Algebraic number theory

Problem sheet 2

February 4, 2011

Let d be a square-free integer, and let $K = \mathbb{Q}(\sqrt{d})$. The norm of a quadratic number $z = x + y\sqrt{d}$, where $x, y \in \mathbb{Q}$, is

$$N(z) = (x + y\sqrt{d})(x - y\sqrt{d}) = x^2 - dy^2.$$

1. (a) Prove that N is a multiplicative function $\mathcal{O}_K \rightarrow \mathbb{Z}$.

(b) Prove that \mathcal{O}_K^* is the set of elements of \mathcal{O}_K of norm ± 1 .

(c) Let d < 0. Find all the elements of \mathcal{O}_{K}^{*} , hence determine the structure of the group \mathcal{O}_{K}^{*} .

(d) Which of the following are units: $4 + \sqrt{17}$, $2 + \sqrt{3}$, $2 + \sqrt{5}$, $2 + \sqrt{-5}$?

2. (a) Prove that any element of \mathcal{O}_K whose norm is $\pm p$, where p is a prime number, is irreducible.

(b) When is $n + \sqrt{-5}$ irreducible for n = 0, 1, ..., 7?

3. Application to a Diophantine equation. This is a harder question!

A Euclidean domain is a PID hence a UFD, so every element is a product of finitely many irreducible elements, and such a factorisation is unique up to order and multiplication of irreducible factors by units. This is true for $\mathbb{Z}[\sqrt{-2}]$ (let's assume this). Pierre Fermat stated that

the only integer solutions of $y^2 + 2 = x^3$ are $(3, \pm 5)$.

Prove his theorem in the following steps:

(a) Show that y must be odd.

(b) Rewrite the equation as $(y + \sqrt{-2})(y - \sqrt{-2}) = x^3$. If $a + b\sqrt{-2}$ is a common divisor of $y + \sqrt{-2}$ and $y - \sqrt{-2}$, it divides their sum and difference. Deduce that $y + \sqrt{-2}$ and $y - \sqrt{-2}$ are coprime (i.e., have no non-unit common divisors).

(c) Using the unique factorization conclude that $y + \sqrt{-2}$ and $y - \sqrt{-2}$ are cubes, say, $y + \sqrt{-2} = (c + d\sqrt{-2})^3$. Prove that the only solutions of this equation are $c + d\sqrt{-2} = \pm 1 + \sqrt{-2}$. Deduce Fermat's statement.

4. Let d < 0 be such that \mathcal{O}_K is a PID. (For example, this is the case when \mathcal{O}_K is a Euclidean domain, e.g. for d = -1, -2, -3, -7, -11.) Prove that an odd prime number p that does not divide d is a norm of an element of \mathcal{O}_K if and only if the Legendre symbol $\left(\frac{d}{p}\right)$ equals 1.