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On the Brauer group of diagonal quartic surfaces

Evis Ieronymou, Alexei N. Skorobogatov and Yuri G. Zarhin

with an appendix by Sir Peter Swinnerton-Dyer

Abstract

We obtain an easy sufficient condition for the Brauer group of a diagonal quartic surface D over
Q to be algebraic. We also give an upper bound for the order of the quotient of the Brauer
group of D by the image of the Brauer group of Q. The proof is based on the isomorphism of
the Fermat quartic surface with a Kummer surface due to Mizukami.

Introduction

Let D ⊂ P3
Q be the quartic surface defined by the equation

x4
0 + a1x

4
1 + a2x

4
2 + a3x

4
3 = 0, (1)

where a1, a2, a3 ∈ Q∗. Let HD ⊂ Q∗ be the subgroup generated by −1, 4, a1, a2, a3 and the
fourth powers Q∗4. We write D for the surface over an algebraic closure Q obtained from
D by extending the ground field to Q, and let Br1(D) = Ker [Br(D) → Br(D)]. Our first
main result (Corollary 3.3) states that if {2, 3, 5} ∩ HD = ∅, then Br(D) = Br1(D), that is,
the Brauer group of D has no transcendental elements. Note that Br(D) is known to be finite
modulo Br0(D) = Im [Br(Q) → Br(D)] by a general theorem proved in [20]. The complete list
of possible values of the finite abelian group Br1(D)/Br0(D) can be found in the thesis of
Bright [1].

Our proof is based on the crucial observation that the Fermat quartic surface X ⊂ P3
Q

given by

x4
0 + x4

1 + x4
2 + x4

3 = 0 (2)

is a Kummer surface, at least after an appropriate extension of the ground field. Over C

this was first observed with some surprise in 1971 by Shafarevich and Piatetskii-Shapiro as
an application of their global Torelli theorem for complex K3 surfaces [12]. In his thesis [9]
(see also [10]) Mizukami constructed an explicit isomorphism between X and the Kummer
surface Kum(A) associated with a certain abelian surface A over Q. The details of Mizukami’s
construction can be found in the Appendix to this paper written by Peter Swinnerton-Dyer.
There is a rational isogeny A → E × E of degree 2, where E is the elliptic curve y2 = x3 − 4x.
The Kummer surface Kum(A) can be given by equation (A.1) of the Appendix. Note that
Mizukami’s isomorphism X→̃Kum(A) is only defined over Q(

√−1,
√

2) = Q(μ8). Using [21,
Proposition 1.4] we conclude that the Brauer groups Br(A) and Br(X) are isomorphic as
modules under the Galois group Gal(Q/Q(μ8)). This allows us to control torsion of odd order
in Br(D) (see Theorem 3.2). The 2-primary torsion subgroup of Br(D) was studied in the thesis
of the first named author. The result that concerns us here is [4, Theorem 5.2] which states
that if 2 /∈ HD, then the 2-primary subgroup of Br(D)/Br1(D) is zero. This gives Corollary 3.3.
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Let us note in this connection that Bright listed many diagonal quartics D over Q that are
everywhere locally soluble, but have no rational point of height less than 104, while Br1(D) =
Br(Q) (see [1, Appendices B and C]). An inspection of his tables reveals that in all cases we
have 2 ∈ HD. This hints at the possibility that a potential failure of the Hasse principle may
be explained by the Brauer–Manin obstruction attached to a transcendental element of Br(D).
See [2, Example 3.3] for another example of an everywhere locally soluble diagonal quartic
with no algebraic Brauer–Manin obstruction and no known rational points.

As an application of Corollary 3.3 we exhibit diagonal quartic surfaces D over Q such
that Br(D) = Br(Q). Indeed, Bright’s computations (see [1, Appendix A, case A161 and its
subcases]) show that Br1(D) = Br(Q) for the following diagonal quartics D:

x4
0 + 4x4

1 + cx4
2 − cx4

3 = 0. (3)

By combining this with our Corollary 3.3 we see that Br(D) = Br(Q) for c = 1, 6, 7, 9,
10, 11, . . . . The surfaces (3) have obvious Q-points, e.g. (0 : 0 : 1 : 1), and it is an interesting
question whether weak approximation holds for these surfaces.

An analysis of the Galois representations on points of order 3, 5 and 16 of the lemniscatic
elliptic curve E, together with Mizukami’s isomorphism and [21, Proposition 1.4], allows one
to obtain an upper bound on the size of the Brauer group of D. The second main result of
this paper, Corollary 4.6, says that Br(D)/Br1(D) ⊂ (Z/n)2, where n = 210 · 3 · 5. Combining
this with Bright’s computations [1] we obtain that the order of Br(D)/Br0(D) divides 225 ·
32 · 52. By a recent theorem of Kresch and Tschinkel [7, Theorem 1], this implies that the
Brauer–Manin set D(AQ)Br is effectively computable (see Corollary 4.7).

1. Brauer group and finite morphisms

Let k be a field of characteristic 0 with an algebraic closure k and the absolute Galois group
Γk = Gal(k/k). If A is an abelian group, we write An for the kernel of the multiplication by n
map A → A.

Proposition 1.1. Let X and Y be geometrically irreducible smooth varieties over k, and
let f : Y → X be a dominant, generically finite morphism of degree d. Then the kernel of the
natural map f∗ : Br(X) → Br(Y ) is killed by d. In particular, for any integer n > 1 coprime
to d, the map f∗ : Br(X)n → Br(Y )n is injective.

Proof. By a general theorem of Grothendieck (see [8, Example III.2.22, p. 107]) the
embedding of the generic point Spec (k(X)) in X induces an injective map Br(X) ↪→ Br(k(X)),
and similarly for Y . Since the composition of restriction and corestriction

coresk(Y )/k(X) ◦ resk(Y )/k(X) : Br(k(X)) −→ Br(k(Y )) −→ Br(k(X))

is the multiplication by d, the kernel of the natural map f∗ : Br(X) → Br(Y ) is killed by d, so
our statement follows.

Corollary 1.2. A degree d isogeny of abelian varieties f : A1 → A2 induces a surjective
map of Γk-modules f∗ : Br(A2) → Br(A1) such that d Ker (f∗) = 0. In particular, this map
induces an isomorphism on the subgroups of elements of order coprime to d.

Proof. If A is an abelian variety over k, then the Néron–Severi group NS(A) is torsion free.
Let r = dimA and let ρ = rkNS(A). Then we have Br(A) 	 (Q/Z)m, where m = r(2r − 1) − ρ,
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and r(2r − 1) is the second Betti number of A (see [3, II and III, Corollary 3.4 and formula
(8.9), pp. 82, 146]). By Proposition 1.1 the map f∗ : Br(A2) → Br(A1) is a homomorphism
(Q/Z)m → (Q/Z)m whose kernel is killed by d. Such a homomorphism is necessarily surjective,
as shows the following well-known lemma.

Lemma 1.3. Any homomorphism (Q/Z)m → (Q/Z)m with finite kernel is surjective.

Proof. Let j : (Q/Z)m → (Q/Z)m be a homomorphism such that d Ker (j) = 0 for a positive
integer d. The group (Q/Z)m is the union of finite subgroups Fr = ((1/r)Z/Z)m for all positive
integers r. We have j(Fdmr) ⊂ Fdmr, moreover, the index of j(Fdmr) in Fdmr divides dm.
This implies that j(Fdmr) contains dmFdmr = Fr. Since this holds for all r, the map j is
surjective.

Theorem 1.4. Let X and Y be geometrically irreducible smooth varieties over k. Let
f : Y → X be a finite flat morphism of degree d, such that k(Y ) is a Galois extension of k(X)
with Galois group G. Then d2Br(Y )G ⊂ f∗Br(X). In particular, for any integer n > 1 coprime
to d = |G| the natural map f∗ : Br(X)n → Br(Y )G

n is an isomorphism.

Proof. Let OX and OY be the structure sheaves. See [11, Lecture 10] for a construction of
a natural map of coherent sheaves f∗OY → OX which induces the norm map on the generic
fibres k(Y ) → k(X). The composition of the canonical map OX → f∗OY with f∗OY → OX

sends u to ud. The étale sheaf Gm,X is defined by setting Gm,X(U) = Γ(U,OU )∗ for any étale
morphism U → X, and similarly for Gm,Y . We thus obtain natural morphisms of sheaves

Gm,X −→ f∗Gm,Y −→ Gm,X ,

whose composition sends u to ud. Applying H2
ét(X, ·) we define the maps

Br(X)
resY/X �� H2

ét(X, f∗Gm,Y )
coresY/X �� Br(X),

whose composition is the multiplication by d. Note that f∗ : Br(X) → Br(Y ) is the composition
of resY/X and the canonical map

H2
ét(X, f∗Gm,Y ) −→ H2

ét(Y, Gm,Y ) (4)

from the Leray spectral sequence [8, Theorem 1.18(a)]

Hp
ét(X,Rqf∗Gm,Y ) =⇒ Hp+q

ét (Y, Gm,Y ).

We have Rif∗Gm,Y = 0 for all i > 0 because f is a finite morphism [8, Corollary II.3.6]. Thus
the Leray spectral sequence shows that (4) is an isomorphism. Therefore, we obtain the maps

Br(X)
resY/X=f∗

�� Br(Y )
coresY/X �� Br(X).

As was mentioned above, the embedding of the generic point into X induces an injective
map Br(X) ↪→ Br(k(X)), and a similar map for Y . By functoriality we get the following
commutative diagram
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Br(X)

resY/X

��

� � �� Br(k(X))

resk(Y )/k(X)

��
Br(Y )

coresY/X

��

� � �� Br(k(Y ))

coresk(Y )/k(X)

��
Br(X) � � �� Br(k(X)).

(5)

Let Γk(X) = Gal(k(X)/k(X)) and Γk(Y ) = Gal(k(X)/k(Y )), so that Γk(X)/Γk(Y ) = G, and
consider the Hochschild–Serre spectral sequence of Galois cohomology

Hp(G,Hq(Γk(Y ), k(X)
∗
)) =⇒ Hp+q(Γk(X), k(X)

∗
).

By Hilbert’s theorem 90 we have H1(Γk(Y ), k(X)
∗
) = 0. We thus obtain the following exact

sequence

Br(k(X)) −→ (Br(k(Y )))G −→ H3(G, k(Y )∗).

The last term is an abelian group killed by |G| = d. This implies that for any α ∈ Br(Y )G we
have dα = resk(Y )/k(X)(γ) for some γ ∈ Br(k(X)). Then we have

dγ = coresk(Y )/k(X) ◦ resk(Y )/k(X)(γ) = coresk(Y )/k(X)(dα) = d coresY/X(α) ∈ Br(X),

where the last equality is due to commutativity of the lower square of (5). From the
commutativity of the upper square of (5) we finally obtain

d2α = d resk(Y )/k(X)(γ) = resk(Y )/k(X)(dγ) = resY/X(dγ) ∈ f∗Br(X).

For the last statement, the surjectivity is clear since Br(Y )G
n ⊂ d2Br(Y )G. The injectivity

follows from Proposition 1.1.

2. On torsion points of the lemniscata

Let E be the lemniscatic elliptic curve y2 = x3 − x over Q. It has complex multiplication by
O = Z[i], where i =

√−1 acts on E by sending (x, y) to (−x, iy). We denote by [a + bi] the
complex multiplication by a + bi ∈ Z[i].

Let � be a prime number, O� = O ⊗Z Z� and let T�(E) be the �-adic Tate module of E. For
a subfield K ⊂ Q we write ΓK = Gal(Q/K). Let ρ� : ΓQ → AutZ�

(T�(E)) be the �-adic Galois
representation attached to E/Q.

The action of O on E = E ×Q Q endows T�(E) with the natural structure of an O�-module;
it is known that this O�-module is free of rank 1 (see [17, Remark, p. 502]). The action of O
on E is defined over Q(i), and we have

ρ�(ΓQ(i)) ⊂ O∗
� ⊂ AutZ�

(T�(E))

[17, Corollary 2, p. 502], in particular, ρ�(ΓQ(i)) is abelian. In fact, by [15, p. 302], ρ�(ΓQ(i)) is
an open subgroup of O∗

� .
A prime p splits in O if and only if p ≡ 1 mod 4. Such a prime is uniquely written as

p = (a + bi)(a − bi), where a ± bi ≡ 1 mod 2 + 2i. The principal ideals (a + bi) and (a − bi) of
O are complex conjugate, with residue fields isomorphic to Fp.

Assume that p 
= �. Since E has good reduction at p, the �-adic representation ρ� : ΓQ →
AutZ�

(T�(E)) is unramified at p. A Frobenius element Frp ∈ ρ�(ΓQ) is the image of a Frobenius
automorphism at the prime p, and so Frp is well defined up to conjugation in ρ�(ΓQ) (see [16,
Chapter 1, Sections 1.2 and 2] for more details). The representation ρ� : ΓQ(i) → AutZ�

(T�(E))
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is unramified at (a + bi) and (a − bi), and the corresponding Frobenii are well-defined elements
of the abelian group ρ�(ΓQ(i)). In ρ�(ΓQ) these two elements are conjugate by ρ�(c), where
c ∈ ΓQ is the complex conjugation, so they are precisely the elements of the conjugacy class of
Frp in ρ�(ΓQ).

A well-known fact going back to the last entry of Gauss’s mathematical diary (via Deuring’s
interpretation on Hecke characters) is that the Frobenius element in ρ�(ΓQ(i)) ⊂ O∗

� attached
to the prime ideal (a + bi) equals a + bi (and similarly for a − bi, see [5, Theorem 5, p. 307] or
[14, Proposition 4.1 and its proof, Theorem 5.6]). In what follows, Frp stands for either a + bi
or a − bi, for example, Fr5 = −1 + 2i and Fr17 = 1 + 4i.

We choose a basis of the free Z�-module T�(E) of rank 2 so that the image of [i] ∈ O in
EndZ�

(T�(E)) is represented by the matrix(
0 −1
1 0

)
.

Then O� ⊂ EndZ�
(T�(E)) consists of the matrices(

a −b
b a

)

for all a, b ∈ Z�.

Proposition 2.1. Let k be a Galois extension of Q(i).
(a) If the exponent of Gal(k/Q(i)) divides 4, then EndΓk

(E�) = O/� for any prime � � 7.
(b) We have

EndΓk
(E5) =

{
O/5 if 4

√
5 /∈ k,

End(E5) otherwise;
EndΓk

(E3) =

{
O/3 if 4

√−3 /∈ k,

End(E3) otherwise.

Proof. Let ρ� : Γk → AutF�
(E�) 	 GL(2, F�) be the Galois representation modulo �

attached to E/k. Define Λ ⊂ Γk as ρ−1
� (F∗

� ), and let M = Q
Λ
. If M 
= k, then there exists

γ ∈ Γk such that ρ�(γ) has two distinct eigenvalues in F�. The centralizer of ρ�(γ) in End(E�)
is an F�-vector space of dimension 2 which contains O/� and so is equal to it. Hence in this case
EndΓk

(E�) = O/�. If M = k, then the image of Γk in GL(2, F�) is the group of scalar matrices,
so that EndΓk

(E�) = End(E�).
To prove (a) we note that the prime 5 splits in Q(i) and hence Fr5 = −1 + 2i ∈ O∗

� belongs
to ρ�(ΓQ(i)). Our assumption implies that Fr45 belongs to ρ�(Γk). Since Fr45 = −7 + 24i is not
congruent to an element of F� modulo �, we see that ρ�(Γk) 
⊂ F∗

� so that EndΓk
(E�) = O/�.

To prove (b) it suffices to show that when k = Q(i), then M = k( 4
√

5) for � = 5, and M =
k( 4

√−3) for � = 3.
Case � = 5. Since 5 splits in O, the Γk-module E5 is the direct sum of characters χ1 ⊕ χ2

with values in F∗
5. Then M is the fixed field of Ker (χ1χ

−1
2 ).

The duplication formula gives the x-coordinate of the double of a point (x, y) on E as
(x2 + 1)2/4x(x2 − 1) (see [18, Chapter X, Section 6, pp. 309–310]). Using this it is easy to
see that a point (x1, y1) such that x2

1 = (1 + 2i)−1 generates Ker [1 − 2i], and that a point
(x2, y2) such that x2

2 = (1 − 2i)−1 generates Ker [1 + 2i]. This implies that y4
1 = −4(1 + 2i)−3,

y4
2 = −4(1 − 2i)−3. Then M1 = k(y1) and M2 = k(y2) are cyclic extensions of k of degree 4

which are linearly disjoint since M1 is totally ramified at the principal prime ideal (1 + 2i) and
unramified at (1 − 2i), while M2 is totally ramified at (1 − 2i) and unramified at (1 + 2i). We
can therefore identify Gal(M1M2/k) with Gal(M1/k) × Gal(M2/k). Let g1 denote the generator
of Gal(M1/k) 	 Z/4 such that g1(y1) = iy1. We define g2 similarly. From the above it is clear
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that M is the fixed subfield of g1g
−1
2 . Note that 5

2y1y2 is fixed by g1g
−1
2 and (5

2y1y2)4 = 5.
Since [M : k] = 4 we conclude that M = Q(

√−1, 4
√

5).
Case � = 3. Since 3 is inert in O, it follows that Γk acts on E3 by a character χ with values

in F∗
9. Recall that Λ ⊂ Γk is χ−1(±1), and M = Q

Λ
.

Applying the duplication formula we immediately see that if P = (x, y) is a point of order
3 in E, then x is a root of the polynomial f(t) = t4 − 2t2 − 1/3. By Eisenstein’s criterion
z4 + 6z2 − 3 is irreducible over Q, and even over k since 3 is an irreducible element of the unique
factorization domain Z[i]. The polynomial z4 + 6z2 − 3 completely splits in k( 4

√−3) since it has
a root (1 + i)a(a2 − i)/2, where a = 4

√−3, and k( 4
√−3) is a Galois extension of k. Hence f(t)

is irreducible over k with splitting field M1 = Q(i, 4
√−3). Let M2 = M1(y) = M1(

√
x3 − x).

Since P has order 3, the points P and [i]P span the F3-vector space E3, so that E3 ⊂ E(M2).
It is clear that [M2 : k] is 8 or 4. The prime 17 splits in Q(i) = k, and hence 1 + 4i ∈ O∗

3

belongs to ρ3(Γk). Since 1 + 4i modulo 3 has multiplicative order 8, the order of the Galois
group Gal(k(E3)/k) is divisible by 8. Therefore, M2 = k(E3) is an extension of k of degree 8,
[M2 : M1] = 2, and Gal(k(E3)/k) = (Z[i]/3)∗ = F∗

9 is a cyclic group of order 8.
The M1-linear automorphism of M2 which maps y to −y corresponds to the multiplication

by −1 in E3 and so belongs to Λ. Therefore M = Q
Λ ⊂ M1, and in fact M = M1 since F∗

3 has
index 4 in F∗

9. Thus M = Q(i, 4
√−3).

3. A sufficient condition for the Brauer group of D to be algebraic

We need an easy lemma from Galois theory.

Lemma 3.1. Let bi, d ∈ Q∗, and let F = Q(
√−1, 4

√
b1, . . . ,

4
√

bn). Then t4 − d splits in F if
and only if d belongs to the subgroup of Q∗/Q∗4 generated by the classes of −4 and the bi,
i = 1, . . . , n.

Proof. This is [4, Lemma 5.4]; we reproduce the proof for the convenience of the reader.
The field F is a 4-Kummer extension of Q(

√−1), so d is a fourth power in F if and only if d
belongs to the subgroup of Q(

√−1)∗/Q(
√−1)∗4 generated by the bi, i = 1, . . . , n. Moreover,

the kernel of the natural map

Q∗/Q∗4 −→ Q(
√−1)∗/Q(

√−1)∗4

is a subgroup of order 2 generated by the class of −4.

From now on let k = Q(
√−1,

√
2) and F = k( 4

√
a1, 4

√
a2, 4

√
a3), understood as normal

subfields of Q.

Theorem 3.2. Let D ⊂ P3
Q be the diagonal quartic surface (1). Then for any prime � � 7

we have Br(D)ΓQ

� = 0. Moreover, if 5 (resp. 3) does not belong to the subgroup of Q∗/Q∗4

generated by the classes of −1, 4, a1, a2, a3, then Br(D)ΓQ

5 = 0 (resp. Br(D)ΓQ

3 = 0).

Proof. Let X be the surface (2), and let A be the abelian surface defined in Theorem A.1.
Since D ×Q F 	 X ×Q F the ΓF -modules Br(D) and Br(X) are isomorphic. By Mizukami’s
isomorphism (Theorem A.1) the Fermat quartic X is isomorphic to Kum(A) over k, so
that Br(X) and Br(A) are isomorphic as Γk-modules [21, Proposition 1.4]. Since � is odd,
Corollary 1.2 now implies that Br(D)�∞ and Br(E × E)�∞ are isomorphic as ΓF -modules,
so it is enough to prove that Br(E × E)ΓF

� = 0. The Γk-module H2
ét(E × E,μ�) is naturally
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isomorphic to Z/� ⊕ Z/� ⊕ End(E�) (see, for example, [21, formula (17)]). The Kummer exact
sequence gives rise to the well-known exact sequence of Γk-modules

0 −→ NS(E × E)/� −→ H2
ét(E × E,μ�) −→ Br(E × E)� −→ 0,

where NS(E × E) is the Néron–Severi group, which is isomorphic to Z ⊕ Z ⊕O as a Γk-module.
The action of Γk on this module is trivial because the complex multiplication on E is defined
over k. The image of NS(E × E)/� in H2

ét(E × E,μ�) is Z/� ⊕ Z/� ⊕O/�.
Note that � is unramified in O, thus O/� is either F� ⊕ F� or the field F�2 . In either case � does

not divide |(O/�)∗|. Since the image G� of Γk in Aut(E�) belongs to (O/�)∗, we see that |G�|
is not divisible by �. It follows from Maschke’s theorem that E�, End(E�) and H2

ét(E × E,μ�)
are semisimple Γk-modules. Therefore, we have an isomorphism of Γk-modules

End(E�) ∼= O/� ⊕ Br(E × E)�,

where O/� carries trivial Γk-action. We conclude that Br(E × E)ΓF

� can be identified with
EndΓF

(E�)/(O/�). Now the desired statements follow from Proposition 2.1 by Lemma 3.1.

Corollary 3.3. Let HD ⊂ Q∗ be the subgroup generated by −1, 4, a1, a2, a3 and the
fourth powers Q∗4. If {2, 3, 5} ∩ HD = ∅, then Br(D) = Br1(D).

Proof. Since Br(D) is a torsion group, any element α ∈ Br(D) can be written as α = β + γ
where 2mβ = 0 and nγ = 0 for some m,n ∈ Z�0, n odd. Theorem 5.2 of [4] states that if
2 /∈ HD, then the 2-primary subgroup of Br(D)/Br1(D) is zero. Thus our condition implies
that β ∈ Br1(D). Also, γ ∈ Br1(D) since Br(D)ΓQ

n = 0 by Theorem 3.2.

4. An upper bound for |Br(D)/Br1(D)|
We start with the analysis of torsion of odd order in Br(D)/Br1(D).

Proposition 4.1. Let D ⊂ P3
Q be the diagonal quartic surface (1). Then for any odd prime

� we have Br(D)ΓQ

�∞ = Br(D)ΓQ

� .

Proof. In the beginning of the proof of Theorem 3.2 we have seen that the groups Br(D)�∞

and Br(E × E)�∞ are isomorphic as ΓF -modules. Also in the proof of Theorem 3.2 we showed
that Br(E × E)ΓF

� = 0 for � � 7. Thus it is enough to prove that Br(E × E)ΓF

�2 = 0 is killed by
�, where � = 3 or � = 5.

Recall that O∗
� ⊂ AutZ�

(T�(E)). Consider EndZ�
(T�(E)) 	 Mat2(Z�) as an O∗

� -module under
conjugation. Since � is odd, we can decompose this module into a direct sum of O∗

� -submodules
O� ⊕O�, where

O� = O�

(
0 1
1 0

)
=

{(
a b
b −a

)
, a, b ∈ Z�

}
.

We note that [i] acts on O� by −1. Now the exact sequence of ΓQ(i)-modules

0 −→ O�/�2 −→ End(E�2) −→ Br(E × E)�2 −→ 0

implies that the ΓQ(i)-module Br(E × E)�2 is obtained from the O∗
� -module O�/�2 via the map

ΓQ(i) → O∗
� .

Since 17 splits in O, by Gauss’s result 1 + 4i ∈ O∗
� is contained in ρ�(ΓQ(i)). The exponent of

Gal(F/Q(i)) divides 4, so we see that (1 + 4i)4 = 161 − 240i belongs to ρ�(ΓF ). Let x ∈ O�/�2

be an element invariant under the action of ΓF . Then x commutes with [161 − 240i]. Since
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240 is divisible by � but not by �2 we see that �x is invariant under the action of [i], hence
�x = −�x. Since � is odd we conclude that �x = 0.

To estimate 2-primary torsion in Br(D)/Br1(D) we need some preparations.

Lemma 4.2. Let G be a group of order |G| = 2n, and let M be a torsion abelian 2-primary
group which is a G-module. If MG is killed by 2m, and M4 ⊂ MG, then M is killed by 2m+n.

Proof. The proof is by induction on n. For n = 1 let g be the non-trivial element of G. If
M contains an element x of exact order 2m+2, then 2mx has order 4 and so 2mg(x) = 2mx.
This implies that 2m(x + g(x)) = 2m+1x 
= 0. However, x + g(x) ∈ MG and by assumption
2m(x + g(x)) = 0 which is a contradiction.

When n > 1, the group G has a proper normal subgroup G1 ⊂ G. Applying the induction
hypothesis two times, first to (G/G1,M

G1), and then to (G1,M), we prove the induction step.

Proposition 4.3. The exponent of Br(E × E)Γk
2∞ divides 8, and that of Br(E × E)ΓF

2∞

divides 23|Gal(F/k)|.

Proof. The prime 17 is congruent to 1 modulo 8, hence it splits completely in the cyclotomic
field k = Q(μ8). Thus Fr17 = 1 + 4i is contained in ρ2(Γk) ⊂ O∗

2 . In our basis of T2(E) the
complex multiplication [1 + 4i] is given by the matrix

s =
(

1 −4
4 1

)
.

For the first claim it is clearly enough to prove that for any α ∈ Br(E × E)ΓF
16 we have 8α = 0.

Consider the exact sequence of Γk-modules

0 −→ O/16 −→ End(E16) −→ Br(E × E)16 −→ 0.

We represent α by a matrix

A =
(

a b
c d

)
∈ End(E16) 	 Mat2(Z/16).

Then sAs−1 − A ∈ O/16, so that sA − As ∈ O/16, which immediately implies that 8(a − d) =
8(c + b) = 0. Thus 8A = 8(a + ci) ∈ O/16, so that 8α = 0.

To prove the second claim we note that E4 ⊂ E(k). Indeed, it is well known that for an elliptic
curve y2 = (x − c1)(x − c2)(x − c3) over Q the field Q(E4) is an extension of Q obtained by
joining the square roots of −1 and ci − cj for all i 
= j (see, for example, [6, Theorem 4.2, p.
85]). In our case Q(E4) = Q(μ8) = k. This implies that End(E4) is a trivial Γk-module, hence
Br(E × E)4 = End(E4)/(O/4) is also a trivial Γk-module. Thus we can apply Lemma 4.2 to
G = Gal(F/k) and M = Br(E × E)ΓF

2∞ . This completes the proof.

Proposition 4.4. Let D ⊂ P3
Q be the quartic surface (1). Then the exponent of Br(D)ΓF

2∞

divides 24|Gal(F/k)|.

Proof. Let X be the Fermat quartic surface (2), and let A be the abelian surface defined
in Theorem A.1. Because of the isomorphism X ×k F →̃D ×k F we can replace D by X. By
[21, Proposition 1.4] the ΓF -modules Br(X)2∞ and Br(A)2∞ are isomorphic. There is a degree
2 isogeny A → E × E, so by Corollary 1.2 we have an exact sequence of ΓF -modules

0 −→ (Z/2)n −→ Br(E × E)2∞ −→ Br(A)2∞ −→ 0.
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It gives rise to the exact sequence

Br(E × E)ΓF
2∞ −→ Br(A)ΓF

2∞ −→ H1(ΓF , (Z/2)n).

The last term is killed by 2. On the other hand, by Proposition 4.3 the exponent of Br(E × E)ΓF
2∞

divides 23|Gal(F/k)|. Hence Br(A)ΓF
2∞ is killed by 24|Gal(F/k)|.

Corollary 4.5. Let D ⊂ P3
Q be the quartic surface (1). Then the exponent of Br(D)ΓQ

2∞

divides 210.

Proof. In the notation of Proposition 4.4 the Galois group Gal(F/k) is a quotient of
(Z/4)3, and so Br(D)ΓF

2∞ is killed by 210. Now the statement follows from the obvious inclusion
Br(D)ΓQ

2∞ ⊂ Br(D)ΓF
2∞ .

Corollary 4.6. Let D ⊂ P3
Q be the quartic surface (1). Then:

(i) the exponent of the group Br(D)/Br1(D) divides 210 · 3 · 5;
(ii) the order of Br(D)/Br1(D) divides 220 · 32 · 52;
(iii) the order of Br(D)/Br0(D) divides 225 · 32 · 52.

Proof. (i) The case of �-primary torsion, where � is an odd prime, follows from Theorem 3.2
combined with Proposition 4.1. The case of 2-primary torsion is dealt with in Corollary 4.5.

(ii) It is well known that Pic(D) = NS(D) 	 Z20 (see, for example, [13, Lemma 1]). Since
the second Betti number of D is 22, we conclude that Br(D) 	 (Q/Z)2 (using [3, II and III,
Corollary 3.4 and formula (8.12), pp. 82, 147]). Thus (ii) follows from (i).

(iii) This statement follows from Bright’s computations that the order of Br1(D)/Br0(D)
divides 25 (see [1]).

We refer the reader to [19, Section 5.2], for the definition of the Brauer–Manin set D(AQ)Br.

Corollary 4.7. Let D ⊂ P3
Q be the quartic surface (1). Then the Brauer–Manin set

D(AQ)Br is effectively computable.

Proof. According to [7, Theorem 1] for a family of smooth projective surfaces Z over Q

defined by explicit equations, such that Pic(Z) is torsion free and generated by finitely many
explicitly given divisors, the Brauer–Manin set Z(Ak)Br is effectively computable whenever one
has a uniform bound on the order of Br(Z)/Br0(Z). The geometric Picard group Pic(D) 	 Z20

of a diagonal quartic surface is generated by the obvious 48 lines on it [13, Lemma 1]. Thus
the statement follows from Corollary 4.6.

Appendix A. The Fermat quartic as a Kummer surface (after Mizukami)

by Sir Peter Swinnerton-Dyer

Let k be a field of characteristic different from 2. Let C be the elliptic curve over k which is a
smooth projective model of the affine curve v2 = (u2 − 1)(u2 − 1/2). The base point O of C is
that point at infinity at which v/u2 = 1.
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Theorem A.1 (Mizukami [9]). Let k be a field of characteristic not equal to 2 that contains
the eighth roots of unity. Let τ : C → C be the fixed-point free involution changing the signs of
v and u. Let A be the abelian surface obtained as the quotient of C × C by the simultaneous
action of τ on both factors. Then there is an isomorphism X →̃K = Kum(A), where X is the
Fermat quartic surface (2).

The curves C and C ′ = C/τ considered as elliptic curves over Q have Cremona labels 64a2
and 64a1, respectively; these curves have good reduction away from 2. The short Weierstrass
equation of C ′ is y2 = x3 − 4x, so over Q(μ8) = Q(

√−1,
√

2) the curve C ′ is isomorphic to
the elliptic curve E with equation y2 = x3 − x. Thus there is a degree 2 isogeny A → E × E
defined over Q(μ8).

Proof of Theorem A.1. Let T be that point at infinity at which v/u2 = −1. We shall need
to consider two copies of C; we distinguish these and the associated variables by the subscripts
1 and 2. The involution on C1 × C2, which reverses the signs of all four variables u1, v1, u2, v2,
has no fixed points; so it is a translation by T1 × T2 (which is the image of O1 × O2) and
T1 × T2 must be a 2-division point. Now

A = C1 × C2/{O1 × O2, T1 × T2}
is an abelian surface equipped with a map C1 × C2 → A of degree 2. Its function field is the
field of functions even in the four variables u1, u2, v1, v2 collectively. The involution P �→ −P
reverses the signs of u1 and u2; so the function field of K over a field k can be written as
k(w1, w2, y, z) where

w1 = u2
1, w2 = u2

2, y =
v1(w2 − 1)

v2(w1 − 1/2)
, z = u2/u1.

(The reason for the unnatural-looking choice for y will appear at (A.4).) Thus up to birational
transformation we can take K to be given by

y2 = (w1 − 1)(w2 − 1)/(w1 − 1
2 )(w2 − 1

2 ), z2 = w2/w1. (A.1)

In particular [k(K) : k(w1, w2)] = 4.
In all that follows we take ε to be a fixed solution of ε4 = −1.
We need a notation for the lines and some of the conics on the Fermat quartic surface X.

(There are actually two types of conic on X, but only one of them concerns us.) Let μ and ν
be odd residue classes mod 8; then the 48 lines on X can be written as

Lμν : x0 = εμx1, x2 = ενx3;
Mμν : x0 = εμx2, x1 = ενx3;
Nμν : x0 = εμx3, x1 = ενx2.

(The rejection of symmetry here is deliberate, because cyclic symmetry plays no part in what
follows. Note also that the notation is different to Mizukami’s, and also to that of Segre.) We
shall use Λ to denote any one of the three letters L,M,N . Then Λαβ meets Λγδ if and only
if α = γ or β = δ but not both. Conditions for Λαβ and Λ′

γδ to meet, where Λ and Λ′ are
different, are as follows:

Lαβ meets Mγδ if and only if α − β − γ + δ = 0,

Lαβ meets Nγδ if and only if α + β − γ + δ = 0,

Mαβ meets Nγδ if and only if α + β − γ − δ = 0.

Now suppose that Λαβ and Λ′
γδ are two lines which meet, where Λ and Λ′ are different; then

the plane containing Λαβ and Λ′
γδ meets X residually in a conic, which we shall denote by
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[ΛαβΛ′
γδ]. The lines Λαβ and Λ′

γδ meet this conic twice. The lines which meet it once are those
which meet neither Λαβ nor Λ′

γδ. Any other conic meets the plane of [ΛαβΛ′
γδ] twice, and using

the previous sentences one can work out its intersection with [ΛαβΛ′
γδ].

If we write
fλμν = x0 + ελx1 + εμx2 + ενx3,

then the equations of [LαβMγδ] can be written as

x0 − εαx1 − εγx2 + εα+δx3 = fα+4,γ+4,α+δ = 0,

x2
0 + εα+δx0x3 + ε2α+2δx2

3 + ε2αx2
1 + εα+γx1x2 + ε2γx2

2 = 0.

Thus the intersection of X with fα+4,γ+4,α+δ = 0 is

Lαβ + Mγδ + [LαβMγδ],

where β = α − γ + δ. Similarly, the equations of [LαβNγδ] can be written as

x0 − εαx1 + εα+δx2 − εγx3 = fα+4,α+δ,γ+4 = 0,

x2
0 + εα+δx0x2 + ε2α+2δx2

2 + ε2αx2
1 + εα+γx1x3 + ε2γx2

3 = 0.

Thus the intersection of X with fα+4,α+δ,γ+4 = 0 is

Lαβ + Nγδ + [LαβNγδ],

where β = γ − α − δ.
We shall need some further intersections. If we write

e′± = x0x3 ± x1x2, e′′± = x0x2 ± x1x3,

then the intersections of X with the corresponding quadrics are as follows:

e′− = 0 : L11 + L33 + L55 + L77 + M11 + M33 + M55 + M77,

e′+ = 0 : L15 + L37 + L51 + L73 + M15 + M37 + M51 + M73,

e′′− = 0 : L17 + L35 + L53 + L71 + N11 + N33 + N55 + N77,

e′′+ = 0 : L13 + L31 + L57 + L75 + N15 + N37 + N51 + N73.

Again, if we write

h′
αβ = x2

0 − ε2αx2
1 − ε2βx2

2 + ε2α+2βx2
3,

h′′
αβ = x2

0 − ε2αx2
1 − ε2βx2

3 + ε2α+2βx2
2,

which only depend on α, β mod 4, then the intersection of X with h′
αβ = 0 is

Lαα + Lα,α+4 + Lα+4,α + Lα+4,α+4 + Mββ + Mβ,β+4 + Mβ+4,β + Mβ+4,β+4

and the intersection of X with h′′
αβ = 0 is

Lα,−α + Lα,4−α + Lα+4,−α + Lα+4,4−α + Nββ + Nβ,β+4 + Nβ+4,β + Nβ+4,β+4.

Moreover, on X we have

h′
13h

′
31 = −h′

11h
′
33 = 2e′+e′−, h′′

13h
′′
31 = −h′′

11h
′′
33 = 2e′′+e′′−. (A.2)

There are a number of sets of sixteen mutually skew curves of genus 0 on X, of which a
typical one is

M51,M33,M15,M77, [L33M11], [L33M55], [L15M37], [L15M73],
N11, N37, N55, N73, [L57N15], [L57N51], [L71N33], [L71N77].

The map X → K which we shall exhibit identifies these sixteen curves with the sixteen disjoint
lines on K = Kum(A) that correspond to the points of order 2 on A.
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Now write
D′ = 2L15 + M37 + M73 + [L31N37] + [L31N73]

and consider those principal divisors on X of degree 16 which contain D′. Four examples of
them are given in the following list, which also names the associated functions of x0, . . . , x3

which give rise to them. The list is followed by rational expressions for these functions; they
can of course also be written as polynomials, but the resulting formulae are unhelpful:

F1 : D′ + 2L73 + M15 + M51 + [L57N15] + [L57N51],
F2 : D′ + 2L55 + M33 + M77 + [L71N33] + [L71N77],
F3 : D′ + 2L31 + N37 + N73 + [L15M37] + [L15M73],
F4 : D′ + 2L17 + N11 + N55 + [L33M11] + [L33M55].

Here we can take

F1 =
f727f763f125f161e

′
+(x0 − εx1)(x0 − ε7x1)

e′′+(x2 − εx3)(x2 − ε7x3)
,

F2 =
f727f763f327f363h

′
13(x2 − ε5x3)

h′′
33(x2 − εx3)

,

F3 = f727f763f534f570,

F4 =
f727f763f754f710e

′′
−h′

13(x0 − εx1)(x0 − ε7x1)
e′−h′′

33(x2 − εx3)(x2 − ε3x3)
.

The divisors residual to D′ in the list of divisors associated with the Fi have self-intersection 0
and are linearly equivalent, so they lie in a pencil, which we denote by P ′. Hence the restrictions
of any three of the Fi/F3 to X are linearly dependent. To find their linear dependence relations,
it is enough to consider, for example, their restrictions to M13, and in this way we find that
on X

F3 = ε2F2 − ε(1 + ε2)F1, F4 = −ε(1 + ε2)F2 + ε2F1.

Let us also write

D′′ = 2L33 + M11 + M55 + [L75N37] + [L75N73]

and consider those principal divisors on X of degree 16 which contain D′′. The list which
follows and the associated formulae correspond to the ones given above for the Fi:

G1 : D′′ + 2L11 + M33 + M77 + [L57N15] + [L57N51],
G2 : D′′ + 2L37 + M15 + M51 + [L71N33] + [L71N77],
G3 : D′′ + 2L75 + N37 + N73 + [L33M11] + [L33M55],
G4 : D′′ + 2L53 + N11 + N55 + [L15M37] + [L15M73].

Here we can take

G1 =
f367f323f125f161e

′
−(x0 − εx1)(x0 − ε3x1)

e′′+(x2 − ε5x3)(x2 − ε7x3)
,

G2 =
f367f323f327f363h

′
31(x0 − ε3x1)

h′′
33(x0 − ε7x1)

,

G3 = f367f323f754f710,

G4 =
f367f323f534f570e

′′
−h′

31(x2 − εx3)(x2 − ε3x3)
e′+h′′

33(x0 − εx1)(x0 − ε7x1)
.

The divisors residual to D′′ in the list of divisors associated with the Gi have self-intersection 0
and are linearly equivalent, so they lie in a pencil, which we denote by P ′′. Hence the restrictions
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of any three of the Gi/G3 to X are again linearly dependent. To find their linear dependence
relations, it is enough to consider, for example, their restrictions to M13, and in this way we
find that on X

G3 = ε(1 + ε2)G1 − ε2G2, G4 = −ε(1 + ε2)G2 + ε2G1.

The restrictions to X of F1G2/F2G1 and F3G3/F4G4 both have divisors divisible by 2, so
up to multiplication by a constant they are squares in k(X). Making use of (A.2) we find that

F1G2

F2G1
= 2

(
e′+
h′

13

)2

,
F3G3

F4G4
= 2

(
e′′+
h′′

11

)2

.

Thus if we write

w1 =
ε

1 + ε2
· F2

F1
, w2 =

ε

1 + ε2
· G2

G1
, (A.3)

then we have

F3/F1 = ε(1 + ε2)(w1 − 1), F4/F1 = −2ε2(w1 − 1
2 ),

G3/G1 = −ε(1 + ε2)(w2 − 1), G4/G1 = −2ε2(w2 − 1
2 ).

In particular, we have a rational map X → K given by the equation (A.3) for w1, w2

together with

z = ε3(1 + ε2)
e′+
h′

13

, y = 2ε2
e′′+
h′′

11

. (A.4)

But the curves w1 = constant and w2 = constant on X are elements of P ′ and P ′′,
respectively, so that their intersection has degree 4. In other words, if k contains ε then
[k(X) : k(w1, w2)] = 4; and from this it follows that the map X → K is actually birational.
Since both X and K are minimal models in their birational equivalence class, any birational
map X → K is a biregular isomorphism.
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