Name (IN CAPITAL LETTERS!):

CID:

Question 4. In each case, consider the value of the integral (if it exists), select the correct answer from the alternatives and write \mathbf{a} , \mathbf{b} , \mathbf{c} or \mathbf{d} in the box below. No marks will be given for working and there is no penalty for wrong answers, but anything unclear will score zero. " \mathbf{DE} " below stands for "Doesn't exist." while " \mathbf{SE} " means "Something Else," i.e. none of the other 3 answers is correct.

(1) $\int_{1}^{\infty} \left[\sin x + \frac{1}{x^2} \right] dx$ (a) **DE** (b) $1 + \cos 1$ (c) $1 - \cos 1$ (d) **SE**.

(2) $\int_{-2}^{-1} \frac{dx}{x}$ (a) **DE** (b) $-\log 2$ (c) $\log 2 + n\pi i$ (d) **SE**.

(3) $\int_{1}^{3} \frac{dx}{\sqrt{x^{2}-1}}$ (a) **DE** (b) $\frac{2}{3}\sqrt{2}$ (c) $\log(3+2\sqrt{2})$ (d) **SE**.

(4) $\int_{-1}^{1} \frac{\sin^3 x}{x^2 + \cosh x - 1} dx$ (a) **DE** (b) $\frac{2}{3}\pi + \log(1 + \cosh^{-1} 1)$ (c) 0 (d) **SE**.

(5) $\int_{1}^{e} \frac{dx}{x \log x}$ (a) **DE** (b) 1 (c) e^{-1} (d) **SE**.

(6) $\int f(x)f'''(x) dx$ (a) $\frac{1}{2}f^2f'' + C$ (b) $ff'' - \frac{1}{2}(f')^2 + C$ (c) $\frac{1}{2}(f'')^2 + C$ (d) **SE**.

(7) $\int_0^y \frac{dx}{x + \sec^2 x}$ (a) **DE** (b) $\log(y + \sec^2 y)$ (c) $\log y + \tan y$ (d) **SE**.

 $(8) \int_{0}^{x} \exp(e^{t} + t) dt \quad (a) \exp(e^{x} - 1) \qquad (b) (e^{x} + x) \exp(e^{x} + x) \qquad (c) \exp(e^{x}) - e \quad (d) \mathbf{SE}.$

 $(9) \int_3^{\pi} x^{20} (\cos x - 1) dx$ (a) about 10^9 (b) about 10^2 (c) between 0 and 1 (d) **SE**.

(10)
$$\int_0^1 \frac{\tan x}{\sin x \cos x} dx$$
 (a) **DE** (b) $\frac{1}{4}\pi$ (c) $\tan(1)$ (d) **SE**.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
ANSWER:	a	b	c	c	a	b	d	c	d	С

Explanatory comments:

- 1. $\sin x$ cannot be integrated up to infinity the integral does not converge.
- 2. The integral of 1/x is technically $\log |x|$, as it has a real value even when x < 0. To see this, substitute y = -x.
- 3. Substitute $x = \cosh t$, to find the integral is $\cosh^{-1} 3 \cosh^{-1} 1 = \cosh^{-1}(3)$. This can be written as a logarithm, as shown earlier in the course, $\log(3 + \sqrt{3^2 1})$. Note the singularity at x = 1 is a square root, which is integrable.
- 4. The denominator is never zero, so integral exists. The indefinite integral cannot be evaluated, but the integrand is **odd**, and so $\int_{-1}^{1} = 0$, by symmetry.
- 5. This integrates to $\log |\log x|$. As $x \to 1$ this blows up, so integral doesn't exist.
 - 6. Check by differentiation: $(ff'' \frac{1}{2}(f')^2)' = ff''' + f'f'' f'f'' = ff'''$.
- 7. Denominator is only zero for x < 0. Question ought to specify y > 0. Then integral exists, but both answers are rubbish.
 - 8. Confusing, but $(\exp(e^x))' = e^x \exp(e^x)$ and so (c) is correct.
- 9. Integral exists, and the integrand is negative, so the answer must be negative. Hence (d). We could estimate it using the mean value theorem for integrals: It is $(\pi 3)\xi^{20}(\cos \xi 1)$ for some ξ in $3 < \xi < \pi$ Thus the answer is about $-2(\pi 3)3^{20}$ which looks like -10^9 .
 - 10. Integrand simplifies to $\sec^2 x$, which integrates to $\tan x$.