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1 Introduction

The Brauer-Manin obstruction to the Hasse principle and weak approximation provides

a fruitful general approach to rational points on varieties over number fields. A funda-

mental problem here can be stated as follows: is it possible to describe in purely geomet-

ric terms the class of smooth projective varieties for which the Brauer-Manin obstruction

is the only obstruction to the Hasse principle and weak approximation? In recent exam-

ples where the Brauer-Manin obstruction is not the only one (see [1, 7, 14]), the key role is

played by étale Galois coverings with a non-abelian Galois group. This has left open the

question whether similar examples exist for varieties with an abelian geometric funda-

mental group. The case of principal homogeneous spaces of abelian varieties and that of

rational surfaces (which are geometrically simply connected), where the Brauer-Manin

obstruction is expected to be the only one, might seem to suggest that as long as the geo-

metric fundamental group is abelian, the Brauer-Manin obstruction should still be the

only one.

The Manin obstruction was linked to the classical abelian descent by Colliot-

Thélène and Sansuc [2]. In [8], the authors introduced the non-abelian descent as a new

tool for studying rational points. The present paper enriches the non-abelian theory with

a general method for constructing non-abelian torsors, and then applies it to an example

which answers the above question in the negative.
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3204 D. Harari and A. Skorobogatov

The Enriques surfaces seem to lie close to the frontier separating the varieties

whose arithmetic is controlled by the Brauer-Manin obstruction from those for which

it is not the case. These surfaces are cohomologically indistinguishable from rational

surfaces, but yet they possess a nontrivial geometric fundamental group Z/2. We con-

struct an Enriques surface over the field of rational numbers which is a counterexample

to weak approximation that cannot be explained by the Brauer-Manin obstruction. More

precisely, if a, b, and c are integers satisfying some fairly mild conditions, then the quo-

tient of the Kummer surface Y given by

y2 =
(
x2 − a

)(
x2 − ab2

)(
t2 − a

)(
t2 − ac2

)
(1.1)

by the involution which changes the signs of all the coordinates is an Enriques surface

X with an adelic point which cannot be approximated by a rational point. However, this

adelic point satisfies all the global reciprocity conditions provided by the elements of the

Brauer group BrX. (Note that in our example, the Galois group acts trivially on PicX.) For

a numerical example, we can choose a = 5, b = 13, c = 2. As an additional feature, this

particular Enriques surface has a Zariski dense set of rational points.

One way to look at this example is suggested by the philosophy of [14]: the nat-

ural map BrX → Br Y is not surjective; hence Br Y can impose more conditions on the

adelic points in the closure of the set of rational points than BrX. However, a more gen-

eral interpretation is provided by non-abelian descent.

We show that a torsor over a K3-covering of an Enriques surface, which is sta-

ble under the action of the Enriques involution (e.g., a universal torsor), can be con-

sidered as a non-abelian torsor over the Enriques surface. This is a particular case of

a general situation when a composition of torsors is a torsor under the group which is

an extension of relevant structure groups. This result reminiscent of Mumford’s con-

struction of theta-groups [10] is another main goal of this paper (see Theorem 2.2 and

Proposition 2.5). It yields a large supply of non-abelian torsors; the non-abelian descent

method can then be deployed with potential applications to weak approximation and

the Hasse principle. The counterexample to weak approximation on the Enriques sur-

face which we construct in this paper can be explained by the descent obstruction as-

sociated to this non-abelian torsor, as defined in [8]. Another application is a link be-

tween the approach of [14] and that of [8]: we show that the “iterated Manin obstruc-

tion” of [14] is in fact equivalent to the descent obstruction given by the composition

of an abelian (e.g., universal) torsor with the corresponding étale Galois covering (see

Proposition 2.10).
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Non-Abelian Descent and the Arithmetic of Enriques Surfaces 3205

2 Composition of torsors

2.1 Preliminaries

Let k be a field of characteristic 0. Let k̄ be an algebraic closure of k, Γ = Gal(k̄/k). In

this paper, by a k-variety we understand a separated k-scheme of finite type. If X is a k-

variety, we write X for the k̄-variety obtained from X by the extension of the ground field

from k to k̄. We denote by k̄[X]∗ the group of invertible regular functions on X. A commu-

tative algebraic k-group F of multiplicative type is an extension of a finite commutative

k-group scheme by a k-torus. By F̂, we denote the module of characters of F; this is an

abelian group of finite type with a continuous action of Γ . If an algebraic k-group G acts

on a k-variety Y preserving the fibres of a morphism Y → X, then Y is an X-torsor underG

if locally in the étale topology on X the variety Y with the action ofG is isomorphic to the

direct product X ×k G. All cohomology groups in this paper are Galois or étale cohomol-

ogy groups; we also consider the Galois cohomology setH1(k,G), whereG is an algebraic

k-group, not necessarily abelian.

If Y is a geometrically integral variety with k̄[Y]∗ = k̄∗, and F is a k-group of mul-

tiplicative type, then there is the following exact sequence of Colliot-Thélène and Sansuc

(see, e.g., [16, (2.22)]):

0 −→ H1(k, F) −→ H1(Y, F)
χ−−→ HomΓ

(
F̂,Pic Y

) ∂−−→ H2(k, F) −→ H2(Y, F). (2.1)

If Z → Y is a torsor under F, then χ([Z]) ∈ HomΓ (F̂,Pic Y) is called the type of Z → Y.

When k is algebraically closed, then (2.1) shows that a torsor is determined by its type

up to isomorphism. The variety Z is geometrically connected if and only if the kernel of

χ([Z]) has no torsion, for example, when the type is injective. A Y-torsor under a group of

multiplicative type is universal if its type is an isomorphism.

There is another useful exact sequence, also due to Colliot-Thélène and Sansuc

(see [2, (2.1.1)]). Let T be a k-torus, and Z → Y a torsor under T , where both Y and Z

are geometrically integral, and k̄[Y]∗ = k̄∗. The following sequence of Γ-modules is then

exact:

1 −→ k̄∗ −→ k̄[Z]∗ −→ T̂ −→ Pic Y −→ PicZ −→ 0. (2.2)

Moreover, up to sign, the map T̂ → Pic Y coincides with the type of Z → Y. It is clear from

(2.2) that when the type is injective, we have k̄[Z]∗ = k̄∗.
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3206 D. Harari and A. Skorobogatov

In the case when Z → Y is a torsor under a finite k-group F, and the condition

k̄[Z]∗ = k̄∗ is satisfied, we still have an exact sequence (see [16, (2.5)])

0 −→ F̂ −→ PicY −→ PicZ. (2.3)

Here again, F̂ → Pic Y is the type of the torsor Z → Y (see [16, page 25]).

We write BrX for the cohomological Brauer-Grothendieck group H2(X,Gm). It is

known that if X is smooth of dimension at most 2, then this group coincides with the

group of equivalence classes of Azumaya algebras on X. Let

Br0 X = Im
[

Br k −→ BrX
]
, Br1 X = Ker

[
BrX −→ BrX

]
. (2.4)

The Hochschild-Serre spectral sequence (cf. [16, Corollary 2.3.9]) gives a map Br1 X →
H1(k,PicX); if k̄[X]∗ = k̄∗, then the kernel of this map is Br0 X. If λ : M → PicX is a

homomorphism of Γ-modules, then Brλ X ⊂ Br1 X is the inverse image of λ∗H1(k,M) ⊂
H1(k,PicX).

For a number field k, we writeΩk for the set of all places of k. Let Ak be the ring

of adèles of k. For a subgroup B ⊂ BrX, define

X
(
Ak

)B
=

{{
Pv

} ∈ X(
Ak

) ∣∣∣ ∑
v∈Ωk

invv

(
α
(
Pv

))
= 0, ∀α ∈ B

}
, (2.5)

whereX(Ak) is the set of adelic points ofX, and invv : Br kv → Q/Z is the local invariant of

local class field theory. By global reciprocity, we have X(k) ⊂ X(Ak)Br. When X is proper,

X(Ak)Br contains the closureX(k) ofX(k) inX(Ak) =
∏

v∈Ωk
X(kv) in the product topology.

Finally, for a torsor f : Z → X under a k-group G, we write

X
(
Ak

)f
=

{{
Pv

} ∈ X(
Ak

) ∣∣ {[
ZPv

]} ∈ Im

[
H1(k,G) −→ ∏

v∈Ωk

H1
(
kv, G

)]}
. (2.6)

We have X(k) ⊂ X(Ak)f; moreover, X(k) ⊂ X(Ak)f when X is proper and G is linear (see

[16, Proposition 5.3.3]).
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Non-Abelian Descent and the Arithmetic of Enriques Surfaces 3207

2.2 A general result

We will need the following auxiliary statement.

Lemma 2.1. Let Y → X be a torsor under an algebraic k-group G. Assume that the image

of any k̄-morphism Y → G is a k̄-point. Then the canonical map G(k̄) → Aut(Y/X) is an

isomorphism. �

Proof. Letψ ∈ Aut(Y/X). The canonical isomorphism Y×XY = Y×k̄G identifies the graph

of ψwith the graph of a morphism g : Y → G. Now by assumption, we have g(y) = g0 for

some g0 ∈ G(k̄) and any y ∈ Y(k̄). Hence ψ(y) = g0y. �

Colliot-Thélène pointed out to us that the converse is false, for example, for X =

Spec k, Y = Spec(k⊕ k) with the action of G = Z/2 by permutations.

The main result of this section is the following.

Theorem 2.2. Let F and H be algebraic k-groups, p : Z → Y a torsor under F, and Y → X

a torsor under H, where X is a smooth and geometrically integral k-variety. Assume the

following conditions hold.

(1) For each h ∈ H(k̄), there exists an isomorphism of k̄-varietiesϕh : Z → Z such

that the following diagram is commutative:

Z

p

ϕh

Z

p

Y
h

Y

(2.7)

(2) The image of any k̄-morphism Z → F is a k̄-point. Then there is an exact se-

quence of algebraic k-groups

1 −→ F −→ G −→ H −→ 1 (2.8)

such that the action of F on Z extends to an action of Gwhich induces the action of H on

the quotient Y = Z/F. This action makes Z → X into a torsor under G. �

Therefore, the theorem gives a natural sufficient condition for a composition of

two torsors to be a torsor. In the proof, G is constructed in a certain canonical way,

namely, G(k̄) is the group of k̄-automorphisms of Z which are liftings of the automor-

phisms of Y defined by the elements ofH(k̄).
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3208 D. Harari and A. Skorobogatov

Proof of the theorem. Define G as the subset of Autk̄(Z) consisting of the automorphisms

φ such that there exists h ∈ H(k̄) making the diagram

Z

p

φ

Z

p

Y
h

Y

(2.9)

commutative. To any φ ∈ G, there corresponds exactly one h ∈ H(k̄) because the action

of H on Y is faithful. Since (h, y) �→ hy is an action of H on Y, we see that G is a subgroup

of Autk̄(Z). For the same reason, the natural map π : G → H(k̄) is a homomorphism. Obvi-

ously, F(k̄) is a subgroup of G contained in the kernel of π. By Lemma 2.1, condition (2) of

the theorem implies that Aut(Z/Y) = F(k̄), hence we obtain an exact sequence of groups

1 −→ F(k̄) −→ G
π−−→ H

(
k̄
)
. (2.10)

The k̄-varieties Z and X come from varieties defined over k, therefore there is a natural

action of Γ on the group Aut(Z/X); this action is defined by the following formula (cf. [12,

III.1.1]):

(
γϕ

)
(z) = γ

(
ϕ

(
γ−1

z
))
, γ ∈ Γ, z ∈ Z(k̄), ϕ ∈ Aut

(
Z/X

)
. (2.11)

One checks immediately that the commutativity of the diagram above implies the com-

mutativity of the same diagram with φ and h replaced by γφ and γh, respectively.

This shows that the subgroup G⊂Autk̄(Z) is stable under the action of the Galois group Γ .

Lemma 2.3. Let z0 ∈ Z(k̄). The map θ : G → p−1(H(k̄) · p(z0)) defined by g �→ gz0 is a

bijection. �

Proof. θ is injective. Suppose that g1z0 = g2z0. This implies in particular that g1 and g2

are mapped to the same h ∈ H(k̄), that is, g1g
−1
2 is in Aut(Z/Y). Since Aut(Z/Y) = F(k̄), we

have g1g
−1
2 ∈ F(k̄). But g1g

−1
2 fixes z0, thus g1 = g2.

θ is surjective. Let z1 ∈ p−1(H(k̄) · p(z0)). Then there exists h ∈ H(k̄) such that

hp(z0) = p(z1). Letϕh be a k̄-automorphism ofZ such that p◦ϕh = h◦p. Then p(ϕh(z0)) =

p(z1). It remains to modify ϕh by an element of F(k̄) to obtain φ ∈ G such that φ(z0) = z1.

�
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Non-Abelian Descent and the Arithmetic of Enriques Surfaces 3209

End of the proof of the theorem. We have an obvious commutative diagram

G

π

θ
p−1

(
H

(
k̄
) · p(z0))

p

H
(
k̄
)

H
(
k̄
) · p(z0) (2.12)

The mapH(k̄) → H(k̄) ·p(z0) is bijective because the action ofH on Y is free. This together

with the bijectivity of θ shows that π : G → H(k̄) is surjective. We now have a Galois

equivariant extension of groups

1 −→ F
(
k̄
) −→ G −→ H

(
k̄
) −→ 1. (2.13)

LetG be the k̄-variety p−1(H(k̄)·p(z0)). The bijection θmakesG into an algebraic k̄-group,

an extension ofH by F. Since the group varietyG is quasiprojective and the action of Γ on

it is continuous, we can define G as the quotient of G by this action. It is clear that G is

an extension ofH by F, and that G acts on Zwith required properties. �

Remark 2.4. We see from Lemma 2.1 that when the connected component ofG is a torus,

and k̄[Z]∗ = k̄∗, the group G(k̄) coincides with Aut(Z/X) equipped with a natural action

of Γ .

The following proposition gives sufficient conditions for Theorem 2.2 which are

easy to verify.

Proposition 2.5. Let p : Z → Y be a torsor under a k-group F of multiplicative type, and let

Y → X be a torsor under an algebraic k-groupH. Assume thatX is a smooth and geometri-

cally integral k-variety, and that Y is such that k̄[Y]∗ = k̄∗ (e.g., proper and geometrically

connected). Assume also that the type λ ∈ HomΓ (F̂,Pic Y) of the torsor p : Z → Y is in-

jective withH(k̄)-invariant image (e.g., the torsor is universal). Then condition (1) of the

theorem is satisfied. Condition (2) is satisfied as long as F is finite, or F is a torus, or Y is

proper. �

Proof. The action ofH on Y defines a natural Γ-equivariant action ofH(k̄) on Pic Y and the

assumption we made about the type λ implies that this action gives rise to a natural Γ-

equivariant action τ̂ ofH(k̄) on F̂; we have λ◦ τ̂h = h∗ ◦λ for each h ∈ H(k̄). Since Y satisfies

the condition k̄[Y]∗ = k̄∗, a Y-torsor under F is uniquely determined up to isomorphism by

its type. Now the formula above shows that the Y-torsor under F obtained from Z → Y by

the base change h : Y → Y has the same type as the Y-torsor under F obtained from Z → Y
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3210 D. Harari and A. Skorobogatov

by the transformation of structure group τh : F → F. Hence, these torsors are isomorphic,

by (2.1). Therefore, any h ∈ H(k̄) lifts to an automorphism ϕh of the k̄-variety Z, which

means that condition (1) of Theorem 2.2 is satisfied.

Since λ is injective, the variety Z is geometrically connected. Thus for F finite, the

condition (2) of the theorem is obvious.

If F is a torus, then the injectivity of the map λ implies that k̄[Z]∗ = k̄∗, whence

Mork̄(Z, F) = F(k̄).

Finally, we consider the case when Y is proper. The k-group F is an extension of a

finite commutative k-group F1 by a torus T . Let Y1 = Z/T ; this proper variety is a Y-torsor

under F1. The functoriality of (2.1) with respect to the change of the structure group F →
F1 implies that the type of Y1 → Y is the composition

F̂1 ↪→ F̂ ↪→ Pic Y, (2.14)

hence is injective. Therefore Y1 is geometrically connected, hence k̄[Y1]∗ = k̄∗. Next, Z is a

Y1-torsor under T . The following diagram commutes:

0 F̂1 F̂ T̂ 0

0 F̂1 Pic Y Pic Y1

(2.15)

The top line here is obvious, and the bottom one is the sequence (2.3) defined by the tor-

sor Y1 → Y. The middle vertical arrow is the type of Z → Y, and right-hand one is the type

of Y1 → Y. The left-hand square commutes by the functoriality of type with respect to the

structure group change F → F1. To prove that the right-hand square commutes, we note

that the torsor obtained from Z → Y1 by the change of the structure group T → F (push-

forward) gives the same F-torsor as the pullback of the F-torsor Z → Y to Y1. Indeed, the

push-forward is the quotient (Z×k F)/T , where T acts by sending (z, f) to (t−1z, tf). Here,

the structure of an F-torsor is obtained from the action of F on the second factor. The

canonical isomorphismZ×kF = Z×YZ translates the action of T into (z1, z2) �→ (t−1z1, z2).

The quotient by this action is Y1 ×Y Z, the pullback of Z → Y to Y1. We now see that the

two different ways to build a map F̂ → Pic Y1 in the diagram coincide since both are equal

to the type of the F-torsor Y1 ×Y Z → Y1. This establishes the commutativity.

An easy diagram chase now shows that the map T̂ → Pic Y1 is injective. By the

remarks after (2.2), we have k̄[Z]∗ = k̄∗. Since F is of multiplicative type, this implies that

Mork̄(Z, F) = F(k̄). �
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Non-Abelian Descent and the Arithmetic of Enriques Surfaces 3211

2.3 Examples

Example 2.6. Mumford’s theta-groups. Let L be a line bundle on an abelian varietyA. The

complement to the zero section of L is anA-torsor under the multiplicative group Gm. Let

K(L) ⊂ A be the closed subscheme whose closed points are the elements a ∈ A(k̄) such

that L is isomorphic to a∗L, the translation of L by a. Note that K(L) is finite if and only

if L is ample (see [10, II.6, Proposition 1]). The assumptions of Theorem 2.2 are satisfied

because of Proposition 2.5. The resulting extension of K(L) by Gm is a theta-group; these

groups have numerous beautiful applications, see [10, VI.23].

Example 2.7. LetA be an abelian variety with an action of a finite group schemeH. Let us

assume that the group schemeAH (the points ofA fixed byH) is finite. Let Y be a principal

homogeneous space of A such that the class [Y] ∈ H1(k,A) comes from H1(k,AH). Then,

H naturally acts on Y. Let D be a projective variety with a free action of H. The diagonal

action ofH on Y ×k D is free. Let X = (Y ×k D)/H.

Let α : A → B = A/AH be the natural isogeny. Choose a positive integer m such

that AH ⊂ A[m]. The multiplication by m map factors through α, so that we can write

m = β◦α,whereβ : B → A is an isogeny. Suppose thatZ is a principal homogeneous space

of B such that [Y] = β∗[Z]. Then there is a natural push-forward map Z → Y (quotient

by Ker(β) = A[m]/AH). This map makes Z → Y into a torsor under the group scheme

A[m]/AH.

LetAt be the dual abelian variety ofA. The dual of the injectionAH → A[m] is the

surjection At[m] → ÂH. Let F be its kernel; this is the Cartier dual of A[m]/AH. The type

of the torsor Z×kD → Y×kD underA[m]/AH (which acts trivially onD) is the composed

map

F −→ At[m] −→ At
(
k̄
)

= Pic0 Y −→ Pic Y −→ Pic
(
Y ×k̄ D

)
. (2.16)

From Theorem 2.2, we obtain that Z×kD is an X-torsor under a finite k-groupGwhich is

an extension ofH by F.

The simplest case is when H = Z/2, and the nontrivial element of H acts on A as

multiplication by −1. Then AH = A[2], Y is any principal homogeneous space of A such

that 2[Y] = 0, m is any positive even number, B = A, α is the multiplication by 2 map. If

A is an elliptic curve, and D is a curve of genus 1 on which the nontrivial element of H

acts as a translation, then X is a bielliptic surface. Its curious arithmetic properties were

studied in [3, 14]. An important role in [14] was played by a torsor Z×kD → Xwithm = 8

(then G is non-abelian). The group H = µ3 leads to bielliptic surfaces of a different type;

their arithmetic was studied in [1].
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3212 D. Harari and A. Skorobogatov

Example 2.8. LetX be an Enriques surface over k, and let Y → X be a K3-covering ofX. Let

Z be a universal Y-torsor. It is a torsor under the Néron-Severi torus T of Y. Theorem 2.2

then says that Z is an X-torsor under a k-group Gwhich is an extension of Z/2 by T .

The groupG is commutative if and only if the natural map PicX → Pic Y is surjec-

tive. Indeed, the exact sequence in the proof of Lemma 3.5 shows that Z/2 acts trivially

on Pic Y if and only if PicX → Pic Y is surjective. In this case, Z/2 also acts trivially on

T . Since H2(Z/2, k̄∗) = 0 for the trivial Z/2-module structure on k̄∗, the extension is a

semidirect product. Because of the trivial action, we haveG = T ×Z/2. Conversely, ifG is

commutative, then Z/2 acts trivially on Pic Y, hence PicX → Pic Y is surjective.

2.4 Non-abelian torsor obstruction versus Manin obstruction on abelian torsors

In this subsection, we clarify the relation between the (non-abelian) torsor obstruction

[8] and the “iterated Manin obstruction” [14]. All varieties are assumed to be smooth and

quasiprojective. For more details on twisted forms of groups and torsors, see [16, Chap-

ter 2].

Lemma 2.9. LetG ′ be a k-form of an algebraic k-groupG. Let Z → X be a torsor underG,

and let Z ′ → X be a torsor under G ′. Suppose that the torsors Z → X and Z
′ → X under

G = G
′
are isomorphic. Assume that every morphism from Z toGmaps Z to a point. Then

there exists a continuous 1-cocycle ρ of Γ with coefficients in G(k̄) such that G ′ = Gρ is

the inner form of G defined by ρ, and Z ′ = Zρ is the twisted form of Z defined by ρ with

respect to the natural action of G on Z. �

Proof. The k-formG ′ ofG defines a “twisted” action of Γ onG, denoted by γ�g as opposed

to the standard action γg, where γ ∈ Γ , g ∈ G(k̄). Choose an isomorphism of X-torsors

under G, Z � Z
′
. Then Z ′ defines a “twisted” action of Γ on Z, denoted by γ�z as opposed

to the standard action γz, where γ ∈ Γ , z ∈ Z(k̄). The points γ�z and γz belong to the same

fibre of Z → X. Hence γ�z = g(z, γ) ·γz, where, for a fixed γ, g(z, γ) is a morphism from Z to

G. By our assumption, g(z, γ) does not depend on z. We write g(z, γ) = g(γ). It is clear that

this is a locally constant, hence continuous function Γ → G(k̄). (Recall that Γ has natural

profinite topology, and G(k̄) has discrete topology.) Let g ∈ G(k̄), z ∈ Z(k̄). Then

γ�(gz) = g(γ) · γ(gz) = g(γ) · γg · γz. (2.17)

On the other hand,

γ�(gz) = γ�g · γ�(z) = γ�g · g(γ) · γz. (2.18)
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Since G acts freely on Z, we have

γ�g = g(γ) · γg · g(γ)−1. (2.19)

We have (γ1γ2)�z = g(γ1γ2) · γ1γ2z. But this also equals

γ1�
(
γ2�z

)
= γ1�

(
g
(
γ2

) · γ2z
)

= γ1�
(
g
(
γ2

)) · g(γ1

) · γ1γ2z. (2.20)

Substituting (2.19), we deduce that g(γ1γ2) = g(γ1) · γ1g(γ2) which says that g(γ) is a

1-cocycle of Γ with coefficients in G(k̄). Formula (2.19) now shows that G ′ is indeed the

inner form of G defined by this cocycle. Furthermore, Z ′ is the twist of Z defined by the

same cocycle. �

In the notation of Proposition 2.5, let σ be a continuous 1-cocycle of Γ with coef-

ficients in H(k̄). Various objects acted on by H can be twisted by σ. We thus obtain the

twisted k-variety Yσ and the twisted k-group of multiplicative type Fσ. The natural ac-

tion τ ofH on F, constructed in the beginning of the proof of Proposition 2.5, comes from

the natural Γ-equivariant action ofH(k̄) on Pic Y. By construction, this action ofH(k̄) pre-

serves the injection of Γ-modules λ : F̂ ↪→ Pic Y. Thus after twisting, we obtain a natural

injection of Γ-modules λσ : F̂σ ↪→ Pic Y
σ

.

Let Hσ be the inner form of H defined by σ. That is, Hσ is the algebraic k-group

obtained from H by twisting it by σ with respect to the action of H on itself by conjuga-

tions. The groupHσ acts on Yσ so that the natural morphism rσ : Yσ → X is a torsor under

Hσ. We also have a natural Γ-equivariant action of Hσ(k̄) on Pic Y
σ
, and an action of Hσ

on Fσ.

Proposition 2.10. Let k be a number field. Let F be a k-group of multiplicative type, and

let H be a finite k-group. Let r : Y → X be a torsor under H. Let p : Z → Y be a torsor

under Fwhose type is injective withH(k̄)-invariant image, satisfying k̄[Z]∗ = k̄∗. Then the

conditions of Proposition 2.5 are satisfied. Let f : Z → X be the torsor under G obtained

by composing torsors p : Z → Y and r : Y → X as in Theorem 2.2. Then,

X
(
Ak

)f
=

⋃
[σ]∈H1(k,H)

rσ
(
Yσ

(
Ak

)Brλσ )
. (2.21)

In particular, if Z → Y is a universal torsor, then

X
(
Ak

)f
=

⋃
[σ]∈H1(k,H)

rσ
(
Yσ

(
Ak

)Br1
)
. (2.22)

�
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3214 D. Harari and A. Skorobogatov

It can be shown that the injectivity of the type of Z → Y is a consequence of other

conditions.

Proof of the proposition. The conditions of Proposition 2.5 are satisfied since k̄[Z]∗ = k̄∗

implies that k̄[Y]∗ = k̄∗. The left-hand side of (2.21) is

X
(
Ak

)f
=

⋃
[ξ]∈H1(k,G)

fξ
(
Zξ

(
Ak

))
(2.23)

(cf. [16, Definition 5.3.1]). Here, fξ : Zξ → X is the twisted torsor of f : Z → X by a

continuous 1-cocycle ξ of Γ with coefficients in G(k̄). Let σ be the image of ξwith respect

to the surjective morphism of algebraic k-groups G → H. There is a natural surjective

map (quotient by Fσ) Zξ → Yσ, where Yσ, defined as the twist Y by σ, is an X-torsor under

Hσ. The map Zξ → Yσ makes Zξ into a Yσ-torsor under Fσ of type λσ.

Let us turn to the right-hand side. By the main result of the descent theory Col-

liot-Thélène and Sansuc (see [16, Theorem 6.1.2]), we have

Yσ
(
Ak

)Brλσ
= ∪p ′(Z ′(Ak

))
, (2.24)

where p ′ : Z ′ → Yσ ranges over Yσ-torsors under Fσ of type λσ. The conditions of

Proposition 2.5 are satisfied and we can compose the torsors rσ ◦ p ′ : Z ′ → Yσ → X.

Thus, Z ′ is an X-torsor under a certain k-group G ′ which is an extension ofHσ by Fσ.

We observe that p : Z → Y and p ′ : Z
′ → Y

σ
= Y have the same type as Y-torsors

under F. Therefore, these torsors are isomorphic. The group G(k̄) was constructed in the

proof of Theorem 2.2 as the group of the automorphisms of Z over Y which are liftings

of the elements of H(k̄). The structure of an algebraic variety on G(k̄) was defined via its

identification with p−1(H(k̄) · y0), for some y0 ∈ Y(k̄). We conclude that the k̄-groups G

and G
′
are isomorphic. Thus, G ′ is a k-form of the algebraic k-group G.

The assumption k̄[Z]∗ = k̄∗ implies that Z is geometrically connected. The con-

nected component of G is a torus, hence the same assumption shows that the image of

any morphism Z → G is a point. By Lemma 2.9 for some continuous 1-cocycle ξ : Γ →
G(k̄), we have Z ′ = Zξ, G ′ = Gξ. Comparing the formula γ�z = ξ(γ) · γz from the proof of

Lemma 2.9 with the analogous formula for Yσ, we see that the map G → H sends ξ to σ.

We have proved that every Yσ-torsor under Fσ of type λσ is isomorphic to Zξ, for

some lifting [ξ] ∈ H1(k,G) of [σ] ∈ H1(k,H). This completes the proof of (2.21). �
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3 Enriques surface of Kummer type

3.1 Constructions

Let E1, E2 be elliptic curves over k which are not isogenous over k̄, and such that their

points of order 2 are defined over k. For i = 1, 2 let Di be a principal homogeneous space

of Ei whose class inH1(k, E1) has order at most 2. The antipodal involution P �→ −P on Ei

defines an involution onD1 and onD2. We will denote all these involutions by ι.

Let Y be the Kummer surface built fromD1 ×D2. This is the minimal desingular-

ization of the quotient ofD1 ×D2 by the diagonal antipodal involution.

Lemma 3.1. Let P ∈ E1[2], Q ∈ E2[2]. The involution of D1 × D2 given by (x, y) �→ (x +

P, ι(y) +Q) induces an involution σ : Y → Y without fixed points. �

Proof. Note that (x, y) �→ (x+P, ι(y)+Q) commutes with the involution (x, y) �→ (ι(x), ι(y)).

This rule defines an involution on the singular surface (D1 × D2)/ι, hence also on its

minimal desingularization Y. �

Recall that the quotient of a K3-surface by any fixed-point-free involution is an

Enriques surface. The lemma thus allows us to define an Enriques surface X = Y/σ. Let

f : Y → X be the corresponding unramified double covering.

For our purposes, we will consider the following simplest case of the above con-

struction. Let a ∈ k∗ \ k∗2, and let b, c, d1, d2 be in k∗ such that b 	= ±1, c 	= ±1. Let the

curvesD1 andD2 be given by their respective (affine) equations:

y2
1 = d1

(
x2 − a

)(
x2 − ab2

)
, y2

2 = d2

(
t2 − a

)(
t2 − ac2

)
. (3.1)

The antipodal involution changes the signs of y1 (resp., of y2). Hence, the Kummer sur-

face Y is the minimal, smooth, and projective model of the affine surface

y2 = d
(
x2 − a

)(
x2 − ab2

)(
t2 − a

)(
t2 − ac2

)
, (3.2)

where y = y1y2, d = d1d2.

When k is a number field, it is not hard to give a sufficient condition that guaran-

tees that E1 and E2 are not isogenous over k̄.

Lemma 3.2. Let k be a number field with the ring of integers Ok. For any prime ℘ ∈
Spec(Ok), let v℘ : k∗ → Z be the associated valuation. Assume that there exists a
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3216 D. Harari and A. Skorobogatov

prime ℘ ∈ Spec(Ok) not dividing 2 such that

v℘(b) > 0, v℘(c) = v℘(c − 1) = v℘(c + 1) = 0. (3.3)

Then, E1 and E2 are not isogenous over k̄. �

Proof. The change of variables u = a−1y1x, t = a−1x2 gives a degree-2 morphism D1 →
E ′

1, where E ′
1 is the elliptic curve with equation u2 = ad1t(t− 1)(t− b2). This implies that

E1 and E ′
1 are isogenous. The curve E ′

1 is a quadratic twist of the elliptic curve

E ′′
1 : u2 = t(t − 1)

(
t − b2

)
. (3.4)

In particular, E1 and E
′′
1 are isogenous. The same argument shows that E2 is k̄-isogenous

to the elliptic curve E ′′
2 given by u2 = t(t − 1)(t − c2). The j-invariant of E ′′

1 equals

j1 = 28

(
b4 − b2 + 1

)3

b4
(
b2 − 1

)2
(3.5)

(see, e.g., [7, page 317]), and the j-invariant j2 of E ′′
2 is given by a similar formula. Our

assumptions imply that v℘(j2) ≥ 0 and v℘(j1) < 0. In particular, j1 is not integral over the

ring Z[j2]. By [13, Theorem 2.6.3], the curves E ′′
1 and E ′′

2 are not isogenous over k̄. Hence,

the same is true for E1 and E2. �

Example 3.3. If the ranks of E1 and E2 are positive, then k-points are Zariski dense on

E1 × E2. Take D1 = E1, D2 = E2. Then k-points are dense on Y, and hence on X. This is

a simple way to construct Enriques surfaces over a number field k with a Zariski dense

set of k-points (cf. [15]). For example, let k = Q and a = 5, b = 13, c = 2, d1 = d2 = 1.

Then as in the previous proof, E1 � D1 is isogenous to the curve y2 = x(x − 5)(x − 845)

which has a point (4, 58) of infinite order. Similarly, E2 � D2 is isogenous to the curve

y2 = x(x − 5)(x − 20) with a point (4, 8) of infinite order. Applying Lemma 3.2 with ℘ = 13,

we see that E1 and E2 are not isogenous over Q.

To get an explicit expression of the Enriques involution σ, let P (resp., Q) be the

point of order 2 in E1 (resp., E2) given by the difference of two points (
√
a, 0)− (−

√
a, 0) on

D1 (resp.,D2). Then σ as defined in Lemma 3.1 is

σ(x, t, y) = (−x,−t,−y). (3.6)
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Indeed, the translation tP : D1 → D1 by P commutes with the antipodal involution,

hence it descends to the quotient by the antipodal involution, that is, to P1
k with coor-

dinate x. Thus the x-coordinate of tP(x, y1) is φ(x), where φ ∈ PGL(2, k). We note that φ

swaps
√
a and −

√
a, and also b

√
a and −b

√
a. Since the elements of PGL(2, k) are uniquely

determined by the action on any four pairwise distinct points of P1
k, we conclude that

φ(x) = −x. Therefore, tP(x, y1) is either (−x, y1) or (−x,−y1). Since tP has no fixed points,

we must have tP(x, y1) = (−x,−y1). Similarly, tQ ◦ ι(t, y2) = (−t, y2). This implies (3.6).

One can also directly check that (3.6) defines a fixed-point-free involution on Y.

We enumerate the points of D1 with coordinates (
√
a, 0), (−

√
a, 0), (b

√
a, 0),

(−b
√
a, 0) by i = 0, 1, 2, 3. Similarly, the points of D2 with coordinates (

√
a, 0), (−

√
a, 0),

(c
√
a, 0), (−c

√
a, 0) are numbered by j = 0, 1, 2, 3. Let lij be the smooth, proper, ratio-

nal curve on Y that is the exceptional curve of the blowing-up of the image of (i, j) on

(D1 × D2)/ι. Let li (resp., sj) be the proper transform of the rational curve (i × D2)/ι

(resp., (D1 × j)/ι) on Y. The nonzero intersection indices of these 24 projective lines on Y

can be listed as follows:

(
li · lij

)
= 1,

(
lij · sj

)
= 1. (3.7)

Consider the morphisms πi : Y → Di/ι = P1
k, i = 1, 2. Explicitly, π1 (resp., π2) is given

by the projection to the coordinate x (resp., t). The smooth fibres of π1 (resp., of π2) are

curves of genus 1, and the singular fibres correspond to the points with y1 = 0 (resp.,

y2 = 0). Let f1 (resp., f2) be the (smooth) fibre of π1 (resp., of π2) at x = ∞ (resp., t =

∞). The singular fibres are of type D̃4 (or I∗0 in Kodaira’s notation). Thus for any i, j ∈
{1, 2, 3, 4}, we have the following relations in PicY:

[
f1

]
= 2

[
li

]
+

∑
k

[
lik

]
,

[
f2

]
= 2

[
sj

]
+

∑
k

[
lkj

]
. (3.8)

We note an important relation which is straightforward to verify:

div(y) =
∑

li +
∑

sj +
∑

lij − 2f1 − 2f2. (3.9)

Let U ⊂ D1 × D2 be the complement to the 16 points with y1 = y2 = 0. Then

V = U/ι is the complement to the 16 lines lij in Y. We have an unramified double covering

U → V. We will also need a smaller open set U ′ = (D1 \ {y1 = 0}) × (D2 \ {y2 = 0}), and its

quotient V ′ = U ′/ι, which is the complement to the 24 lines in Y.
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Let L = k(
√
a). We make an important observation that the 24 lines of Y are de-

fined over the quadratic extension L/k, and that the action of the Enriques involution

σ on the 24 lines coincides with the action of the Galois group Gal(L/k). This fact will

simplify subsequent computations of various cohomology groups.

The following proposition explains the role played by the 24 lines.

Proposition 3.4. PicV ′ = 0, so that Pic Y is generated by the classes of the 24 lines. �

Proof. It is enough to show that the classes [li] and [sj], i, j ∈ {0, 1, 2, 3}, generate PicV .

The open set U is the complement to a finite set of points in a smooth projective surface,

hence k̄[U]∗ = k̄∗. The same property then holds for V. The spectral sequence

Hp
(
Z/2,Hq

(
U,Gm

))
=⇒ Hp+q

(
V,Gm

)
(3.10)

gives rise to the exact sequence

0 −→ Z/2 −→ PicV −→ (PicU)ι −→ 0. (3.11)

(The exactness on the right is due to the fact that H2(Z/2, k̄∗) = 0.) Because of our as-

sumption that E1 and E2 are not isogenous, we have the following isomorphisms of

abelian groups:

PicU = PicD1 × PicD2 � E1(k̄) ⊕ Z ⊕ E2

(
k̄
) ⊕ Z. (3.12)

Therefore, (PicU)ι � E1[2] ⊕ E2[2] ⊕ Z2. The natural map PicV → PicU is the direct sum

of the map PicV → PicD1 � E1(k̄) ⊕ Z that sends [li] to [i], and sends all [sj] to 0, and the

map PicV → PicD2 � E2(k̄)⊕Z that sends [sj] to [j], and [li] to 0. From this description, it

is clear that the images of the classes [li] and [sj] generate E1[2] ⊕ E2[2] ⊕ Z2 = (PicU)ι.

It remains to show that the nontrivial element of the kernel of the map PicV →
PicU is a linear combination of the classes [li] and [sj]. In Pic Y, we have

−
∑ [

lij
]

= 2
∑ [

li
]

− 4
[
f1

]
= 2

∑ [
sj

]
− 4

[
f2

]
. (3.13)

The property k̄[V]∗ = k̄∗ implies that the kernel of the restriction map Pic Y → PicV is the

abelian group Z16 freely generated by the classes of the 16 lines lij. Hence, α :=
∑

[li] −

2[f1] ∈ PicV has exact order 2. Due to the fact that in PicV, we have [f1] = 2[li] for any i,

we obtain α = [l0] + [l1] − [l2] − [l3]. On the other hand, the inverse image of the divisor∑
li − 2f1 in PicU is div(y1). This completes the proof. �
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This proposition implies that Pic(Y ×k L) = Pic Y.

Define the divisor E on Y as follows:

E = s0 + s2 − f1 − f2 + l0 + l2 +
∑

l0j +
∑

l2j. (3.14)

Let F be the norm torus R1
L/kGm. Explicitly, F is given by z21 −az22 = 1. The module of char-

acters F̂ is the abelian group Z on which Γ acts through its quotient Gal(L/k); the nontriv-

ial element of Gal(L/k) acts as the multiplication by −1. This implies that H1(k, F̂) = Z/2.

Fix a generator of F̂, and define λ : F̂ → Pic Y as the homomorphism which sends this

generator to [E]. It is clear from (3.9) that div(y) = E + σE, hence λ is a homomorphism of

Γ-modules.

By the description of torsors defined by a function whose divisor is a norm (see

[2, 2.4.2]), Y-torsors under F of type λ exist. Any such torsor contains an open subset given

by the simultaneous equations (3.2) and y = α(z21−az22) 	= 0, for some α ∈ k∗. Let p : Z → Y

be the torsor corresponding to α = 1.

3.2 Brauer groups of X and Y

Keep the notation and assumptions as above. We start with an almost obvious lemma.

Lemma 3.5. H1(k,PicX/ tors) = 0. �

Proof. Since f : Y → X is an unramified double covering, we have an exact sequence

0 −→ Z/2 −→ PicX −→ (Pic Y)σ −→ 0, (3.15)

where (Pic Y)σ is the σ-invariant part of Pic Y. (This is the exact sequence of low-degree

terms of the spectral sequence Hp(Z/2,Hq(Y,Gm)) ⇒ Hp+q(X,Gm).) Thus we have an

isomorphism of Galois modules PicX/ tors = (Pic Y)σ,with the trivial action of the Galois

group. SinceH1(k,Z) = 0, the proposition follows. �

Corollary 3.6. f∗ Br1 X = Br0 Y. �

Proof. We have an injective map Br1 X/Br0 X → H1(k,PicX), which is functorial in X. It

remains to note that the homomorphism f∗ : H1(k,PicX) → H1(k,Pic Y) factors through

H1(k,PicX/ tors) = 0. �

If R is a field of characteristic different from 2, and α,β ∈ R∗, then (α,β) ∈ BrR

denotes the equivalence class of the central simple algebra with generators i and jwhich

are subject to the relations i2 = α, j2 = β, ij = −ji. See [4, 5, 6] for the definition of the

residue map and the purity theorem for the Brauer group.
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Proposition 3.7. (i) Let λ and F be as in the end of the previous subsection. Then the map

λ∗ : H1(k, F̂) = Z/2 → H1(k,Pic Y) is an isomorphism.

(ii) The class (y, a) ∈ Br k(Y) is unramified on Y; it generates Br1 Y = Brλ Ymodulo

Br0 Y. The canonical map Br1 Y/Br0 Y → H1(k,Pic Y) is an isomorphism.

(iii) Define V1 as the complement to the union of l00, l01, l10, l11 in Y. Then, the

restriction map Br1 Y → Br1 V1 is an isomorphism. �

Proof. (i)We already saw that Pic(Y×kL) = Pic Y. ThusH1(Gal(k̄/L),Pic Y) = 0, and so the

inflation map H1(Gal(L/k),Pic Y) → H1(k,Pic Y) is an isomorphism. Note that Gal(L/k) =

Z/2 acts on PicY as σ.

Recall that if M is a Z/2-module, then the Tate cohomology groups of M are 2-

periodic, and more precisely, Ĥ2i(Z/2,M) is the quotient of the invariants by the norms,

and Ĥ2i+1(Z/2,M) is the quotient of the anti-invariants by the elements of the form x−σx.

Our aim is to show that the cohomology class of the anti-invariant element [E] generates

H1(Z/2,Pic Y) = Z/2. Then (i) will follow from the definition of λ.

The singular fibres of π1 correspond to x = ±√
a,±b√a. In Pic Y, each such fibre

can be written as 2[li] +
∑

j[lij]. Let K = k̄(x). The restriction to the generic fibre YK gives

rise to the exact sequence of Z/2-modules

0 −→ Vert −→ PicY −→ Pic YK −→ 0. (3.16)

From the explicit action of σ, it is clear that all the fibres of π1 are split, therefore we have

H1(Z/2,Vert) = 0 (in fact, Vert is a permutation module).

Now YK is a curve of genus 1 over K. We turn it into an elliptic curve with rational

2-division points by choosing the section s0 as the origin of the group law. We have an

exact sequence

0 −→ Pic0
YK −→ Pic YK −→ Z −→ 0. (3.17)

Since PicY is generated by the classes of the 24 lines (Proposition 3.4) of which all ex-

cept the sj are components of the fibres of π1, we see that Pic YK is generated by the re-

strictions of the [sj] to the generic fibre YK. Hence, Pic0
YK is generated by the differences

[sj] − [sj ′ ], thus Pic0
YK � (Z/2)2. (In particular, the rank of YK is 0.) We summarize this by

rewriting (3.17) as

0 −→ (Z/2)2 −→ Pic YK −→ Z −→ 0, (3.18)

where (Z/2)2 is generated by [s1] − [s0] and [s2] − [s0], and has trivial action of σ.
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Let us analyze the sequence (3.18) with respect to the action of σ. Choose [s0] as

a lifting of the element 1 ∈ Z to PicYK. Then the connecting map H0(Z/2,Z) → H1(Z/2,

(Z/2)2) = (Z/2)2 sends 1 to [s0] − [s1]. This proves that H1(Z/2,Pic YK) = Z/2, with gen-

erator [s2] − [s0] = [s2] + [s0] − [f2]. (The last equality is due to the fact that in the Picard

group of the generic fibre YK, we have [f2] = 2[sj].)

Now return to (3.16) and note that [E] is an anti-invariant lifting of [s2] + [s0] −

[f2] ∈ Pic YK to PicY. Hence, the nontrivial element ofH1(Z/2,Pic YK) comes fromH1(Z/2,

PicY). This shows that the map H1(Z/2,Pic Y) → H1(Z/2,Pic YK) = Z/2 is an isomor-

phism, and the nontrivial element ofH1(Z/2,Pic Y) is given by [E].

(ii) Using (3.9), it is straightforward to check that (y, a) is unramified on Y, and

hence belongs to Br1 Y. We show that the image of this element under the canonical map

Br1 Y → H1(k,Pic Y) is given by [E].

The 2-torsion of the one-dimensional torus F is Z/2. Let ε : Z/2 → F be the natural

injection. We also have F̂/2 = Z/2, and the dual surjection ε̂ : F̂ → Z/2. The functoriality

of the cup-product implies that α ∪ ε∗β = ε̂∗(α)∪β ∈ Br k(Y) for any α ∈ H1(k, F̂) and β ∈
H1(k(Y),Z/2). Let β = [y] ∈ k(Y)∗/k(Y)∗2, and let α be the nontrivial element ofH1(k, F̂). It

is easy to check that ε̂∗(α) ∈ H1(k, F̂/2) = k∗/k∗
2

is the class of a. Therefore, (a, y) can be

written as the cup-product α ∪ ε∗[y]. Let [Z] ∈ H1(Y, F) be the class of the torsor p : Z → Y

of type λ defined in the end of the previous subsection. The local equation y = z21 − az22 of

Z shows that the image of [Z] inH1(k(Y), F) is ε∗[y]. Hence, α∪ε∗[y] is the image in Brk(Y)

of α ∪ [Z] ∈ Br1 Y. The formula of [16, Theorem 4.1.1] says that the image of α ∪ [Z] under

the canonical map Br1 Y → H1(k,Pic Y) is λ∗(α). By the definition of λ, this class is given

by [E], hence, by (i), it is the nontrivial element of H1(k,Pic Y). The proof of (ii) is now

complete.

(iii) Let M ⊂ PicY be the Z/2-submodule generated by [l00], [l01], [l10], [l11]. We

have k̄[V1]∗ = k̄∗ since the same is true for the smaller open set V. Hence, M is freely

generated by these four classes. The action of σ is such that it swaps [l00] and [l11], and

also [l10] and [l01]. HenceM is an induced module, so thatH1(Z/2,M) = H2(Z/2,M) = 0.

We claim that PicV1 is torsion-free. Indeed, since k̄[V]∗ = k̄∗, the kernel of the

restriction map PicV1 → PicV is freely generated by the 12 remaining classes [lij]. Thus,

a nonzero torsion element of PicV1 restricts to a nonzero torsion element of PicV . It is

well known that every such element comes from τ ∈ Pic Y such that 2τ is a sum of 8 or 16

of the [lij] (see [11]; alternatively, this can be checked using the calculations in the proof

of Proposition 3.4). So we cannot create a torsion element by removing only four such

lines from Y. We thus have an exact sequence of Z/2-modules

0 −→ M −→ Pic Y −→ PicV1 −→ 0, (3.19)
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which implies that H1(Z/2,Pic Y) → H1(Z/2,PicV1) is an isomorphism. Since both mod-

ules are torsion-free, we conclude that H1(k,Pic Y) → H1(k,PicV1) is also an isomor-

phism. Now (iii) follows from the last statement of (ii). �

Now let us turn to the transcendental part of BrX. The rational functions x2 and

t2 are in the σ-invariant part of k(Y), hence they can be considered as rational functions

on X. Consider the class

A =
((
b2 − 1

)(
x2 − a

)
,
(
c2 − 1

)(
t2 − a

)) ∈ Brk(X). (3.20)

Proposition 3.8. The class AY ∈ Brk(Y) has the following properties.

(1) AY is unramified over V1; it is unramified over Y if and only if either −d or −ad

is a square in k∗.

(2) The image of AY in Br k̄(Y) is unramified.

(3) The image of AY in Br k̄(Y) is nonzero. �

Proof. We prove (1) and (2) at the same time. Let us compute the residues of AY . It is

clear that AY is unramified away from the 24 lines. (The only thing to check is that the

residues at x = ∞ and t = ∞ are trivial.) We now compute the residues of AY at the 24

lines, that is, the points of codimension 1 that are not in V ′ ⊂ Y. Each of these residue

fields contains L. We note that if x2 = ab2, then (b2 − 1)(x2 − a) is a square in L. Similarly,

if t2 = ac2, then (c2 − 1)(t2 − a) is a square in L. Therefore, all the residues are trivial,

except possibly at the points A = l0 ∪ l1, B = s0 ∪ s1, C = l00 ∪ l11, andD = l01 ∪ l10. It is

clear that resA AY = 0 since valA(x2 −a) = 2, whereas t2 −a is a unit. A similar argument

shows that resB AY = 0. We have valC(x2 − a) = valC(t2 − a) = 1. In order to compute

resC AY , we replace (3.20) by an equivalent class

((
b2 − 1

)(
x2 − a

)
, d

(
c2 − 1

)(
x2 − a

)(
x2 − ab2

)(
t2 − ac2

))
=

((
b2 − 1

)(
x2 − a

)
,−d

(
b2 − 1

)(
c2 − 1

)(
x2 − ab2

)(
t2 − ac2

))
.

(3.21)

This shows that resC AY = −d. By symmetry, we also have resD AY = −d. This proves (1)

and (2).

To prove (3), it is enough to show that the restriction of AY to the generic fibre YK

is a nonzero element of BrYK. We think of YK as an elliptic curve with rational 2-division

points, with s0 as the origin of the group law. Recall that E2 is the Jacobian ofD2, so that

D2 � E2. It is clear from the equation of Y that YK is isomorphic to the quadratic twist of

the elliptic curve E2 ×kK by ρ(x) = (x2 −a)(x2 −ab2). If Y2 = T(T −p)(T −q) is an equation

of E2, then Y2 = T(T − ρ(x)p)(T − ρ(x)q) is an equation of YK.
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The 2-torsion of the Brauer group of such an elliptic curve is described as follows

(see [16, Theorem 4.1.1, Example, page 63, and Exercise 2, page 91]). Every element of

Br YK which vanishes at the origin is of the form (A, T) + (B, T − p) for some A,B ∈ K∗.

This element is 0 if and only if the class of (A,B) in (K∗/K∗2)2 is the image of a K-point

of YK under the Kummer map YK(K)/2YK(K) → H1(K, (Z/2)2). Since YK(K) consists of 2-

division points, we only need to exhibit their images under the Kummer map. These are

(pq,−ρ(x)p) = (1, ρ(x)), (ρ(x)p, p(p−q)) = (ρ(x), 1) and the product of these two elements.

Let us consider the restriction of AY to YK. By Tsen’s theorem, BrK = 0, hence any

element of Br YK vanishes at the origin. Without loss of generality, we may assume that

T = (t +
√
a)/(t −

√
a). Now our element is given by

(
x2 − a, t2 − a

)
=

(
x2 − a,

(
t +

√
a
)(
t −

√
a
)−1)

=
(
x2 − a, T

)
. (3.22)

Since (x2 − a, 1) ∈ (K∗/K∗2)2 is visibly not in the image of YK(K)/2YK(K), we conclude that

the restriction of AY to YK is nonzero. This proves (3). �

The second Betti number of any Enriques surface X equals the rank of PicX

(which is 10), and the first Betti number is 0. Thus, BrX is dual to the torsion subgroup

of PicX
(
see [5, Corollary 3.4] and [6, (8.12)]

)
, hence BrX = Z/2.

Corollary 3.9. The image of A ∈ Brk(X) in Br k̄(X) is unramified. This image is the unique

nontrivial element of BrX. In particular, the map f∗ : BrX → Br Y is injective. �

Proof. A⊗ k̄ is obviously unramified away from the images of the 24 lines and the curves

given by x = ∞ and t = ∞. The inverse image of any smooth rational curve in X is the

disjoint union of two such curves in Y. Thus if A ⊗ k̄ is ramified at the generic point of

such a curve on X, then AY ⊗ k̄ is also ramified. By symmetry, it remains to consider the

image of, say, x = ∞. We note that t2 − a is a unit, whereas x2 − a comes from k̄(P1
k̄
) via

the projection X → P1
k̄
. However, the fibre of this map at ∞ is double, hence any function

coming from k̄(P1
k̄
) has even valuation. Thus the residue is trivial.

Finally, A ⊗ k̄ 	= 0 since the AY ⊗ k̄ 	= 0 by Proposition 3.8(3). �

It seems to be unknown whether the map f∗ : BrX → Br Y is injective for any

Enriques surface X, where f : Y → X is a K3-covering of X.

Now we are ready to prove the main result of this section.

Theorem 3.10. Suppose that neither −d nor −ad is a square in k∗. Then BrX = Br1 X,

which implies that f∗ BrX = Br0 Y. �
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Proof. Let us prove the first statement. Suppose that B ∈ BrX is such that B ⊗ k̄ 	=
0. Since BrX = Z/2, from Corollary 3.9, we obtain B ⊗ k̄ = A ⊗ k̄. Let BY = f∗B. By

Proposition 3.8(1), BY − AY is unramified on V1, hence belongs to Br1 V1 = Br1 Y (Propo-

sition 3.7(iii)). Thus AY −BY is unramified, hence AY is also unramified. This contradicts

Proposition 3.8(1). Thus B ∈ Br1 X. We have proved that BrX = Br1 X. The second state-

ment now follows from Corollary 3.6. �

3.3 Counterexample to weak approximation not explained by the Manin obstruction

Let k = Q be the field of rational numbers. Let a and b = p be primes such that a is 1

modulo 4, and a is not a square modulo p. Let c be an integer such that c(c2 − 1) is not

divisible by p. Consider the Kummer surface Y over Q given by the affine equation

y2 =
(
x2 − a

)(
x2 − ap2

)(
t2 − a

)(
t2 − ac2

)
, (3.23)

and the corresponding Enriques surface X = Y/σ.

If we choose a = 5, b = 13, c = 2 as in Example 3.3, then the above conditions

are satisfied. The elliptic curves E1 and E2 are not isogenous over Q, so that all the com-

putations of the previous subsection do apply. Moreover, the set X(Q) is Zariski dense

in X.

We now construct a family of local points on X. By substituting x = t = p−1 into

(3.23), we obtain y2 = p−8α2, where α is a p-adic unit congruent to 1modulo p. LetNp be

the Qp-point on Y with coordinates x = t = p−1, y = p−4α. Consider the Q-point M on Y

with coordinates x = t = 0, y = a2pc. For any prime q 	= p, we define Nq = M, and we do

likewise for the Archimedian place. We obtain an adelic point {Nv} on Y.

Theorem 3.11. The adelic point {f(Nv)} is inX(AQ)Br but not in the closure ofX(Q). Hence,

X is a counterexample to weak approximation that is not accounted for by the Brauer-

Manin obstruction. �

Proof. In our previous notation, d = 1. Since −1 and −a are not squares in Q∗, Theorem

3.10 applies. Since f∗ BrX = Br Q, the first statement immediately follows from the pro-

jection formula.

By the global reciprocity, we have
∑

v∈ΩQ
invv(a2pc, a) = 0. On the other hand,

invp(a2pc, a) 	= 0 since a is not a square modulo p. We have invp(p−4α, a) = 0 since α

and a are p-adic units. It follows that the adelic point {Nv} ∈ Y(AQ) does not satisfy the

Brauer-Manin condition with respect to the Azumaya algebra (y, a).
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Recall that p : Z → Y is a Y-torsor of type λ defined in the end of Section 3.1.

We now compose the torsors p : Z → Y and f : Y → X. Indeed, all the conditions of

Proposition 2.5 are satisfied. (The image of λ is H-invariant, as it is generated by the σ-

anti-invariant element [E].) We obtain an X-torsor g : Z → X under a Q-group G; this

group is an extension

1 −→ F −→ G −→ Z/2 −→ 1. (3.24)

The class (y, a) is in Brλ Y by Proposition 3.7(ii). By the descent theory (see [16, Theorem

6.1.2]), the fact that the adelic point {Nv} ∈ Y(AQ) does not satisfy the Brauer-Manin con-

dition given by an element of Brλ Y implies that {Nv} 	∈ Y(AQ)p. The closure of X(Q) in

X(AQ) is contained in X(AQ)g, thus to prove the theorem, it is enough to prove the follow-

ing.

Proposition 3.12. The adelic point {Pv} = {f(Nv)} is not contained in the setX(AQ)g. There

is a non-abelian descent obstruction to weak approximation on X for {Pv}. �

Proof. We have an exact sequence of pointed sets

Z/2 −→ H1(Q, F) −→ H1(Q, G) −→ H1(Q,Z/2). (3.25)

Let us compute the image of the nontrivial element h ∈ Z/2 under the connecting map

δ : Z/2 → H1(Q, F) = Q∗/NL/Q(L∗). If ϕh is a lifting of h to G(Q), then δ(h) is the class of

the cocycle σ(γ) = ϕ−1
h · γ(ϕh) (see [12, I.5.4]). We obtain (cf. (2.11))

γ
(
ϕh(z)

)
= ϕh

(
σ(γ) · γz

)
, z ∈ Z(

Q
)
, γ ∈ Γ. (3.26)

Let Zσ be the twisted torsor of Z by σ. The displayed formula shows thatϕh is an isomor-

phism of Q-varieties Zσ → Z. We also haveϕh(tz) = τh(t)ϕh(z) for any t ∈ F(Q), z ∈ Z(Q),

where τh is the natural action of H(Q) on F(Q) (as the proof of Proposition 2.5; note that

in our case, τh(t) = t−1). This shows that we actually have an isomorphism of Y-torsors

h∗(Z)σ → h∗(Z). Therefore [h∗(Z)] − [σ] = [h∗(Z)], so that δ(h) = [σ] = [h∗(Z)] − [h∗(Z)]. To

compute this difference, we can restrict the classes to H1(Q(Y), F). On the one hand, the

local equation y = z21 − az22 of Z shows that h∗[y] = [y] + [−1]. On the other hand, the map

τh(t) = t−1 induces the trivial action on H1(k(Y), F), since the latter group is 2-torsion.

 at Im
perial C

ollege London Library on S
eptem

ber 13, 2011
im

rn.oxfordjournals.org
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


3226 D. Harari and A. Skorobogatov

Hence h∗[y] = [y]. Putting all this together, we conclude that δ(h) is the class of −1 in

Q∗/NL/Q(L∗).

Since a is a prime which is 1mod 4, −1 is the norm of an element of L = Q(
√
a).

Thus δ is trivial. The same is of course true if the ground field k = Q is replaced by any

bigger field. We obtain a commutative diagram of pointed sets with exact rows

H1(Q, F) H1(Q, G) H1(Q,Z/2)

1
∏

v∈ΩQ
H1

(
Qv, F

) ∏
v∈ΩQ

H1
(
Qv, G

) ∏
v∈ΩQ

H1
(
Qv,Z/2

)
(3.27)

Since H1(Qv, F) is either zero or Z/2, the map H1(Qv, F) → H1(Qv, G) is injective for any

place v. The diagonal mapH1(Q,Z/2) → ∏
v∈ΩQ

H1(Qv,Z/2) is obviously injective.

Suppose that {Pv} ∈ X(AQ)g. Set gv = [g−1(Pv)] ∈ H1(Qv, G). Then by definition,

{gv} is in the diagonal image ofH1(Q, G) in
∏

v∈ΩQ
H1(Qv, G). Since gv is the image of fv =

[p−1(Nv)], the injectivity of the map H1(Qv, F) → H1(Qv, G) implies by an easy diagram

chase that {fv} is in the diagonal image of H1(Q, F). But this is not possible because {Nv}

does not belong to Y(AQ)p. �

This completes the proof of Theorem 3.11. �

For the sake of completeness, let us also give an alternative argument that {f(Nv)}

cannot be approximated by a rational point (cf. [14]).

Since (y, a) is unramified on Y, there exists a finite set of places S such that for

v /∈ S, the local invariant of (y, a) at any Qv-point on Y is 0. The involution σ sends (y, a)

to (−y, a). The class (−1, a) is trivial because the prime a is congruent ot 1modulo 4, and

so is a norm for Q(
√

−1)/Q. Thus (y, a) is σ-invariant.

Suppose that {f(Nv)} is in the closure of X(Q). Since f : Y → X is unramified, there

exists a finite set of quadratic fields k1, . . . , kn with the property that for any P ∈ X(Q),

the residue field of a closed point of Y over P is either Q or one of the ki. Let pi be a prime

that is inert in ki. Suppose that R ∈ X(Q) is close enough to f(Nv) in the Qv-topology

for all v ∈ S ∪ {p1, . . . , pn}. If Q(f−1(P)) is a quadratic field, then it must be split at all

the primes pi. This is a contradiction. Therefore, the inverse image of R in Y must con-

sist of two Q-points, say R1 and R2. By the implicit function theorem for the local field

Qv, we know that Nv is very close to either R1 or R2. But (y, a) is σ-invariant, hence for

any place v, we have invv((y, a)(R1)) = invv((y, a)(R2)). Since the local invariant is lo-

cally constant, we see that invv((y, a)(Nv)) = invv((y, a)(R1)) for all v ∈ S ∪ {p1, . . . , pn}.

 at Im
perial C

ollege London Library on S
eptem

ber 13, 2011
im

rn.oxfordjournals.org
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


Non-Abelian Descent and the Arithmetic of Enriques Surfaces 3227

Since invv((y, a)(Nv)) = 0 for v /∈ S, we obtain

∑
v∈ΩQ

invv

(
(y, a)

(
Nv

))
=

∑
v∈ΩQ

invv

(
(y, a)

(
R1

))
= 0 (3.28)

by the global reciprocity. But this sum is nonzero, as we showed in the beginning of proof

of Theorem 3.11.
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Schémas (A. Grothendieck and N. H. Kuipers, eds.), North-Holland, Amsterdam; Masson, Paris,

1968, pp. 67–87.

[6] , Le groupe de Brauer. III. Exemples et compléments, Dix Exposés sur la Cohomologie
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