points of (D(s))� for s = 1, 2. For a �-module M
we write H 1(F/k, M) for the kernel of the restriction map H 1(k, M) → H 1(F, M).
Since Pic X is a free abelian group and H 1(Gal (k/F ), Z) = 0 we have H 1(k, Pic X) =
H 1(F/k, Pic X). The map Pic X → Pic D factors through (Pic D)�, so that maps (35)
give rise to the following commutative diagram:

Br 1X/Br 0X −→ Br 1D/Br 0D

↓ ↓
H 1(F/k, Pic X) → R → ⊕ s=1,2H

1(k, E(s))/〈[D(s)]〉
(37)

where R is the finite group ⊕s=1,2H
1(F/k, E(s)[2])/〈m(s)〉. Here the vertical maps

come from the exact sequence

0 → Br 1X/Br 0X → H 1(k, Pic X) → H 3(k, k
∗
) → H 3(X, Gm) (38)

provided by the spectral sequence Hp(k, Hq(X, Gm)) ⇒ Hp+q(X, Gm), and the
similar sequence for D.

Let us now assume that k is a number field. We have H 3(k, k
∗
) = 0 and also

H 3(kv, kv
∗
) = 0 for all completions kv of k, so that the vertical maps in (37) are

isomorphisms. Recall that S(D(1), D(2)) was defined in §1; it is the union of S0 and
the set of places at which at least one of D(1) and D(2) has bad reduction. We now
state a somewhat more general version of Condition E, which makes no assumptions
about the 2-division points of the E(s):

For every place v ∈ S(D(1), D(2)) there exists av ∈ k∗
v such that

(i) for each v we have D
(1)
av

(kv) �= ∅ and D
(2)
av

(kv) �= ∅;
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(ii) for each s = 1, 2 and each m ∈ H 1(F/k, E(s)[2]) \ {0, m(s)} there exists w in
S(D(1), D(2)) such that the 2-covering of E

(s)
aw

given by m is not soluble in kw;
(iii) for all c ∈ Ker [k∗/k∗2 → L∗/L∗2] we have

∑
v∈S(D(1),D(2))

invv((c, av)) = 0.

In the case considered in the main body of the paper � acts trivially on E(1)[2] and
E(2)[2]. Then m(s) = (m

(s)
1 , m

(s)
2 , m

(s)
3 ) ∈ (k∗/k∗2)3 with m

(s)
1 m

(s)
2 m

(s)
3 = 1 and the

field F is the extension of k obtained by adjoining to k the square roots of the m
(s)
i .

A prime v not in S(E(1), E(2)) is a prime of good reduction of D(1) and D(2) if and
only if F/k is unramified at v. We have

M = H 1(F/k, E(s)[2]) (39)

for s = 1, 2. Condition E(iii) holds in this case by Lemma 7(iii) and its proof. Thus
this Condition E reduces to the one given in §1 of the paper.

Theorem A.1. Let E(1) and E(2) be elliptic curves over a number field k, and let
D(1) and D(2) be 2-coverings of E(1) and E(2), respectively. If E(1) and E(2) are
not isogenous over k and Condition E holds, then the Kummer surface X associated
to D(1) × D(2) has an adelic point satisfying the Brauer–Manin conditions given by
Br 1X.

Remark. Conditions Z1 and Z2 imply that E(1) and E(2) are not isogenous over k;
see Theorem A.2 below.

Proof of Theorem A.1. D(1) and D(2) are curves of genus 1 with good reduction at
v not in S(D(1), D(2)), so these curves have kv-points. We set av = 1 for all such
places v. Now the sum in Condition E(iii) extended to all places of k is 0, and so
by Lemma 7(i) the vertical Brauer–Manin obstruction vanishes. By Lemma 7(ii) there
exists a ∈ k∗ such that a/av ∈ k∗2

v for v ∈ S(D(1), D(2)), the surface Da = D
(1)
a ×D

(2)
a

has points in all completions of k, and Condition E(ii) holds with E
(s)
a in place of

E
(s)
aw

. In particular, [D(s)
a ] ∈ H 1(k, E

(s)
a ) goes to zero in H 1(kv, E

(s)
a ) for all places

v, s = 1, 2. The restriction from k to kv extends a part of (37) to the following
commutative diagram, where the products are taken over all places of k:

Br 1(Da)/Br k → ∏
v Br 1(Da ×k kv)/Br kv

|| ||
R → ⊕ s=1,2H

1(k, E
(s)
a )/〈[D(s)

a ]〉 → ∏
v(⊕s=1,2H

1(kv, E
(s)
a ))

(40)

Condition E(ii) implies that the composition of the bottom arrows of (40) is injective.
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For each r ∈ R, r �= 0, we choose a place v such that the image rv of r in
⊕s=1,2H

1(kv, E
(s)
a ) is non-zero. The right kernel of the Tate pairing

(·, ·)v : ⊕s=1,2E
(s)
a (kv) × ⊕s=1,2H

1(kv, E
(s)
a ) −→ Q/Z

is trivial, hence there exists � = �(r) in ⊕s=1,2E
(s)
a (kv) such that (�, rv)v �= 0. De-

fine the character �r : R → Z/2 by �r (x) = (�, resk,kv (x))v . Then �r (r) �= 0. We
obtain #R − 1 characters �r of R, not necessarily distinct but such that the inter-
section of their kernels is trivial. Hence these characters generate Hom(R, Z/2). Let
�(r) ∈ ∏

w(⊕s=1,2E
(s)
a (kw)) be such that �(r)v = � and �(r)w = 0 for w �= v.

To an adelic point {Pv} on Da we associate the character � ∈ Hom(R, Z/2) defined
by �(x) = ∑

invv(x(Pv)) where the sum is taken over all places v of k. We can write
� = ∑

r∈S �r for some S ⊂ R \ {0}. Consider the adelic point {Qv} on Da which is
the translation of {Pv} by

∑
r∈S �(r). For any x ∈ R we have

∑
v

invv(x(Qv)) =
∑

v

invv(x(Pv)) −
∑
r∈S

∑
v

(�(r)v, resk,kv (x))v

= �(x) −
∑
r∈S

�r (x) = 0,

where the first equality follows from Proposition 8(c) of [9]. Thus {Qv} is orthogonal to
R. After a small deformation we may assume that no Qv is fixed by �, and then consider
the image Mv of Qv under the map V → V/� ↪→ X. The image of Br 1X/Br 0X in
Br 1(Da)/Br k factors through R, by (37). Hence {Mv} is an adelic point on X satisfying
all the Brauer–Manin conditions given by Br 1X. �

A.2. Condition Z and the transcendental Brauer–Manin obstruction

We retain the notation in the Introduction to the paper. In particular, E(1) and E(2)

are elliptic curves with respective equations

z2
1 = (x − c

(1)
1 )(x − c

(1)
2 )(x − c

(1)
3 ), z2

2 = (y − c
(2)
1 )(y − c

(2)
2 )(y − c

(2)
3 ).

Theorem A.2. Let k be a number field, and let X be the Kummer surface which is
the minimal projective desingularization of (1). If Conditions Z1 and Z2 hold, then
E(1) and E(2) are not isogenous over k, and the 2-primary torsion subgroup of Br X

is contained in Br 1X.

Proof. Let K be the extension of k obtained by adjoining to k the square roots of −1
and the m

(s)
i . Conditions Z1 and Z2 imply that K/k is unramified at the four primes

p
(s)
ij , s = 1, 2, of k introduced in these conditions. Hence there are primes of K over

the p(s)
ij satisfying the same divisibility conditions as in Conditions Z1 and Z2. Thus
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Conditions Z1 and Z2 are still satisfied if we replace k by K. By permuting the c
(1)
i

and the c
(2)
i we can assume without loss of generality that in Conditions Z1 and Z2

we have i = 1, j = 2 and k = 3. Note that D(s) ×k K � E(s) for s = 1, 2. If we show
that E(1) and E(2) are not isogenous over k, then all the hypotheses of Theorem A.3
below will be satisfied, so that Theorem A.2 will follow from Theorem A.3.

The modular invariant of the curve y2 = (x − c1)(x − c2)(x − c3) is

j = 28 (c2
1 + c2

2 + c2
3 − c1c2 − c2c3 − c1c3)

3

(c1 − c2)2(c2 − c3)2(c1 − c3)2
.

Let js be the modular invariant of E(s), s = 1, 2. Then the valuation of j1 at p(1)
ij

is −2, whereas the valuation of j2 is positive or 0. Hence j1 is not integral over
the ring Z[j2]. By Theorem 2.6.3 of [12] the curves E(1) and E(2) are not isogenous
over k. �

Remark. Since j1 and j2 are not algebraic integers, the curves E(1) and E(2) do not
have complex multiplication. Another consequence of Conditions Z1 and Z2 is that all
2-primary torsion in E(s)(k), s = 1, 2, is 2-torsion. This easily follows from (8).

In the rest of this section k is a field of characteristic 0. Let Z be the Kummer
surface obtained by blowing up the singular points of (E(1) × E(2))/�. The surface
(E(1) × E(2))/� is a double covering of P1

k × P1
k given by

z2 = (x − c
(1)
1 )(x − c

(1)
2 )(x − c

(1)
3 )(y − c

(2)
1 )(y − c

(2)
2 )(y − c

(2)
3 ). (41)

The singular locus of this variety consists of the sixteen points with coordinates x =
c
(1)
1 , c

(1)
2 , c

(1)
3 , c

(1)
4 and y = c

(2)
1 , c

(2)
2 , c

(2)
3 , c

(2)
4 , where c

(1)
4 = c

(2)
4 = ∞. Let �ij be the

rational curves on Z which are the inverse images of these points.

Lemma A.1. We have Br 1Z = Br k. Let W be the complement in Z to the nine lines
�ij with i, j = 1, 2, 3. Then Br 1W = Br k.

Proof. By Proposition 2.3 of [7] the action of � on Pic Z is trivial. Since Z(k) �=
∅ the group Br 1Z is the direct sum of Br k and H 1(k, Pic Z) = 0, which implies
our first statement. The complement to the 0-dimensional closed set (E(1) × E(2))� in
E(1) ×E(2) has no non-constant invertible regular functions. It maps to the complement
to the union of all the 16 lines �ij in Z, which thus has the same property. Therefore,
the larger open set W has no non-constant invertible regular functions. This implies
that the kernel of the surjective map Pic Z → Pic W is the subgroup Z9 ⊂ Pic Z freely
generated by the classes of the nine lines. The abelian group Pic W = Pic Z/Z9 is
torsion free, as follows, for example, from the well-known structure of the Kummer
lattice (see [11]). Since the action of � on Pic Z, and hence also on Pic W , is trivial,
we have H 1(k, Pic W) = 0. We have Hi(k, H 0(W, Gm)) = Hi(k, k

∗
), i�0, and this
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group injects into Hi(W, Gm) since W has k-points. Now our claim follows from the
exact sequence (38) with X replaced by W. �

Lemma A.2. The quaternion algebras

Aij = ((x − c
(1)
i )(x − c

(1)
3 ), (y − c

(2)
j )(y − c

(2)
3 )),

where i, j ∈ {1, 2}, belong to Br W .

Proof. One shows that

div((x − c
(1)
i )(x − c

(1)
3 )) ≡

4∑
j=1

(�ij + �3j ) mod 2

and similarly for div((y−c
(2)
j )(y−c

(2)
3 )) (see [7], the displayed formula preceding (10)).

The function (y−c
(2)
j )(y−c

(2)
3 ) is the product of y2 and (1−c

(2)
j /y)(1−c

(2)
3 /y), and the

latter is regular at y = ∞ with value 1. A similar argument works for (x−c
(1)
i )(x−c

(1)
3 ).

Hence the algebras Aij are unramified on W. �

Lemma A.3. The images of the Aij in Br W generate (Br Z)[2] ⊂ Br W .

Proof. It is easy to compute the residue of Aij at �mn. It turns out to be represented
by an element of k∗, so the corresponding class in k(�mn)

∗/k(�mn)
∗2 is trivial. Thus

Aij ∈ Br Z.
Let � : Z → P1

k
be the map defined by (x, y, z) �→ x. The generic fibre E of �

is the quadratic twist of the elliptic curve E(2) over the field k(x) by the class of
(x − c

(1)
1 )(x − c

(1)
2 )(x − c

(1)
3 ) in k(x)∗/k(x)∗2, see (41). The inclusion of the generic

fibre into Z defines a natural restriction map Br Z → Br E . This map is injective by a
general theorem of Grothendieck [6].

Every element of (Br E)[2] has the form

Ba(x),b(x) = (a(x), y − c
(2)
1 ) + (b(x), y − c

(2)
2 ),

where a(x) and b(x) are square-free polynomials in k[x] (see [14, Exercise 2, p. 91]).
Assume that Ba(x),b(x) ∈ Br Z. If x − e for some e �= c

(1)
i , i = 1, 2, 3, divides a(x),

b(x) or both, then the residue of Ba(x),b(x) at the elliptic curve E ⊂ Y given by

x = e is the class of y − c
(2)
1 , y − c

(2)
2 or (y − c

(2)
1 )(y − c

(2)
2 ) in k(E)∗/k(E)∗2. None

of these three classes is trivial, and this contradicts the assumption that Ba(x),b(x) is
unramified on Z. Therefore every element of (Br Z)[2] has the form Ba(x),b(x) such

that the only possible factors of a(x) and b(x) are x − c
(1)
1 , x − c

(1)
2 , x − c

(1)
3 . We note

that Br k(x) = Br k(y) = 0 by Tsen’s theorem, so that the elements of Br k(Z) given
by (p(x), q(x)) with p(x), q(x) ∈ k(x)∗ are trivial. Using this fact and Eq. (41) it is
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straightforward to write the class of Ba(x),b(x) in Br k(Z) as a linear combination of
the classes of Aij , i, j ∈ {1, 2}. Now lemma follows from the injectivity of the natural
map Br Z → Br k(Z). �

Theorem A.3. Let k be a field of characteristic different from 2. Assume that
√−1 ∈ k,

that c
(1)
1 −c

(1)
2 , c

(1)
1 −c

(1)
3 , c

(2)
1 −c

(2)
2 , c

(2)
1 −c

(2)
3 generate a subgroup of k∗/k∗2 isomorphic

to (Z/2)4 and that E(1) and E(2) are not isogenous over k. Then the 2-primary torsion
subgroup of Br Z is contained in Br 1Z = Br k.

Proof. Suppose that the order of � ∈ Br Z is a power of 2, and the image of � in
Br Z is non-zero. Replacing � by an appropriate power we can assume that the order
of its image in Br Z is exactly 2. By Lemma A.3 there exists a non-empty subset
S ⊂ {(1, 1), (1, 2), (2, 1), (2, 2)} such that the linear combination

∑
(i,j)∈S Aij , which

is an element of Br W by Lemma A.2, has the same image in Br Z ⊂ Br W as �.
Considering � − ∑

(i,j)∈S Aij as an element of Br W we see that its image in Br W is
trivial, so that � − ∑

(i,j)∈S Aij ∈ Br 1W . By Lemma A.1 we can write

� =
∑

(i,j)∈S

Aij + �,

where � ∈ Br k. Thus
∑

(i,j)∈S Aij is unramified everywhere on Z.
Let us now compute the residues of the Aij at some of the lines �mn. We write

c
(1)
ij = c

(1)
i − c

(1)
j , c

(2)
ij = c

(2)
i − c

(2)
j . Then the residues of A11, A12, A21, A22 at �11 are

the classes of c
(1)
12 c

(2)
12 , c

(2)
12 c

(2)
13 , c

(1)
12 c

(1)
13 , 1, respectively, in k∗/k∗2 ⊂ k(�11)

∗/k(�11)
∗2.

By the assumption in the theorem the only possibility is that S consists of the one
element (2, 2). But the residue of A22 at �12 is the class of c

(1)
12 c

(1)
13 , which shows that

A22 is ramified at �12. This contradiction proves the theorem. �
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