Algebraic number theory

Problems sheet 5

March 11, 2011

Notation. In this sheet $K=\mathbb{Q}(\sqrt{d})$, where d is a square-free integer. We write $A(d)$ for \mathcal{O}_{K}.

1. Let $d>1$ be divisible by a prime congruent to -1 modulo 4 . Show that every unit in $A(d)$ has norm 1 (and never -1 !).

In the rest of this sheet use the following theorem proved in lectures: every class of ideals of $A(d)$ contains an integral ideal I of norm $\|I\|<\lambda(d)$, where
$\lambda(d)=\sqrt{d}$ if $d>0$ is congruent to 2 or 3 modulo 4,
$\lambda(d)=\sqrt{d} / 2$ if $d>0$ is congruent to 1 modulo 4 ,
$\lambda(d)=4 \sqrt{|d|} / \pi$ if $d<0$ is congruent to 2 or 3 modulo 4,
$\lambda(d)=2 \sqrt{|d|} / \pi$ if $d<0$ is congruent to 1 modulo 4 .
2. Compute the class groups of $\mathbb{Q}(\sqrt{5})$ and $\mathbb{Q}(\sqrt{6})$.
3. Compute the class group of $\mathbb{Q}(\sqrt{-163})$. [Hint: prove that all prime ideals of small norm are principal.]
4. Prove that the class numbers of quadratic fields can be arbitrary large.
5. Prove that the class group of $\mathbb{Q}(\sqrt{-21})$ is the product of two cyclic groups of order 2. [Hint: Show that the prime ideals over 2 and 3 are not principal, and their product is not principal either.]

