Algebraic number theory

Problems sheet 4

March 11, 2011

Notation. Let K be a number field of degree n with the ring of integers \mathcal{O}_{K}. Recall that the discriminant D of K is the determinant of the matrix with entries $\operatorname{Tr}_{K}\left(\alpha_{i} \alpha_{j}\right)$, where $\alpha_{1}, \ldots, \alpha_{n}$ is a basis of \mathcal{O}_{K} over \mathbb{Z}. From lectures we know that there are exactly n distinct injective field homomorphisms

$$
\sigma_{i}: K \hookrightarrow \mathbb{C}, \quad i=1, \ldots, n .
$$

We order them in such a way that the first s embeddings $\sigma_{1}, \ldots, \sigma_{s}$ map K into \mathbb{R}, and the rest are such that $\sigma_{i}(K) \not \subset \mathbb{R}$. These remaining $n-s$ embeddings come in pairs of complex conjugate embeddings, in particular $n=s+2 t$ and we order them so that $\sigma_{s+t+i}=\bar{\sigma}_{s+i}$ for $i=1, \ldots, t$.

1. (a) Find the norms of these ideals in \mathcal{O}_{K} :
$m \mathcal{O}_{K}$, where $m \in \mathbb{Z}$;
$(2,1+\sqrt{-5})$, where $K=\mathbb{Q}(\sqrt{-5})$;
$\left(2, \frac{1}{2}(1+\sqrt{-7})\right)$, where $K=\mathbb{Q}(\sqrt{-7})$;
$(22,2+\sqrt{-7})$, where $K=\mathbb{Q}(\sqrt{-7})$;
$(22,3+\sqrt{-7})$, where $K=\mathbb{Q}(\sqrt{-7})$.
(b) Find the inverses of the ideals from part (a).
(c) Write the last four ideals in part (a) as products of primes ideals.
(d) Write the fractional ideal $\frac{1}{5}(6+7 \sqrt{-1}) \subset \mathbb{Q}(\sqrt{-1})$ as a product of integral powers of prime ideals.
2. In lectures we proved that $D=\operatorname{det}(\Sigma)^{2}$, where Σ is the $n \times n$-matrix with complex entries $\sigma_{i}\left(\alpha_{j}\right)$. Using this fact prove that the sign of D is $(-1)^{t}$.
3. Let $f(t)=t^{3}+t+1$. Imitate the argument in lectures to prove that if $K=\mathbb{Q}(\alpha)=\mathbb{Q}[t] /(f(t))$, then $\mathcal{O}_{K}=\mathbb{Z} \oplus \mathbb{Z} \alpha \oplus \mathbb{Z} \alpha^{2}$. Find the discriminant of K. (Use the Gauss lemma to prove that $f(t)$ is irreducible
over \mathbb{Q}. In lectures we showed that the square of the determinant of the matrix with entries $\sigma_{i}\left(\alpha^{j}\right)$ equals the discriminant of $f(t)$. Use the fact that the discriminant of $t^{3}+a t+b$ is $-4 a^{3}-27 b^{2}$. Conclude by Remark 6.17.)
4. Prove that the discriminant of any number field K is congruent to 0 or $1 \bmod 4$. (A huge generalisation from the case of quadratic fields!) Proceed in the following steps:
(i) Let S_{n} be the group of permutations of $\{1, \ldots, n\}$. We have

$$
\operatorname{det}(\Sigma)=\sum_{\pi \in S_{n}} \operatorname{sign}(\pi) \prod_{i=1}^{n} \sigma_{\pi(i)}\left(\alpha_{i}\right)
$$

where $\operatorname{sign}(\pi)= \pm 1$ is the signature of the permutation π. Write

$$
A=\sum_{\pi \in S_{n}} \prod_{i=1}^{n} \sigma_{\pi(i)}\left(\alpha_{i}\right), \quad B=\sum_{\pi \in S_{n}, \pi \text { odd }} \prod_{i=1}^{n} \sigma_{\pi(i)}\left(\alpha_{i}\right)
$$

so that $\operatorname{det}(\Sigma)=A-2 B$. Prove that $A, B \in \mathcal{O}_{K}$.
(ii) If you know Galois theory prove that $A \in \mathbb{Q}$, hence $A \in \mathbb{Z}$. Otherwise take this for granted.
(iii) We have $D=A^{2}+4\left(B^{2}-A B\right)$. Prove that $B^{2}-A B \in \mathbb{Z}$. Deduce that D is 0 or $1 \bmod 4$.
5. In this question $K=\mathbb{Q}(\sqrt{d})$, where d is a square-free integer. Let $\mathrm{Cl}(K)$ be the class group of \mathcal{O}_{K}.
(a) Show that associating to an ideal $I \subset \mathcal{O}_{K}$ its conjugate ideal \bar{I} preserves equivalence classes of ideals, so that conjugation is a well-defined operation on $\mathrm{Cl}(K)$. Prove that an element of $\mathrm{Cl}(K)$ is fixed by conjugation if and only if it has order at most 2 (that is, is represented by an integral ideal I such that I^{2} is principal).
(b) Suppose from now on that $d<0$. Using Q5 from Sheet 3 prove that any element of order at most 2 in $\mathrm{Cl}(K)$ can be represented by an ideal $I=P_{1} \ldots P_{r}$, where P_{i} are distinct prime ideals over some of the prime numbers ramified in $\mathbb{Q}(\sqrt{d})$.
(c) Let $I \subset \mathcal{O}_{K}$ be an ideal from part (b). Determine when I is principal.
(d) Conclude that if $|d|$ is not a prime, then $\mathrm{Cl}(K)$ has an element of exact order 2, in particular \mathcal{O}_{K} is not a PID.

