Algebra III M3P8, M4P8

Solutions Sheet 5

1) (a) and (b) are easy, and (c) follows from (b).

(d) No, for example consider $f : \mathbb{Z} \to \mathbb{Q}$, $I = (0) \subset \mathbb{Q}$. But (0) is a maximal ideal of \mathbb{Q} but not a maximal ideal of \mathbb{Z} .

2) (a) I is visibly principal, but not prime hence not maximal. Indeed, 2 and 5 are not in I, because if $2 = (a + b\sqrt{-10})\sqrt{-10}$, then 4 is a multiple of 10 which is absurd (and a similar argument works for 5). But their product, 10, is in I.

(b) If $I = (a+b\sqrt{-10})$, then $a^2 + 10b^2$ divides 4 and 10, hence divides 2. But then $a + b\sqrt{-10} = \pm 1$ implying that $1 = (m + n\sqrt{-10})2 + (p + q\sqrt{-10})\sqrt{-10}$ for some integers m, n, p, q. But the real part of the right hand side is even, a contradiction. Thus I is not principal. It is clear that $\mathbb{Z}[\sqrt{-10}]/I \cong \mathbb{Z}/2$ which is a field, hence I is maximal and thus prime.

(c) Since $x = -(x^{\overline{3}} - x) + x \cdot x^2 \in I$ we see that I = (x), hence I is principal. Also, $\mathbb{R}[x]/I \cong \mathbb{R}$ is a field, so I is maximal, and thus prime.

(d) Note that $I = (x^2 + 2)$, so I is principal. Since $\mathbb{Z}[x]/I \cong \mathbb{Z}[\sqrt{-2}]$ is an integral domain but not a field, I is prime but not maximal.

(e) For contradiction assume that (x, y) = (f(x, y)) for some polynomial f(x, y). We are given that $\mathbb{R}[x, y]$ is a UFD. Thus x = f(x, y)g(x, y) and y = f(x, y)g(x, y) for some g(x, y), $h(x, y) \in \mathbb{R}[x, y]$. It follows that f(x, y) has degree 0 as a polynomial in x with coefficients in $\mathbb{R}[y]$. Similarly, it has degree 0 as a polynomial in y over $\mathbb{R}[x]$. Therefore, f(x, y) is a constant. But then I contains 1 which is impossible, because I contains only polynomials with zero constant term.

3) (a) An obvious check shows that R is closed under +, - and \times .

(b) R^* consists of fractions with odd numerators and odd denominators. The only irreducible element is 2, up to multiplication by a unit.

(c) The natural inclusion $\mathbb{Z} \to R$ is a homomorphism of rings. By Question 1 (a), the inverse image of an ideal is an ideal. Hence $I \cap \mathbb{Z} = (n)$ for some $n \in \mathbb{Z}$. Write $n = a2^m$, where a is odd, and $m \ge 0$. Then $2^m \in I$ (and $a = \pm 1$). It is clear that I does not contain $2^{m-1}u$, where $u \in R^*$. Thus every non-zero ideal of R has the form $I = (2^m)$ for some $m \ge 0$.

(d) By part (c) the ring R is a PID, hence also a UFD.

4) In lectures we proved that the roots of $x^{p^n} - x = 0$ (in some big field that contains them all) constitute the field \mathbb{F}_{p^n} .

If f(x) is a monic irreducible factor of $x^{p^n} - x$ over \mathbb{F}_p , then $\mathbb{F}_p[x]/(f(x))$ is isomorphic to a subfield of \mathbb{F}_{p^n} (namely, to $\mathbb{F}_p(\alpha)$, where α is a root of f(x) = 0). The degree of this subfield is the degree of f(x), so it equals p^m , where m divides n. (See Q6 of Sheet 4.)

Conversely, if *m* divides *n*, then \mathbb{F}_{p^m} is a subfield of \mathbb{F}_{p^n} . (It consists of the roots of $x^{p^m} - x = 0$, which divides $x^{p^n} - x = 0$.) Let α be a generator of the multiplicative group of \mathbb{F}_{p^m} , which is cyclic by a result in lectures. Then $\mathbb{F}_p(\alpha) = \mathbb{F}_{p^m}$, so the degree of the minimal polynomial of α must be p^m .