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1. What is the fundamental group?

1.1. Definition. Let k be a field of characteristic 0, and let k denote an algebraic closure

of k, Γ =Gal(k/k). Let X be a k-scheme. A base point x̄ ∈ X(k) defines the functor Fx̄
from the category of finite étale coverings of X to the category of sets: Fx̄(Y/X) = Yx̄.

Grothendieck defined the fundamental group π1(X, x̄) as the automorphism group of this

fibre functor,

π1(X, x̄) = AutFx̄.

This says that π1(X, x̄) acts by permutations of the points of the finite set Yx̄, and if Y
′/X is

a finite étale covering that factors through Y/X, then the natural map Y ′x̄ → Yx̄ is π1(X, x̄)-
equivariant.

The fundamental group π1(X, x̄) is a covariant functor on the category of schemes over k

with a marked k-point. Indeed, if (X ′, x̄′) maps to (X, x̄), then the fibre of Y ×X X ′ over x̄′

is the same as the fibre of Y over x̄, so that AutFx̄′ acts on it.

In particular, we obtain homomorphisms π1(X, x̄) → π1(X, x̄), where X = X ×k k, and
π1(X, x̄) → Γ. If X is a geometrically connected variety over k, then we actually have the
fundamental exact sequence

(1) 1→ π1(X, x̄)→ π1(X, x̄)→ Γ→ 1.

By functoriality, any k-point defines a section of the map π1(X, x̄) → Γ. This gives a

necessary condition for the existence of k-points.

Another approach to (1) is via Galois theory. Fix an algebraic closure of k(X), and let

K be its maximal unramified subfield, that is, unramified with respect to all the discrete

valuation rings in k(X) whose valuation is trivial on k. Define π1(X) =Gal(K/k(X)); then

(1) becomes the exact sequence of Galois groups corresponding to k(X) ⊂ k(X) ⊂ K. (The
field K is the filtered union of the function fields k(Y ), for all connected finite étale coverings

Y/X.)

1.2. Finite torsors. Let Y/X be a finite étale Galois covering with group G, that is, k(Y )

is a Galois extension of k(X) with Galois group G. Then G acts on Y preserving the fibres

of Y/X in such a way that G = Aut (Y/X). This property shows that G has a natural
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action of Γ turning it into a finite k-group scheme. The action of G on Y defines a canonical

isomorphism of k-schemes

(2) Y ×X Y = Y ×k G.

By definition (see below) Y/X is an X-torsor under G. Thus the notion of a finite torsor

can be used as a shorthand for that of a finite étale Galois covering.

1.3. Sections and pro-coverings. A projective system (Yi) of finite X-torsors is called a

pro-covering (M. Stoll) if for any finite X-torsor Y there exists i and a morphism of X-torsors

Y i → Y . This means that there is a morphism of structure groups Gi → G such that the
natural diagram commutes

Y i × Gi → Y i

↓ ↓ ↓

Y × G → Y

Proposition 1.1. There is a natural bijective correspondence between the isomorphism

classes of pro-coverings and sections of (1) considered up to conjugation in π1(X, x̄). Under

this correspondence the section defined by P ∈ X(k) corresponds to a pro-covering that lifts
P (there is a compatible system of k-points in each Yi over P ).

A section σ : Γ→ π1(X, x̄) defines the invariant subfield Kσ(Γ) such that k is algebraically
closed in Kσ(Γ), and kKσ(Γ) = K. This field is a filtered union of finite Galois extensions

Ki/k(X). Define Yi as the normalization of X in Ki. Then (Yi) is a pro-covering.

In general, Γ acts on π1(X, x̄) by outer automorphisms, but a section defines a Γ-action

on π1(X, x̄). A pro-covering is morally an X-torsor under π1(X, x̄). So we get a map

X(k)→ H1cont(Γ, π1(X, x̄)).

The following statement was pointed out to us by A. Pal. We let Aut (Y /X) denote the

group of semi-linear automorphisms of Y , i.e. the automorphisms that are allowed to act

non-trivially on k.

Proposition 1.2. Let X be a geometrically connected and reduced variety over k. If the

fundamental exact sequence (1) has no section, then there exists a finite étale Galois covering

Y /X whose Galois group G = Aut (Y /X) is a characteristic subgroup of π1(X, x̄), such that

the push-out sequence

1→ G→ Aut (Y /X)→ Gal(k/k)→ 1

has no section.

The last sequence defines a gerb; the gerb is neutral if and only if the sequence is split.
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2. What is a torsor?

2.1. The definitions of a torsor. Let G be an algebraic group over k, and let X be a

smooth k-variety. Here is a näıve geometric definition of a torsor.

Definition 2.1. An X-torsor under the group G is a surjective morphism f : Y → X,
where Y is equipped with an action of G which preserves the fibres of f , and which is simply

transitive on the geometric fibres.

Equivalently, G acts freely on Y , and X is the space of orbits Y/G. Note however that ‘freely’

should be understood in the scheme-theoretic sense, see Mumford’s “Geometric Invariant

Theory”. An obvious example of a torsor is the “trivial torsor” Y = X ×k G.
The action of G on Y is a morphism σ : G ×k Y → Y satisfying the obvious properties
which say that g1g2 acts as g2 followed by g1, and that the neutral element of G acts as the

identity morphism Y → Y . Consider the morphism

Ψ = (p1, σ) : Y ×k G→ Y ×k Y,

where p1 is the first projection. To make Definition 2.1 precise we need a more conceptual

definition of freeness. The action σ is free if Ψ is a closed embedding. In particular, the

orbit Gy of any k-point y is closed and isomorphic to G, so that the action is free in the

set-theoretic sense (all stabilizers are trivial). (Definition 2.1 is valid as stated if G is finite,

or if G is affine and f is an affine morphism. The first statement is not very hard, but the

second one is much harder – it is a consequence of Luna’s étale slice theorem.)

More often, however, one defines torsors topologically:

Definition 2.2. A torsor is a morphism f : Y → X together with a group action of G on
Y such that “locally in étale topology”, Y is isomorphic as a scheme over X to the “trivial

torsor” X ×k G. More precisely, this means that there exists a family of étale (quasi-finite,
unramified) maps πi : Ui → X whose images cover X, such that

Ui ×X Y ∼= Ui ×k G ,

where each isomorphism respects the action of G.

When G is finite, Definition 2.2 amounts to saying that the map

Y ×k G→ Y ×X Y, (y, g) 7→ (y, gy)

is an isomorphism. Indeed, if Y → X is a torsor under a finite k-group, then Definition 2.2
implies that Y is étale over X (it is a local property). Thus we can choose an étale open

covering of X consisting of a single “open set” Y .

2.2. Examples of torsors. 1) Let X be a point, X = Spec(k). “Y is a k-torsor (or Spec(k)-

torsor) under G” means that G acts on Y in such a way that over k, this is isomorphic to G

acting on itself by translations. For instance, Y is a curve of genus 1 and G the Jacobian of

Y . Or, G is the 1-dimensional torus given by x2 − ay2 = 1 (called the norm torus) and Y is
given by x2 − ay2 = c, for a, c ∈ k×. In general we have a natural bijection

{k-torsors under G}/iso ←→ H1(k,G) := H1cont(Gal(k/k), G(k)) ,
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where G(k) is given discrete topology. Note that if G is not commutative, then H1(k,G) is

a set (in general it does not have a natural group structure) with a distinguished element,

the class of a trivial torsor.

2) The natural morphism An+1k \{0} → Pnk is a torsor under the multiplicative group Gm.
3) Let G be a connected reductive algebraic k-group, for example, a semisimple group

like SL(n), PGL(n), SO(n), a torus like Gnm, or an extension of a torus by a semisimple

group, like GL(n). Suppose that Y is a smooth, projective and geometrically irreducible

variety with an action of G, such that there exists a G-linearized ample invertible sheaf L

on Y . (This means that the action of G extends to a linear action on L; if L is very ample

this means that the action of G on Y comes from a representation of G in H0(Y, L).) Let

Y s denote the stable points of Y , in the sense of the Geometric Invariant Theory. This is

an open (possibly empty) subset of Y . There is a morphism Y s → X whose fibres are the
orbits of G. In the language of GIT X is a “geometric quotient” of Y s. If some quotient

of G acts freely on Y s, then Y s → X is an X-torsor. Interesting examples are obtained
when Y is the Grassmannian variety G(m,n) and G is a maximal torus in GL(n), or when

Y = (Pnk)
m and G =PGL(n+ 1). For instance, the natural action of G5m on the affine cone

over G(2, 5) (re-scaling the coordinates of the 5-dimensional vector space) gives rise to the

universal torsor on the blowing-up of four points in general position on P2 (the del Pezzo

surface of degree 5).

4) Let 1 → G→ H → F → 1 be an extension of algebraic groups. Definition 2.1 implies
that H → F is an F -torsor under G. If G is semisimple, and Gsc is a semisimple group
which is a simply connected covering of G, then the isogeny Gsc → G is a universal torsor.
5) Let E be an elliptic curve. An n-covering C → E is a map which over k becomes

the multiplication by n. (In other words, C is a twisted form of E by the action of E[n]

on E by translations.) Any n-covering is an E-torsor under G = E[n]. Further, if D is an

mn-covering of E and the covering map factors as D → C → E, then D → C is a C-torsor
under G = E[m] (and C = D/E[m]).

6) Let p1(x) and p2(x) be co-prime separable polynomials, and let X and Y be the affine

curves defined by
X : y2 = p1(x)p2(x)

Y :

{
y21 = αp1(x)

y22 =
1

α
p2(x)

for α ∈ k×.

Then the degree 2 map Y → X : (y1, y2, x) 7→ (y1y2, x) is a torsor under G = Z/2. Actually,
any unramified double covering has a unique structure of a torsor under Z/2.
7) Similarly, if X and Y are the affine varieties given by

X : y2 − az2 = p1(x)p2(x)

Y :

{
y21 − az

2
1 = αp1(x)

y22 − az
2
2 =
1

α
p2(x)

then the map Y → X given by (y1+
√
az1)(y2+

√
az2) = y+

√
az is a torsor under the norm

torus y2 − az2 = 1.
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2.3. Torsors under groups of multiplicative type. We write X = X ×k k, and denote
by k[X]∗ the group of invertible regular functions on X. Such a function is the same thing

as a morphism X → Gm,k.
A commutative algebraic k-group G of multiplicative type is an extension of a finite

commutative k-group by a k-torus. The module of characters Ĝ =Hom(G,Gm,k) of G is an

abelian group of finite type acted on by Γ. (We take the Hom in the category of commutative

k-groups.) G is a torus if and only if Ĝ is torsion-free. One proves that the category of k-

groups of multiplicative type is anti-equivalent to the category of continuous Γ-modules,

which are of finite type as abelian groups. The tori are the groups which over k become

isomorphic to Gnm for some n. We have encountered tori in the examples 1, 2, 3, 4 and 7.

Torsors under groups of multiplicative type are the nicest of all torsors. First of all, an

X-torsor under the multiplicative group Gm is a line bundle over X with the zero section

removed. So these objects are parameterized by the elements of the Picard group PicX =

H1(X,Gm). (Here we mean étale topology, but the same result is obtained if one uses Zariski

topology.) It is a general fact that torsors under a commutative group G are classified by

the étale cohomology group H1(X,G). We shall not need a definition of this group, but we

shall amply use its various functoriality properties.

The canonical ∪-paring

H1(X,G)× Ĝ→ H1(X,Gm) = PicX

gives rise to the map H1(X,G) → Hom(Ĝ,PicX). Combining it with the canonical map
H1(X,G) → H1(X,G) we obtain the map H1(X,G) → HomΓ(Ĝ,PicX). The image of the
class of a torsor Y/X with structure group G under this map is called the type of Y/X.

An elegant and useful description of H1(X,G), where G is a k-group of multiplicative type,

is provided by the following exact sequence of Colliot-Thélène and Sansuc:

(3) 0→ Ext1k(Ĝ, k[X]
∗)→ H1(X,G)→ HomΓ(Ĝ,PicX)→ Ext

2
k(Ĝ, k[X]

∗)→ H2(X,G).

If X is such that k[X]∗ = k
∗
, then this looks a bit simpler:

(4) 0→ H1(k,G)→ H1(X,G)
χ
−→ HomΓ(Ĝ,PicX)

∂
−→ H2(k,G)→ H2(X,G).

The map χ sends the class of torsor to its type (up to sign). When k is algebraically closed,

then (4) shows that a torsor is determined by its type up to isomorphism (more generally,

the same is true for split tori T ' Gnm by Hilbert’s theorem 90).

Remark. The maps Hi(k,G) → Hi(X,G) in (4) are induced by the structure morphism
p : X → Spec(k). Consequently, these maps are injective if X(k) 6= ∅, since a k-point is a
section of p. Thus torsors of any given type exist if X has a k-point.

Definition 2.3 (Colliot-Thélène–Sansuc). An X-torsor under a group of multiplicative type

is universal if its type is an isomorphism.

The universal torsors make sense only for varieties X such that PicX is finitely generated

as an abelian group. If X is projective, this is equivalent to the condition H1(X,OX) = 0.
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It follows from the exact sequence (4) that universal torsors have a universal property

similar to the universal property of pro-coverings: if Y/X is a universal torsor and Y
′
/X a

torsor under a group of multiplicative type, then there is a morphism of X-torsors Y → Y
′
.

When do universal torsors exist? Let X be a smooth variety over k such that PicX is

finitely generated and k[X]∗ = k
∗
. Colliot-Thélène and Sansuc proved that universal torsors

on X exist if and only if the natural sequence of discrete Γ-modules

1→ k
∗
→ k(X)∗ → k(X)∗/k

∗
→ 1

is split. They also proved that this occurs if and only if the natural sequence of discrete

Γ-modules

1→ k
∗
→ k[U ]∗ → k[U ]∗/k

∗
→ 1

is split, where U ⊂ X is a dense open subset such that PicU = 0. Note that the abelian
group k[U ]∗/k

∗
is free of finite rank. Indeed, it fits into the exact sequence

1→ k[U ]∗/k
∗
→ DivX\UX → PicX → PicU = 0,

where DivX\UX is freely generated by the ‘components at infinity’, that is, by the irreducible

components of X \ U .

Example Let X be a smooth compactification of the affine surface U ⊂ A3 given by the
equation y2 − bz2 = af(x), where a, b ∈ k∗, and f(x) is a separable monic polynomial. The
universal torsors on X exist if and only if a is a product of a norm from k(

√
b) and a norm

from k[x]/(f(x)). For instance, this condition is satisfied if f(x) has a root α ∈ k, but then
(α, 0, 0) is a k-point in X.

There are classes of varieties over arithmetically interesting fields for which the existence

of universal torsors implies the existence of k-points. Such are forms of projective spaces,

quadrics, and more generally, homogeneous spaces of algebraic groups with connected stabi-

lizers over p-adic fields. (The same is true for number fields if the group is linear.)

2.4. Relation to the fundamental group. Let πab1 (X) be the abelianization of π1(X, x)

in the category of profinite groups. We can omit the base point since the abelianized fun-

damental groups for different choices of the base point are canonically isomorphic. Consider

the push-out of the fundamental sequence (1) in the case of the open set U ⊂ X as above,
with respect to the abelianization map π1(U, u)→ πab1 (U):

(5) 1→ πab1 (U)→ P → Γ→ 1.

The abelianized fundamental group πab1 (U) is easy to compute. The geometric class field

theory produces canonical isomorphisms of Γ-modules:

πab1 (U) = lim←
πab1 (U)/n, where π

ab
1 (U)/n = Hom(H

1(U, μn), k
∗
),

and the Kummer sequence gives an exact sequence of Γ-modules

0→ (k[U ]∗/k
∗
)/n→ H1(U, μn)→ Pic(U)[n]→ 0.
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Proposition 2.4. Let X be a smooth and geometrically integral variety over k such that

k[X]∗ = k
∗
, and Pic(X) is a finitely generated abelian group. Let U ⊂ X be a dense open

subset such that Pic(U) = 0. Then the universal torsors on X exist if and only if (5) is split.

Indeed, D. Harari and the author proved that the universal torsors on X exist if only if

the pushed-out of (5) by the mod n map is split for all n. The proof of the following lemma

was kindly provided to us by A. Pal.

Lemma 2.5. Let 1 → A → B → C → 1 be an exact sequence of profinite groups and
continuous homomorphisms, where A is abelian. This sequence is split if and only if its

push-out by the mod n map A→ A/n is split for all n.

Let S(n) be the set of homomorphisms of profinite groups C → B/nA which are sections
of the map B/nA → C. This set if finite. (The choice of one section identifies S(n)

with Hom(C,A/n). Since A/n is a finite abelian group, S(n) identifies with the finite set

Hom(Cab/n,A/n).) Since the inverse limit of a projective system of finite non-empty sets is

non-empty (a consequence of Tikhonov’s theorem), and the canonical map A → lim←A/n
is an isomorphism, we obtain the desired splitting.

2.5. More on the type of a torsor. Let T be a k-torus over k.

Exercise. a) (Rosenlicht’s lemma) Prove that k[T ]∗ is generated by k
∗
and the characters

of T . (Hint: First prove this for T = Gm.)

b) Let Z be a k-torsor under T . Then there is an exact sequence of Γ-modules

1→ k
∗
→ k[Z]∗ → T̂ → 0.

Moreover, we have Ext1k(T̂ , k
∗
) = H1(k, T ), and the class of this extension is the class of the

k-torsor Z in H1(k, T ) (up to sign).

Now let Z → Y be a torsor under T , where both Y and Z are geometrically integral, and
k[Y ]∗ = k

∗
. The following exact sequence of Γ-modules, due to Colliot-Thélène and Sansuc,

is a generalization of (b):

(6) 1→ k
∗
→ k[Z]∗ → T̂ → PicY → PicZ → 0.

Moreover, up to sign the map T̂ → PicY coincides with the type of Z → Y . It is clear from
(6) that when the type is injective we have k[Z]∗ = k

∗
. It is also clear that the torsor Z/Y

is universal if and only if k[Z]∗ = k
∗
and PicZ = 0.

In the case when Z → Y is a torsor under a k-group F of multiplicative type (for instance,
a finite commutative k-group scheme), and the condition k[Z]∗ = k

∗
is satisfied, we still have

an exact sequence

(7) 0→ F̂ → PicY → PicZ.

Here again, F̂ → PicY is the type of the torsor Z → Y .

Let’s use (7) to find the type of the torsor [n] : E → E (the multiplication by n map) from
Example 5. Recall that the Galois module E[n] is auto-dual because of the Weil pairing.

The map [n]∗ : PicE → PicE sends the class of a point [x] to the sum of the classes [y],
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where ny = x, x, y ∈ E(k). This sum equals the sum of [y] + [ε], where ε ∈ E[n], and
this equals n2[y] = n[ny] = n[x]. Thus [n]∗ is the multiplication by n, and the type of the

torsor [n] : E → E is the composition of an automorphism of E[n] and the natural injection
E[n] ⊂ PicE. It can be shown, at least up to sign, that the type is indeed this natural
injection.

Exercises. 1 Assume that X is geometrically integral, i.e. X is reduced and irreducible.

Prove that the torsor Y is geometrically connected, i.e. Y is connected, if and only if the

kernel of χ([Y ]) has no torsion, for example when the type is injective. Hint: use (6).

2 Check that the torsor in Example 2 is universal.

3 Find the type of torsors in Examples 6 and 7.
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3. What is the Brauer group?

3.1. The Brauer group of a field. The Brauer group of a field k is the group Br k of

equivalence classes of central simple algebras over k. Recall that a k-algebra A is central

if the centre of A is k, and A is simple if it has no nontrivial two-sided ideals. The set of

such algebras is closed under taking the tensor product. The basic example of a c.s.a. is the

matrix algebra Mn(k). If A is a c.s.a. over k, and k ⊂ K is a field extension, then A⊗k K
is a c.s.a. over K. For any c.s.a. A the algebra A ⊗k k is isomorphic to Mn(k). Thus the
central simple algebras are precisely those algebras over k which over k become isomorphic

to a full matrix algebra.

Two algebras A1 and A2 are called equivalent if A1⊗kMn(k) is isomorphic to A2⊗kMm(k)
for some positive integers n and m. To a c.s.a. A we can associate its opposite algebra Aop,

that is, A with the reversed order of multiplication. One checks that A⊗k Aop is isomorphic
to a matrix algebra. Thus the set of equivalence classes of central simple algebras is a group

under the tensor product.

There is a cohomological interpretation of the Brauer group. The Skolem–Noether theorem

says that every automorphism of Mn(k) comes from the conjugation by an invertible matrix,

in other words, AutMn = PGL(n). Hence the isomorphism classes of the central simple

algebras A such that A ⊗k k ' Mn(k) are in a natural bijection with the elements of the
cohomology set H1(k,PGL(n)). The exact sequence of algebraic groups

(8) 1→ Gm → GL(n)→ PGL(n)→ 1

gives a map H1(k,PGL(n)) → H2(k, k
∗
). Using this map one establishes a natural isomor-

phism Br k = H2(k, k
∗
) (to a c.s.a. one associate a “system of factors”, which is a 2-cocycle

with coefficients in k
∗
).

The map x 7→ xn gives rise to the exact sequence

(9) 1→ μn → k
∗
→ k

∗
→ 1.

By Hilbert’s theorem 90 we deduce that (Br k)[n] = H2(k, μn). Consider the pairing of Galois

modules

μn × Z/n → μn.

This gives a pairing

H1(k, μn)× H
1(k,Z/n) → (Br k)[n].

On the one hand, it follows from (9) that H1(k, μn) = k
∗/k∗n. On the other hand, H1(k,Z/n) =

Homcont(Γ,Z/n). Thus, if a ∈ k∗, χ ∈ Homcont(Γ,Z/n), we have an element of order dividing
n in the Brauer group, written as (a, χ). One can construct explicitly a c.s.a. whose class

in Br k is (a, χ); it is called a cyclic algebra. From our construction it is clear that (a, χ) is

multiplicative in each argument. Sometimes it is more convenient to write (a,K) instead of

(a, χ), where K ⊂ k is the invariant subfield of the kernel of χ.
If n = 2 there is no difference between Z/2 and μ2 (the characteristic of k is zero), so that
we can write the corresponding class as (a, b), where a, b ∈ k∗ are defined up to squares.
(The same can be done for any cyclic algebra if k contains the n-th roots of 1.) The cyclic

algebra in this case is the quaternion algebra with generators i and j subject to relations
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i2 = a, j2 = b, ij = −ji. (It may not be a division algebra, though.) It is an important
fact that (a, b) = 0 if and only if the plane projective conic ax2 + by2 = z2 has a k-point.

This implies the relations (a,−a) = (a, 1 − a) = 0 whenever these symbols are defined. In
algebraic terms, we have (a, b) = 0 if and only if a is a norm of the quadratic extension

k(
√
b)/k.

Examples. 1) BrC = 0. The same is true for any algebraically closed field.
2) Br k(t) = 0 (Tsen’s theorem).

2) BrR ' Z/2. The non-trivial element is the class of Hamilton’s quaternions. Let
inv : BrR→ 1

2
Z/Z be the corresponding isomorphism.

3) Let k be a non-archimedean local field of characteristic 0. The local class field theory

provides a local invariant map inv : Br k → Q/Z, which is an isomorphism. Suppose that p is
prime to the residual characteristic of k, and consider inv : (Br k)[p]→ 1

p
Z/Z. Assume that

a is a unit. If K/k is unramified, then inv((a,K)) = 0. If K/k is ramified, then inv((a,K))

is the class of the reduction of a modulo the maximal ideal of OK , considered up to n-th
powers in the residue field.

4) Let k be a number field. The sum of local invariants of a class in Br k is zero; moreover,

any collection of values with the zero sum comes from a unique element of Br k. This powerful

consequence of the global class field theory can be written as the exact sequence

0→ Br k → ⊕vBr kv → Q/Z→ 0.

5) Let F = k(t). Somewhat similarly, we have an exact sequence (D.K. Faddeev):

0→ Br k → Br k(t)→ ⊕P H
1(k[t]/P (t),Q/Z)→ 0,

where P (t) ranges through all the irreducible monic polynomials. (These polynomials bijec-

tively correspond to the closed points of the affine line over k.)

3.2. The Brauer group of a scheme. Grothendieck generalized the Brauer group to any

scheme X using étale cohomology, namely he defined BrX = H2(X,Gm). In particular, the

Brauer group of any ring R is defined by BrR = H2(SpecR,Gm).

Let O be a discrete valuation ring (DVR) with the fraction field K and the residue field κ.
Assume that κ has characteristic 0. Then (using some general properties of étale cohomology)

one defines the residue map

res : BrK → H1(κ,Q/Z),

whose kernel is BrO. The maps Br k(t)→ H1(k[t]/P (t),Q/Z) from Faddeev’s exact sequence
are examples of the residue map. The local invariant from Example 3 is also a residue map

(but note that the residue field has characteristic p now). Indeed, the Galois group of a

finite field is procyclic, so that H1(κ,Q/Z) = Q/Z, where the map sends χ to its value on
the topological generator of Gal(κ/κ).

LetX be a smooth integral variety over k. Then we have an exact sequence (Grothendieck’s

purity theorem for the Brauer group):

0→ BrX → Br k(X)→ ⊕Y H
1(k(Y ),Q/Z),
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where Y ranges through all the integral subvarieties of X of codimension 1. The map

Br k(X)→ H1(k(Y ),Q/Z) here is the residue map. This can be seen as a vast generalization
of Example 5; Faddeev’s exact sequence shows that BrA1k = Br k.

The elements of the intersection of the residue maps defined by all possible DVR’s in

k(X) such that the restriction of the valuation to k is zero, are called unramified. If X

is projective and smooth, then the Brauer group of X can be interpreted as the group of

unramified elements of Br k(X). This has an important consequence that the Brauer group

of a smooth and projective variety is a birational invariant.

Examples. 1) BrAnk = BrP
n
k = Br k.

2) Let C be the conic ax2 + by2 = z2. Then BrC is the quotient of Br k modulo the

subgroup generated by (a, b).

3) (Open problem.) Let K/k be a biquadratic extension. Choose coordinates x1, x2, x3, x4
in K as a vector space over k. Let N : K → k be the norm. Let X be any smooth

compactification of the affine variety N(x1, x2, x3, x4) = c, for c ∈ k∗. It is known that
BrX/Br k ' Z/2. Find explicitly a non-constant element in BrX, i.e. an unramified
element in Br k(X) which is not in Br k.

3.3. Computing the Brauer group. In many cases the Brauer group of X can be com-

puted from the Hochschild–Serre spectral sequence

Hp(k,Hq(X,Gm))⇒ H
p+q(X,Gm).

This spectral sequence is a particular case of the general Grothendieck spectral sequence of

composed functors. Write p : X → Spec(k) for the structure morphism. Here we have three
abelian categories

{Étale sheaves on X} −→ {Continuous Γ-modules} −→ {Abelian groups}

and the functors between them: p∗ : F 7→ H
1(X,F) and M 7→ MΓ. The composition of

these functors sends F to H1(X,F). It is a general theorem that once some fairly mild
conditions are satisfied (which they are in this case) we get a spectral sequence as above.

Note that if X is projective, then H0(X,Gm) = k
∗
. To use the Hochschild–Serre spectral

sequence we need to know how Γ acts on PicX = H1(X,Gm) and BrX = H
2(X,Gm), as

well as the differentials d1,12 : H
1(k,PicX) → H3(k, k

∗
) and d0,22 : (BrX)

Γ → H2(k,PicX).
Of course, things become easier

when BrX = 0 (This is equivalent to the absence of transcendental cycles in H2(X×C,Q)
and H3(X×C,Z)tors = 0 – this holds for the smooth projective curves for dimension reasons,
and also for the rational varieties since BrX is a birational invariant of smooth projective

varieties and BrPn
k
= 0),

when X has a zero-cycle of degree one, for example, a rational point (then d0,12 and d
1,1
2

are the zero maps, since a k-point gives a section of the structure morphism p),

or when H3(k, k
∗
) = 0 (this holds for number fields and local fields by class field theory,

and also for k(t), where k is a number field or its completion).
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If X is projective, then the above spectral sequence gives an exact sequence

(10)

0→ PicX → (PicX)Γ →? Br k → Br 1X → H
1(k,PicX)→? H3(k, k

∗
)→ H3(X,Gm),

where the starred maps are zero if X has a k-point, and Br 1X = Ker[BrX → BrX] is the
algebraic Brauer group of X. In good cases this sequence reduces the computation of the

structure of the group Br 1X modulo the image of Br k to the easier question of computing

the first Galois cohomology group of PicX. When PicX is finitely generated and torsion

free, such a computation can be done by a computer once we find a system of generators

and relations of PicX.

In the general case, the starred map up to sign are the Yoneda cup-products with the class

of the 2-extension

0→ k
∗
→ k(X)∗ → DivX→ PicX → 0.

It is a difficult problem to lift a class in the kernel of H1(k,PicX)→ H3(k, k
∗
) to Br 1X (cf.

Example 3 above). However, if T is a group of multiplicative type, and we are given a torsor

Y → X under T of type λ : T̂ → PicX, then lifting the elements of Im(λ∗) ⊂ H
1(k,PicX)

is easy. Let us now describe this important link between torsors and the Brauer group.

3.4. From torsors to the Brauer group. Suppose Y → X is a torsor under a k-group
of multiplicative type T , and let [Y/X] be its class in H1(X,T ). The structure morphism

p : X → Spec(k) gives rise to the map H1(k, T̂ ) → H1(X, T̂ ) (actually, an isomorphism).
Hence for each c ∈ H1(k, T̂ ) we obtain an element of BrX via the cup product

H1(X,T )× H1(k, T̂ ) −→ H1(X,T )× H1(X, T̂ ) −→ H2(X,Gm) = BrX .

The cup product is an element of Br 1X since c is killed by extending the ground field to k.

Theorem 3.1. Let λ : T̂ → PicX be the type of the torsor Y → X under a k-group of
multiplicative type T . Then the following diagram commutes:

H1(k, T̂ ) → H1(k,PicX)

|| ↑

H1(X, T̂ ) → Br 1X

where the upper arrow is λ∗, the right hand arrow is the map from (10), and the bottom

arrow is the cup-product with the class [Y/X].

Examples. 1) Assume that PicX has no divisible part, e.g. is torsion free. Let T be the

group dual to PicX, i.e. T̂ = PicX, and let Y/X be a universal torsor. The cup product

with the class [Y/X] defines a homomorphism H1(k,PicX)→ Br 1X, which is a splitting of
the exact sequence

0→ Br k → Br 1X → H
1(k,PicX)→ 0.

2) Let Y/X be the multiplication by 2 on an elliptic curve E : y2 = (x−c1)(x−c2)(x−c3),
so that k(Y ) = k(X)(

√
x− c1,

√
x− c2). Here T = T̂ = E[2]. Note that the degree map

PicE → Z has a section 1 7→ [0], where 0 ∈ E(k) is the origin of the group law. Hence
PicE ' E(k) ⊕ Z as Galois modules. This implies that H1(k,PicE) = H1(k,E) since
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H1(k,Z) = Homcont(Γ,Z) = 0 because Γ is a profinite group. On the other hand, BrE =
Br 1E is the direct sum of Br k and the subgroup Br

0E ⊂ BrE consisting of the elements
with trivial value at 0. Then (10) shows that Br 0E is naturally isomorphic to H1(k,E). We

computed the type λ of Y → X above. This calculation implies that λ∗ : H
1(k,E[2]) →

H1(k,E) is the natural map. By Theorem 3.1 this map can be interpreted as sending

(a1, a2) ∈ H
1(k,E[2]) ∼= (k∗/k∗2)2 ,

to the element (x− c1, a1) + (x− c2, a2) ∈ Br
0E. (The value of this element at 0 ∈ E(k) is

0 because the fibre of Y → X at 0 contains the k-point 0 ∈ Y (k), and so is a trivial torsor
under E[2].) Since Im(λ∗) = H

1(k,E)[2], every element of (Br 0E)[2] can be obtained in this

way.

3) Let Y → X be the torsor from Example 7; its structure group is the norm torus T
given by y2 − az2 = 1. Assume that a ∈ k∗ is not a square in k[x]/(pi(x)), i = 1, 2, and
that p1(x) and p2(x) are coprime, irreducible and of even degree. Then Y → X extends
to the torsor Yc → Xc between the natural compactifications. (The fibre of Xc → P1k at
infinity is smooth.) It is easy to see that T̂ is the abelian group Z on which Γ acts through
Gal(k(

√
a)/k) ' Z/2, whose generator sends 1 to −1. Representing T̂ as the kernel of the

summation map Z ⊕ Z → Z, where Gal(k(
√
a)/k) ' Z/2 swaps the coordinates of Z ⊕ Z,

one shows that H1(k, T̂ ) ' Z/2. The commutative diagram of Theorem 3.1 gives rise to the
commutative diagram

H1(k, T̂ ) → H1(k,PicXc)

|| ↑

H1(Xc, T̂ ) → Br 1Xc/Br k

In fact, all the arrows in this diagram are isomorphisms between the groups of order 2 (see

Chapter 7 of my book). The element (a, p1(x)) ∈ BrX = Br 1X generates Br 1Xc/Br k
(ibidem).

4) (P. Swinnerton-Dyer + A.S.) Consider (the unique minimal smooth projective model

of) the surface

X : z2 = (x− c1)(x− c2)(x− c3)(y − d1)(y − d2)(y − d3) .

X a K3 surface, more precisely the Kummer surface obtained from the product of two elliptic

curves

u2 = (x− c1)(x− c2)(x− c3) and v2 = (y − d1)(y − d2)(y − d3) .

Assume that these curves are not isogenous over k. Then Br 1X = Br k. Using Example 2 one

shows that (BrX)[2] ' (Z/2)4 is generated by the elements ((x−ci)(x−c3), (y−dj)(y−d3))
for i, j ∈ {1, 2}.

If X is a variety with BrX 6= 0, then the computation of the whole Brauer group BrX is
much harder. For example, what is BrX when X is an abelian variety? The same question

for a K3 surface. Zarhin and the author proved that if k is finitely generated over Q, then
BrX/Br k is finite if X is a K3 surface, and BrX/Br 1X is finite is X is an abelian variety.
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It is an interesting question whether the order of this group can be computed arithmetically.

If X is defined over a number field, is there a connection to the L-function of X?

Exercises. 1. Write down the elements of the Brauer group that can be obtained from the

torsor in Example 6.

2. With notation of the previous example, prove directly that (a, p1(x)) ∈ Br k(X) is
unramified.
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4. What is descent?

4.1. Torsors and descent. Torsors are useful in number theory for doing descent.

Let f : Y → X be a left torsor under an algebraic k-group G. Recall that there is a
natural bijection

{left k-torsors under G}/iso ←→ H1(k,G).

To a k-point P on X we can associate the class of the fibre [YP ] = [f
−1(P )] ∈ H1(k,G). This

defines an important map X(k)→ H1(k,G), which can be used to study the set X(k).
Let α be a continuous cocycle of Γ with coefficients in G(k), and let [α] be its class in

H1(k,G). Then we can form the twist of Y by α, denoted fα : Yα → X, which can be
described as follows. Note that to give a quasi-projective variety over k is the same as to

give a variety over k together with an action of Gal(k/k) on it such that the stabilizer of every

point is open. (For affine varieties going down to k is easy: just take the Galois invariant

subring of the coordinate ring.) For Yα, we have Yα = Y , and the twisted Galois action is

y 7→ α(γ)γy for γ ∈ Gal(k/k). The fact that this is a group action amounts to the cocycle
condition:

α(γ2γ1)γ2γ1 = α(γ2)γ2 ∙ α(γ1)γ1 ⇔ α(γ2γ1) = α(γ2) ∙
γ2α(γ1).

Lemma 4.1. Let f : Y → X be a torsor under G. Then

X(k) =
∐

[α]∈H1(k,G)

fα(Yα(k)) .

Proof. Suppose P ∈ X(k). Then YP = f−1(P ) → P is a k-torsor under G. Take the

corresponding class [α] := [f−1(P )] ∈ H1(k,G). Then f−1α (P ) contains a k-rational point.
The idea is that the twisting by α “untwists” YP by turning it into a trivial torsor. �

Warning. If G is not abelian, then in general Yα is not a left torsor under G. In fact Yα is a

left torsor under a certain twisted form of G, namely the inner form Gα of G twisted by the

cocycle α. In this case H1(k,G) and H1(k,Gα) can be identified as sets, but the distinguished

point of H1(k,Gα) corresponds to the class of α in H
1(k,G).

From now on we assume that X is projective and k is a number field. Then there are only

finitely many classes [α] such that Yα(k) 6= ∅.
Consider the topological space

∏
X(kv), where the product is taken over all the places of

k. We have
∏
X(kv) = X(Ak), where Ak is the ring of adèles of k. Because of this we shall

refer to the points of
∏
X(kv) as ‘adelic’ points. We assume that there is at least one adelic

point, or, in the terminology of Diophantine equations, that X is everywhere locally soluble.

Define

(11)
(∏

X(kv)
)f
:=

⋃

[α]∈H1(k,G)

fα

(∏
Yα(kv)

)
⊆
∏
X(kv),

where all our products are taken over all the places v of k. This set is sometimes called

‘the set of adelic points that survive the descent with respect to Y → X’. By Lemma 4.1
(
∏
X(kv))

f contains X(k). This set consists of the families of points Pv ∈ X(kv), for all v,
such that the classes [YPv ] ∈ H

1(kv, G) are the restrictions of one global class in H
1(k,G).
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The process of descent can be seen as consisting of two steps:

(1) determining the set of elements α ∈ H1(k,G) such that
∏
Yα(kv) is not empty;

(2) computing (
∏
X(kv))

f .

If the set in (1) is empty, then X(k) is empty.

Example. The most famous example of descent is the 2-descent on the elliptic curve E :

y2 = (x− c1)(x− c2)(x− c3). We keep the notation of Example 2 of Section 2, in particular
f : Y → X = E is the multiplication by 2. We obtain the exact sequence

0→ E[2]→ E(k)→ E(k)→ H1(k,E[2]).

The right hand map here is the map E(k) → H1(k,E[2]) sending a point P = (x, y) to the
class [YP ]. (Its explicit expression is well known: choose (c1, 0) and (c2, 0) for a basis of E[2],

then this map sends a point P = (x, y) to (x− c1, x− c2). If either expression is not defined
at P , it must be multiplied by a square in k(E) to make it regular and invertible at P .)

The set of classes [α] ∈ H1(k,E[2]) such that Yα(kv) 6= ∅ for all v is none other than the
2-Selmer group. This is task (1). To solve it one looks at all the 2-coverings of E in order

to decide which have points everywhere locally; such coverings form the Selmer group. (The

process is in fact finite because it is enough to consider only the classes that are unramified

away from finitely many places. For each covering there are only finitely many places to

test.) Finally, (
∏
E(kv))

f is the subset of (
∏
E(kv)) consisting of the elements whose image

in
∏
H1(kv, E[2]) comes from H

1(k,E[2]).

4.2. The Manin obstruction. The Brauer–Manin set (
∏
X(kv))

Br is the set of families

of points Pv ∈ X(kv), for all v, such that

(12)
∑

v

invvA(Pv) = 0 for all A ∈ BrX.

Here A 7→ A(Pv) ∈ Br kv is the “value” of A at Pv, defined because of the functoriality of
the Brauer group. The sum is finite since for almost all places A(Pv) is not just an element
of Br kv, but an element of its subgroup BrOv consisting of the unramified elements of Br kv.
But BrOv = 0. Finally, X(k) ⊂ (

∏
X(kv))

Br by the global reciprocity.

The pairing in (12) is called the Brauer–Manin pairing. A subgroup of BrX does not

obstruct the Hasse principle if X contains an adelic point Brauer–Manin orthogonal to it.

The Brauer–Manin obstruction is the only obstruction to the Hasse principle for a class of

varieties if for every variety in the class the emptiness of X(k) is equivalent to the emptyness

of (
∏
X(kv))

Br .

For an explicitly given A ∈ BrX the obstruction is easy to compute.

Example (V.A. Iskovskih). This example continues Example 7 of Section 1 and Example 3

of Section 2. Let k = Q, a = −1, p1(x) = 3− x2, p2(x) = x2− 2. The class A = (−1, 3− x2)
is unramified. It is not hard to check that invvA(Pv) = 0 for any Pv, v 6= 2. (Note that
(−1, 3 − x2) = (−1, x2 − 2), because (−1, y2 + z2) = 0. Since (3 − x2) + (x2 − 2) = 1, one
of these must be a unit (resp. positive), but since v 6= 2 the invariant of the quaternion
algebra of the form (unit,unit) (resp. (-1,positive)) is 0.) It is more involved to prove that
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inv2A(P2) = 1
2
for any 2-adic point P2. It follows that the Brauer–Manin pairing never takes

the value 0, so there are no Q-points on our surface.

4.3. Descent and the Manin obstruction. Thus we have two “competing approaches” to

bounding X(k): descent using torsors (the more classical approach), and the Brauer–Manin

obstruction. Colliot-Thélène and Sansuc proved that the information that can be obtained

from torsors under groups of multiplicative type can also be obtained via the Brauer–Manin

obstruction. Their main result is the following theorem.

Theorem 4.2. Let X be a projective variety over a number field k; then we have

(
∏
X(kv))

Br 1X =
⋂

λ:M↪→PicX

⋃

type(Y,f)=λ

f(
∏
Y (kv)),

where λ :M ↪→ Pic (X) runs over the Γ-submodules of PicX of finite type.

The condition on the global points provided by the algebraic Brauer group Br 1X is called

the algebraic Manin obstruction. The theorem shows that it is equivalent to the combination

of obstructions of two different kinds: the obstruction for the existence of torsors f : Y → X
of a given type λ, and the descent obstruction defined by torsors of type λ, for all possible

λ’s. Note that by (4) all torsors of given type can be obtained from one such torsor by

twisting as described above.

This theorem is a consequence of the following more detailed result.

Let r : Br 1X → H
1(k,PicX) be the canonical map from the Hochschild–Serre spectral

sequence (10). Let M be a Γ-module of finite type, and λ :M → Pic (X) a homomorphism
of Γ-modules. Let S be the k-group of multiplicative type such that M = Ŝ. Let

Br λX := r
−1λ∗(H

1(k,M)) ⊂ Br 1X.

We define (
∏
X(kv))

Br λ ⊂
∏
X(kv) as the set of adelic points orthogonal to Br λX with

respect to the Brauer–Manin pairing.

Theorem 4.3. Let X be a projective variety over a number field k, M be a Γ-module of

finite type, S its dual group of multiplicative type, and λ ∈ Homk(M,Pic (X)). Then

(a) we have

(13) (
∏
X(kv))

Br λ = (
∏
Y (kv))

f ,

where f : Y → X is an X-torsor under S of type λ,

(b) there are only finitely many isomorphism classes of torsors f : Y → X of type λ such
that

∏
Y (kv) 6= ∅.

To derive Theorem 4.2 note that for any α ∈ Br 1X there exists a Γ-submodule λ :
M↪→PicX of finite type such that r(α) ∈ λ∗(H

1(k,M)) ([Serre, Cohomologie galoisienne],

I.2.2, Cor. 2). Thus (
∏
X(kv))

Br 1X =
⋂
λ(
∏
X(kv))

Br λ .

Let us point out some of the many corollaries of this theorem.
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Corollary 4.4. (1) Br λX does not obstruct the Hasse principle if and only if there exists

an X-torsor Y of type λ such that
∏
Y (kv) 6= ∅. In particular, when PicX is of finite type,

the vanishing of the algebraic Manin obstruction is equivalent to the existence of universal

torsors with an adelic point.

(2) If the X-torsors of type λ satisfy the Hasse principle, then the Manin obstruction to

the Hasse principle on X related to Br λX is the only obstruction.

The proof of Theorem 4.3 (a) breaks into three statements:

(1) If there exists an adelic point which is Brauer–Manin orthogonal to the elements of

Br λX coming from the everywhere locally trivial elements of H
1(k,M), then there exists a

torsor f : Y → X of type λ. (This is the hardest part.)
(2) Suppose there exists a torsor f : Y → X of type λ. If an adelic point is Brauer–Manin
orthogonal to Br λX, then there exists σ ∈ H

1(k, S) such that this point lifts to an adelic

point on Y σ.

(3) If there exists a torsor f : Y → X of type λ such that Y (Ak) 6= ∅, then f(
∏
Y (kv)) ⊂

(
∏
X(kv))

Br λ .

The proof is in Chapter 6 of my book. The proof of (2) and (3) is based on Theorem 3.1

(proved in Chapter 4).

4.4. Non-abelian torsors and beyond. The previous discussion gives a satisfactory the-

ory of the algebraic Manin obstruction. Two questions though are left unanswered:

Question 1. Can the non-algebraic (also known as transcendental) Manin obstruction be

given in terms of torsors?

Question 2. If the Manin obstruction fails to explain a counter-example to the Hasse

principle, can it be done using torsors? If not, what other obstructions can be there?

Let F be a contravariant functor from the category of k-schemes to the category of sets
or abelian groups. For example, F = Hi(X,G), where G is a commutative k-group scheme,
or F = H1(X,G), where G is any k-group scheme. For φ ∈ F(X) define X(Ak)φ as the
the set of adelic points (Pv) such that (φ(Pv)) belongs to the image of the diagonal map

F(k) →
∏
all v F(kv). Define X(Ak)

F as the intersection of X(Ak)φ for all φ ∈ F(X). We
have obvious inclusions

X(k) ⊂ X(Ak)
F ⊂ X(Ak)

φ.

In the case of H2(X,Gm) = BrX the set X(Ak)F is the Brauer–Manin set. In the case when
G is a k-group scheme, and φ ∈ H1(X,G) is the class of a torsor f : Y → X under G, the
set X(Ak)φ is the set X(Ak)f defined earlier in (11).

Theorem 4.5 (Harari 2002). Let X be a smooth geometrically integral variety over k.

(i) X(Ak)Br ⊂ X(Ak)φ for any φ ∈ H
2(X,G), where G is a commutative k-group.

(ii) X(Ak)Br ⊂ X(Ak)φ for any φ ∈ H
1(X,G), where G is a connected linear k-group.

(iii) if k[X]∗ = k
∗
and X is smooth, then X(Ak)Br 1 ⊂ X(Ak)φ for any φ ∈ H

1(X,G),

where G is a commutative k-group.
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Harari points out that the case of commutative G and i ≥ 3 is of no interest because the
corresponding diagonal map is an isomorphism (moreover, only the real places can give rise

to non-zero cohomology groups).

Answer to Question 1. (iii) and Theorem 4.2 show that the algebraic Brauer–Manin

obstruction is equivalent to the intersection of all the obstructions given by torsors under

commutative groups (including the obstruction coming from the existence of such torsors).

However, if BrX 6= 0 we need torsors under PGL(n) to account for the full Brauer–Manin
obstruction.

Let X be a smooth and projective variety. By a theorem of Gabber (see de Jong’s paper)

BrX = Br A(X), where the latter is the group of similarity classes of Azumaya algebras (OX-
sheaves of central simple algebras). The exact sequence of étale sheaves of groups defined by

the exact sequence of algebraic groups (8) gives rise to the exact sequence of pointed (Čech

cohomology) sets

H1(X,Gm)→ H
1(X,GL(n))→ H1(X,PGL(n))

dn−→ BrX.

The group Br A(X) is the union of images of dn(H
1(X,PGL(n))) for all n. It is known that

dn(H
1(X,PGL(n))) ⊂ Br A(X)[n] ([Milne, EC], IV.2.7). In the case X =Spec(k), where k is

a number field or a local field, it is well known that the map

dn : H
1(k,PGL(n))→ Br (k)[n]

is surjective. (The order of the class of a central simple algebra in the Brauer group of k

equals its index.) This map is also injective (see [Serre, CL], X.5), and hence is bijective.

Let PGL be the disjoint union of sets H1(X,PGL(n)) for all n = 2, 3, . . .. Using the facts

we mentioned above, it is easy to show that

X(Ak)
BrA(X) =

⋂

f∈PGL

X(Ak)
f .

The conclusion is that all Manin obstruction can be given in terms of torsors.

Answer to Question 2. In the late 90’s examples were found of descents involving torsors

under nonabelian G, which go beyond the Brauer–Manin obstruction.

(a) There is a bielliptic surface X over Q (constructed by the author) such that X(Q) is
empty, but the Brauer–Manin set is not. This counter-example can be explained by descent

using a torsor under a finite nilpotent group G. This G is the semi-direct product of E[4]

by Z/2, where E is an elliptic curve, and the non-trivial element of Z/2 acts on E[4] as
multiplication by −1. (See Chapter 8 of my book.)
(b) Harari gives a geometric condition which guarantees that the closure of X(k) in the

space of adelic points is smaller than the Brauer–Manin set. This is always the case for

smooth projective varieties X such that

(i) π1(X, x̄) is non-abelian;

(ii) H2(X,OX) = 0;
(iii) H1(X,OX) = 0, or dimH

1(X,OX) = 1 and dimX ≥ 2.
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These conditions are satisfied for all bielliptic surfaces as well as for some elliptic surfaces

and for some surfaces of general type.

(c) The theorem in (b) does not apply to Enriques surfaces for which π1(X, x̄) ' Z/2 (the
universal covering is a K3 surface). However, Harari and the author produced an example

of such a surface X/Q for which the closure of X(Q) in the space of adelic points is smaller
than the Brauer–Manin set. This counter-example can be explained by descent using a torsor

under a group G, which is an extension of Z/2 by a 1-dimensional torus. In fact, G is a
k-form of the orthogonal group O(2)

However, it is unlikely that the counter-example to the Hasse principle constructed by

Sarnak and Wang (conditionally on Lang’s conjecture) can be explained in terms of torsors.

In this case BrX = Br k so the torsors under connected linear groups give no obstruction,

and, on the other hand, X is simply connected, so no obstruction comes from torsors under

finite groups either. In this example dimX = 4, so this does not rule out the possibility that

some theory may still exist for curves and surfaces.

In his thesis S. Cunnane constructed an Enriques surface X/Q such that the closure of
X(Q) is smaller than the Brauer–Manin set, but for which no torsor-theoretic argument is
known. His proof uses the Manin obstruction on the K3 cover Y/X that does not come from

an Azumaya algebra on X. This idea was already used in Example (c) above, but in that

example the obstruction comes from an algebraic element of Br Y ; it is this that makes it

possible to relate it to torsors. When the obstruction comes from a transcendental element,

as in Cunnane’s example, no such relation is known.


