Algebraic number theory

Problem sheet 3

February 23, 2011

1. (a) Prove that the following abelian groups are not finitely generated: $(\mathbb{Q},+),\left(\mathbb{Q}^{*}, \times\right),(\mathbb{Q} / \mathbb{Z},+)$.
(b) Prove that any subgroup and any factor group of a finitely generated abelian group are also finitely generated.
2. Let $K=\mathbb{Q}(\alpha)$, where α is a root of $t^{2}-3 t+5=0$. Find all primes ramified in K, and give a criterion for other primes to be split or inert. Find all the prime ideals over $p=47$.
3. (a) Explain why for every quadratic field K there exists at least one prime that ramifies in K.
(b) Prove that for every non-empty finite set S of primes there exists a quadratic field K which is ramified exactly at the primes of S. Find the number of such fields, for every S.
4. Find all elements of trace 0 in $\mathbb{Q}(\sqrt[3]{d})$, where d is a cube-free integer. The same question for the biquadratic field $\mathbb{Q}(\sqrt{a}, \sqrt{b})$, where a and b are distinct square-free integers.
5. Let z be an element of a quadratic field K of norm $N_{K}(z)=1$. Prove that there exists $a \in K^{*}$ such that $z=a / \bar{a}$.
6. Prove that the ideal $I=(2,1+\sqrt{-5})$ of the ring of integers of $\mathbb{Q}(\sqrt{-5})$ is not principal, but its square I^{2} is principal.
7. Deduce from Q4 of Sheet 2 that a prime p can be written as $a^{2}+b^{2}$ for some integers a and b if and only if $p=2$, or p is 1 modulo 4 . Similarly, $p=a^{2}+2 b^{2}$ if and only if $p=2$, or p is 1 or 3 modulo 8 . Finally, $p=a^{2}+a b+b^{2}$ if and only if $p=3$, or p is 1 modulo 3 .
