Algebra III M3P8, M4P8

Solutions Sheet 3

1. It is clear that $F_{1} \cap F_{2}$ is a subring of K as it is closed under,+- and \times. If $x \in F_{1} \cap F_{2}, x \neq 0$, then $x^{-1} \in K$ belongs to $F_{1} \cap F_{2}$, so it is a field.
2. (1) $x^{2}+1$ has no roots in $\mathbb{Z} / 3$ hence is irreducible. Now conclude by a result from lectures.
(2) $\left|F^{*}\right|=8$. Let α be the image of x in $F=R / I$. Check that α has order 8 .
3. (1) Check that 3 and $3+2 i$ are irreducibles. Since R is a PID by a result from lectures we conclude that these elements generate maximal ideals.
(2) 9 and 13 , respectively.
4. (1) $x^{3}+x+1$ and $x^{3}+x^{2}+1$.
(2) $x^{2}+1, x^{2}+x-1, x^{2}-x-1$.
5. (1) This is an easy check of the axioms.
(2) The ideal $(3+i)+(2)$ contains $3+i-2=1+i$ which divides $3+i$ and 2 . Hence $(3+i)+(2)=(1+i)$. The ideal $(3+i)+(5-2 i)$ contains $10=(3+i)(3-i)$ and $29=(5-2 i)(5+2 i)$, and hence contains 1 , so this is a generator.
6. Maximal ideals:
no ($(2, x)$ is a bigger ideal),
no (for the same reason),
no $\left(\left(3, x^{2}+1\right)\right.$ is a bigger ideal),
no ((2) is a bigger ideal),
no $((x)$ is a bigger ideal),
yes (the quotient can be identified with $\mathbb{Z} / 3$ and this is a field).
Recall that an ideal is prime if the quotient ring has no zero divisors. Prime ideals:
yes (the quotient is an integral domain $\mathbb{Z} / 2[x]$),
yes (the quotient is an integral domain \mathbb{Z}),
yes (the quotient is an integral domain $\mathbb{Z}[\sqrt{-1}]$),
no (the quotient has zero divisors which are the images of 2 and x),
no (for a similar reason),
yes (every maximal ideal is prime).
