Algebra III M3P8, M4P8

Exercise Sheet 4

1. Suppose that F is a finite field with p^{n} elements where p is a prime.
(a) Prove that $x^{p^{n}}=x$ for all $x \in F$.
(b) Prove that the function $f: F \rightarrow F$ defined by $f(x)=x^{p}$ is an automorphism of F, i.e. an isomorphism $F \rightarrow F$.
2. Construct fields with 16 and 169 elements.
3. Factorize the following polynomials into irreducibles.
(1) $x^{4}+1 \in \mathbb{R}[x]$.
(2) $x^{4}+1 \in \mathbb{Q}[x]$.
(3) $x^{3}-5 \in \mathbb{Z} / 11[x]$.
(4) $x^{8}-x \in \mathbb{Z} / 2[x]$.
(5) $x^{2}+\omega x+\omega^{2} \in F[x]$, where $F=\left\{0,1, \omega, \omega^{2}\right\}$ is the field with 4 elements, and $\omega^{2}+\omega+1=0$.
4. Let R be a ring (not necessarily with 1) in which $r^{2}=r$ for all $r \in R$. Prove that R is commutative.
5. Let R be the set of all continuous functions from \mathbb{R} to \mathbb{R}. Define addition and multiplication on R in the usual way. That is, for $f, g \in R$ and $x \in \mathbb{R}$ set $(f+g)(x)=f(x)+g(x)$ and $f g(x)=f(x) g(x)$.
(a) Let $a \in \mathbb{R}$. Prove that $\{f \in R: f(a)=0\}$ is a maximal ideal of R, and describe R / I.
(b) For $n \in \mathbb{N}$, let $I_{n}=\{f \in R: f(x)=0$ for $|x|>n\}$. Prove that I_{n} is an ideal of R. Show that $I_{1} \subset I_{2} \subset I_{3} \ldots$ and all these ideals are distinct.
6. Let F be a finite field with p^{n} elements where p is a prime.
(a) If m is a positive integer dividing n, show that the set of roots of $x^{p^{m}}-x=0$ in F is a subfield of F of cardinality p^{m}.
(b) Least all positive integers N for which there is a subfield of F with N elements.
