Algebra III M3P8, M4P8

Solutions Sheet 2

1. Let p be a prime number. Consider $\mathbb{Z}[\frac{1}{p}]$ which is defined as the set of rational numbers with only powers of p in denominators. It's easy to check that this is a subring, and actually an integral domain since it contains 1.

2. (a) With all the hints given it is a just a calculation.

(b) The fact that O_K is closed under + and - is clear, so it remains to check that $(\frac{1}{2} + \frac{\sqrt{d}}{2})^2 \in O_K$.

(c) Any $z \in K$ is a root of the polynomial $f(t) = t^2 - \text{Tr}(z)t + N(z)$ which has integer coefficients if $z \in O_K$. Conversely, if $z \in K$ and g(t) is a polynomial with coefficients in \mathbb{Z} such that g(z) = 0, then $g(\overline{z}) = 0$. It follows that if $z \notin \mathbb{Q}$ and g(t)is monic and quadratic, then g(t) is $f(t) = (t - z)(t - \overline{z})$.

(d) $z \in O_K^*$ if and only if zw = 1 for some $w \in O_K$, but then N(z)N(w) = 1, hence $N(z) = \pm 1$. Conversely, if $N(z) = \pm 1$, then $z^{-1} = \pm \overline{z} \in O_K$.

We only need to determine O_K^* when d < 0 is congruent to 1 modulo 4. Let $z \in O_K^*$. From the description of O_K we see that $2z = a + b\sqrt{d}$, where $a, b \in \mathbb{Z}$. If N(z) = 1, then $a^2 - db^2 = 4$. If $d \leq -7$, then b = 0, so $O_K^* = \{\pm 1\}$. But if d = -3, we obtain that O_K^* is the group of all complex roots of 1 of order dividing 6, i.e. $O_K = \{\pm 1, \frac{1}{2}(\pm 1 \pm \sqrt{-3})\}.$

(e) No, because the factors are associates.

(f) The first part of the definition of a Euclidean domain is clear from the multiplicativity of the norm. Now let $\alpha, \beta \in O_K, \beta \neq 0$. Write $\alpha/\beta = x_1 + x_2\sqrt{-3}$ for some $x_1, x_2 \in \mathbb{Q}$. If x_1 and x_2 are both in $\frac{1}{2} + \mathbb{Z}$, then $\alpha/\beta \in O_K$, so that $\beta|\alpha$. Otherwise let n_1 (resp. n_2) be the nearest integer to x_1 (resp. to x_2). Then the norm of $(x_1 - n_1) + (x_2 - n_2)\sqrt{-3}$ is less than 1. Thus $\alpha = (n_1 + n_2\sqrt{-3})\beta + \delta$, where $\delta \in O_K$ and $N(\delta) < N(\beta)$. QED

3. (a) $x^2 + x + 1$

(b) 9-2i = (7-i)+(2-i), and 7-i = 2-i+5 = (2-i)+(2-i)(2+i) = (2-i)(3+i), so 2-i is a gcd (there are four different gcd's here).

(c) Let's use the fact that O_K is a UFD. Up to units, $2 + 2\sqrt{-3}$ is the same as 2^2 , and $3 - 3\sqrt{-3}$ is the same as 6. Since 2 and 3 are coprime, 2 is a gcd.