Algebraic number theory

Problem sheet 2
February 4, 2011

Let d be a square-free integer, and let $K=\mathbb{Q}(\sqrt{d})$. The norm of a quadratic number $z=x+y \sqrt{d}$, where $x, y \in \mathbb{Q}$, is

$$
N(z)=(x+y \sqrt{d})(x-y \sqrt{d})=x^{2}-d y^{2} .
$$

1. (a) Prove that N is a multiplicative function $\mathcal{O}_{K} \rightarrow \mathbb{Z}$.
(b) Prove that \mathcal{O}_{K}^{*} is the set of elements of \mathcal{O}_{K} of norm ± 1.
(c) Let $d<0$. Find all the elements of \mathcal{O}_{K}^{*}, hence determine the structure of the group \mathcal{O}_{K}^{*}.
(d) Which of the following are units: $4+\sqrt{17}, 2+\sqrt{3}, 2+\sqrt{5}, 2+\sqrt{-5}$?
2. (a) Prove that any element of \mathcal{O}_{K} whose norm is $\pm p$, where p is a prime number, is irreducible.
(b) When is $n+\sqrt{-5}$ irreducible for $n=0,1, \ldots, 7$?
3. Application to a Diophantine equation. This is a harder question!

A Euclidean domain is a PID hence a UFD, so every element is a product of finitely many irreducible elements, and such a factorisation is unique up to order and multiplication of irreducible factors by units. This is true for $\mathbb{Z}[\sqrt{-2}]$ (let's assume this). Pierre Fermat stated that
the only integer solutions of $y^{2}+2=x^{3}$ are $(3, \pm 5)$.
Prove his theorem in the following steps:
(a) Show that y must be odd.
(b) Rewrite the equation as $(y+\sqrt{-2})(y-\sqrt{-2})=x^{3}$. If $a+b \sqrt{-2}$ is a common divisor of $y+\sqrt{-2}$ and $y-\sqrt{-2}$, it divides their sum and difference. Deduce that $y+\sqrt{-2}$ and $y-\sqrt{-2}$ are coprime (i.e., have no non-unit common divisors).
(c) Using the unique factorization conclude that $y+\sqrt{-2}$ and $y-\sqrt{-2}$ are cubes, say, $y+\sqrt{-2}=(c+d \sqrt{-2})^{3}$. Prove that the only solutions of this equation are $c+d \sqrt{-2}= \pm 1+\sqrt{-2}$. Deduce Fermat's statement.
4. Let $d<0$ be such that \mathcal{O}_{K} is a PID. (For example, this is the case when \mathcal{O}_{K} is a Euclidean domain, e.g. for $d=-1,-2,-3,-7,-11$.) Prove that an odd prime number p that does not divide d is a norm of an element of \mathcal{O}_{K} if and only if the Legendre symbol $\left(\frac{d}{p}\right)$ equals 1 .

