Algebra III M3P8, M4P8

Test 2

5 December 2017

1. For each of the prime numbers p = 2, 3, 5, 7 determine whether the principal ideal generated by $x^2 + 1$ is a maximal ideal of the polynomial ring $\mathbb{F}_p[x]$, where \mathbb{F}_p is a finite field with p elements.

Solution. (8 marks, 2 for each part)

p = 2 In this case $x^2 + 1 = (x + 1)^2$, so the ideal (x + 1) is bigger than $(x^2 + 1)$.

p = 3 Since -1 is not a square modulo 3, the polynomial $x^2 + 1$ is irreducible over \mathbb{F}_3 , hence the ideal is maximal (by a result from lectures).

p = 5 Modulo 5 we have that -1 is the square of 2, hence $x^2 + 1 = (x - 2)(x + 2)$, thus (x - 2) is a bigger ideal.

p = 7 One checks that -1 is not a square modulo 7, so the polynomial $x^2 + 1$ is irreducible over \mathbb{F}_7 , hence the ideal is maximal.

2. Let α be the real root of the equation $x^7 - 5 = 0$. Determine $[\mathbb{Q}(\alpha) : \mathbb{Q}]$, with a complete proof.

Solution. (4 marks)

By Eisenstein's criterion $x^7 - 5$ is irreducible over \mathbb{Q} (take p = 5). Hence this is the minimal polynomial of α . It follows that $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 7$.

3. Determine $[\mathbb{Q}(e^{\frac{\pi i}{4}}):\mathbb{Q}]$, with a complete proof.

Solution. (8 marks)

We have $e^{\frac{\pi i}{4}} = \frac{1+i}{\sqrt{2}}$. Since $(e^{\frac{\pi i}{4}})^2 = i$, we see that $\mathbb{Q}(\sqrt{-1}) \subset \mathbb{Q}(e^{\frac{\pi i}{4}})$, where $\sqrt{-1} = i$. But then also $\mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(e^{\frac{\pi i}{4}})$, hence $\mathbb{Q}(e^{\frac{\pi i}{4}})$ contains $\mathbb{Q}(\sqrt{-1},\sqrt{2})$. Since $e^{\frac{\pi i}{4}}$ clearly belongs to $\mathbb{Q}(\sqrt{-1},\sqrt{2})$, we have

$$\mathbb{Q}(e^{\frac{\pi i}{4}}) = \mathbb{Q}(\sqrt{-1}, \sqrt{2}).$$

In the lectures we proved that $\mathbb{Q}(\sqrt{-1},\sqrt{2})$ has degree 4 over \mathbb{Q} . (We represented this field as a tower of quadratic extensions

$$\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(\sqrt{-1},\sqrt{2}),$$

and used the theorem about the multiplicativity of the degree in a tower of field extensions.) Any other correct proof is fine.