Algebraic number theory

Solutions sheet 5

March 11, 2011

1. Let $z \in A(d)^{*}$ be a unit. Write $2 z=a+b \sqrt{d}$ for some a and b in \mathbb{Z}. We now show that the equation $a^{2}-d b^{2}=-4$ has no solutions in \mathbb{Z}. Let $p \mid d$ be congruent to 3 modulo 4 . Then -4 is a square modulo p. This is equivalent to -1 being a square modulo p, which for odd p is equivalent to the condition that p is congruent to 1 modulo 4 . This is a contradiction.
2. We have $\lambda(5)=\sqrt{5} / 2<2$. Hence every ideal class is represented by an integral ideal of norm 1 , that is, $A(-5)$ itself. Thus the class group is trivial.

We have $\lambda(6)=\sqrt{6}<3$, hence it is enough to consider ideals $I \subset A(6)$ of norm 2 . These are necessarily prime ideals lying over 2 . But 2 is ramified, hence $I=(2, \sqrt{6})$. If it is principal, then the norm of the generator must be ± 2. (Since $\|z A(d)\|=\left|N_{K}(z)\right|$.) Indeed, $a^{2}-6 b^{2}=-2$ has a solution $a=2$, $b=1$. One checks immediately that we have $(2, \sqrt{6})=(2+\sqrt{6})$. Hence all the ideal classes are represented by principal ideals, thus the class group is trivial.
3. We have $\lambda(-163)<9$, hence we must look at the prime ideals over 2 , 3,5 and 7 . By computing the Legendre symbols one observes that 3,5 and 7 are all inert in $\mathbb{Q}(\sqrt{-163})$, so the corresponding prime ideals are principal. Since -163 is congruent to 5 modulo 8, by the result from the lectures we know that 2 is also inert! Hence all prime ideals lying over $2,3,5$ and 7 are principal, hence every ideal of norm less than 9 is principal. The class number is 1 . [It is a difficult result that if $d<-163$, then the class number is greater than 1.]
Notation. We write the operation in the class group $\operatorname{Cl}(\mathbb{Q}(\sqrt{d}))$ as multiplication, and denote the equivalence class of an ideal $I \subset A(d)$ by $[I]$
4. Let $d=-p_{1} \ldots p_{n}$, where p_{1}, \ldots, p_{n} are different prime numbers, $n>2$. To fix ideas assume that $2 \mid p$. Consider the ideal $J_{i}=\left(p_{i}, \sqrt{d}\right)$. This is a prime ideal lying over p_{i}, which is ramified in $\mathbb{Q}(\sqrt{d})$. Hence $J_{i}^{2}=p_{i} A(d)$, and $J_{i}^{-1}=p_{i}^{-1}\left(p_{i}, \sqrt{d}\right)$. Thus we have $J_{i} J_{k}^{-1}=p_{k}^{-1} J_{i} J_{k}=$ $p_{k}^{-1}\left(p_{i} p_{k}, p_{i} \sqrt{d}, p_{k} \sqrt{d}, d\right)=p_{k}^{-1}\left(p_{i} p_{k}, \sqrt{d}\right)$, because $\left(p_{i}, p_{k}\right)=1$. I claim that the ideals $J_{i}=\left(p_{i}, \sqrt{d}\right)$ and $\left(p_{i} p_{j}, \sqrt{d}\right)$ for $i \neq j$ are not principal. Let us assume this for a moment. Then the classes $\left[J_{i}\right]$ in the class group of $\mathbb{Q}(\sqrt{d})$ are all non-trivial since J_{i} are not principal. These classes are also pairwise distinct since $J_{i} J_{k}^{-1}$ are not principal. This produces n different non-trivial elements in the class group, hence the result.

It remains to show that $\left(p_{i}, \sqrt{d}\right)$ and $\left(p_{i} p_{j}, \sqrt{d}\right)$ are not principal. The norms of these ideals are p_{i} and $p_{i} p_{j}$, respectively. But there are no elements with such norms in $A(d)$, since the equations $x^{2}+|d| y^{2}=p_{i}$ and $x^{2}+|d| y^{2}=$ $p_{i} p_{j}$ have no integer solutions. Indeed, $|d|>p_{i} p_{j}$, hence $y=0$, and now it is clear that there are no solutions (recall that $p_{i} \neq p_{j}$). This completes the proof.
5. We have $\lambda(-21)<7$, so we look into prime ideals over 2,3 and 5 . Since 2 and 3 are ramified, the corresponding prime ideals are $P=(2, \sqrt{-21}-1)$ and $Q=(3, \sqrt{-21})$, respectively. Using the same method as before, we show that there are no elements in $A(-21)$ with norm 2 or 3 , hence P and Q are not principal. In other words, $[P] \neq 1,[Q] \neq 1$. It is clear that $P^{2}=(2)$ and $Q^{2}=(3)$, hence $[P]^{2}=1$ and $[Q]^{2}=1$. Next we study the product $P Q$. The norm of $P Q$ is 6 , and the same usual method shows that there are no elements in $A(-21)$ with norm 6 . Hence $P Q$ is not principal. Thus the subgroup of the class group generated by $[P]$ and $[Q]$ is isomorphic to $(\mathbb{Z} / 2)^{2}$.

The prime 5 is split (-21 is a square modulo 5), (5) $=(5,2-\sqrt{-21})(5,2+$ $\sqrt{-21})$. Let $R=(5,2-\sqrt{-21}), S=(5,2+\sqrt{-21})$. Since $R S=(5)$ we have $[R][S]=1$. Let us show that $P Q R$ is principal, then $[P][Q][R]=1$, and every element of the class group can be expressed in terms of $[P]$ and $[Q]$ alone. Indeed, the norm of $P Q R$ is 30 , and the only elements of $A(-21)$ with norm 30 are $\pm 3 \pm \sqrt{-21}$. The ideal $(3 \pm \sqrt{-21})$ factors into prime ideals either as $P Q R$ or as $P Q S$. In any of these cases our statement is clear.

Therefore the class group is isomorphic to $(\mathbb{Z} / 2)^{2}$.

