Algebra III M3P8, M4P8

Test 1 Solutions

Full marks will not be given, unless your proof is complete.

1. 7 marks

Divide $7+6 i$ by $5+5 i$. The result is $\frac{13}{10}-i \frac{1}{10}$. The closest element of $\mathbb{Z}[i]$ is 1 , so we write $7+6 i=1(5+5 i)+(2+i)$. Now divide $5+5 i$ by $2+i$. The result is $3+i \in \mathbb{Z}[i]$, so that $2+i$ divides $5+5 i$. The last non-zero remainder is $2+i$, so this is a greatest common divisor of $5+5 i$ and $7+6 i$. Remember that it is not unique so that $\pm(2+i)$ and $\pm(-1+2 i)$ are all greatest common divisors of $5+5 i$ and $7+6 i$.

2. 7 marks

By the solution of Question 1 we have $7+6 i=(2+i)(4+i)$. The norm of $2+i$ is 5 , so it is not a unit. 5 is prime, so that if $2+i$ is a product of two elements of $\mathbb{Z}[i]$, then the norm of one of the factors is 1 , and this factor must be a unit. Therefore, $2+i$ is irreducible. The norm of $4+i$ is also prime, so a similar argument shows that $4+i$ is irreducible.

3. 6 marks

The condition $(a+b x)(c+d x)=1$ is equivalent to $a c=1, a d+b c=0, b d=0$. Multiplying the second equality by $a=c^{-1}$ we get $a^{2} d+b=0$. Multiplying this by b we get $b^{2}=0$ since $b d=0$.

