# Algebra III M3P8, M4P8 

Exercise Sheet 2

1. Show that $\mathbb{Q}$ contains infinitely many integral domains.
2. Let $d$ be an integer not divisible by a square of an integer. (Such integers are called square-free.) Recall that $K=\mathbb{Q}(\sqrt{d}) \subset \mathbb{C}$ is the field whose elements are $z=x+y \sqrt{d}$ with $x, y \in \mathbb{Q}$. We define the conjugate element $\bar{z}=x-y \sqrt{d}$, the $\operatorname{trace} \operatorname{Tr}(z)=z+\bar{z}=2 x$ and the norm $\mathrm{N}(z)=z \bar{z}=x^{2}-d y^{2}$. It is clear that $\operatorname{Tr}\left(z_{1}+z_{2}\right)=\operatorname{Tr}\left(z_{1}\right)+\operatorname{Tr}\left(z_{2}\right)$, and $\mathrm{N}\left(z_{1} z_{2}\right)=\mathrm{N}\left(z_{1}\right) \mathrm{N}\left(z_{2}\right)$. Define $O_{K}$ as the set of those elements $z \in K$ for which $\operatorname{Tr}(z) \in \mathbb{Z}$ and $\mathrm{N}(z) \in \mathbb{Z}$.
(a) Determine all the elements $x+y \sqrt{d} \in O_{K}$ arguing as follows. Show that if $x \in \mathbb{Z}$, then $y \in \mathbb{Z}$ (Hint: $d$ is square-free). Hence $\mathbb{Z}[\sqrt{d}] \subset O_{K}$. If $x \notin \mathbb{Z}$, then $x=(2 n+1) / 2$ for some $n \in \mathbb{Z}$. Show that this implies that $y=(2 m+1) / 2$ for some $m \in \mathbb{Z}$. Prove that this occurs only if $d$ is 1 modulo 4 . Conclude that

$$
O_{K}=\left\{\left.a+b\left(\frac{1}{2}+\frac{\sqrt{d}}{2}\right) \right\rvert\, a, b \in \mathbb{Z}\right\}
$$

if $d$ is congruent to 1 modulo 4 , and that $O_{K}=\mathbb{Z}[\sqrt{d}]$ otherwise.
(b) Use the above description to prove that $O_{K}$ is a subring of $K$.
(c) Let $z \in K$. Prove that $z \in O_{K}$ if and only if there exists a monic quadratic polynomial $f(t)$ with integral coefficients such that $f(z)=0$.
(d) Let $z \in O_{K}$. Prove that $z \in O_{K}^{*}$ if and only if $\mathrm{N}(z)= \pm 1$. Hence determine $O_{K}^{*}$ for all square-free integers $d<0$.
(e) Let $d=\sqrt{-3}$. In lectures we used the equality $2 \times 2=(1+\sqrt{-3})(1-\sqrt{-3})$ to prove that $\mathbb{Z}[\sqrt{-3}]$ is not a UFD. Will the same proof work in $O_{K}$ where $K=$ $\mathbb{Q}(\sqrt{-3})$ ?
(f) (harder) Prove that $O_{K}$ from (e) is a Euclidean domain with $\phi(z)=\mathrm{N}(z)$. Hence $O_{K}$ is a UFD by a theorem from lectures.
3. Let $R$ be an integral domain. An element $a \in R$ is called a greatest common divisor of $b$ and $c$ if $a|b, a| c$, and $r \mid b$ and $r \mid c$ imply $r \mid a$ for any $r \in R$. (In general, a gcd is not necessarily unique. If $R=\mathbb{Z}$, then the positive gcd is also called the highest common factor.) In a Euclidean domain a gcd can be found using Euclid's algorithm.
(a) Let $R=\mathbb{Q}[x]$. Find a gcd of $x^{3}-1$ and $x^{5}+x^{4}+x^{3}+x^{2}+x+1$.
(b) Let $R=\mathbb{Z}[\sqrt{-1}]$. Find a gcd of $9-2 i$ and $7-i$.
(c) Let $R=O_{K}$ where $K=\mathbb{Q}(\sqrt{-3})$. Find a gcd of $2+2 \sqrt{-3}$ and $3-3 \sqrt{-3}$. (Hint: you can use the result of 2 (f), or try to apply Euclid's algorithm directly.)

