M1M1: Problem Sheet 2: Power series expansions

1. In lectures (http://www.ma.ic.ac.uk/~ajm8/M1M1/cozzin.pdf) we proved that for cos and sin defined by infinite series,

(a) $\cos(x+y) = \cos x \cos y - \sin x \sin y$

(b) there is a number τ with $1.4 < \tau < 1.6$ such that $\cos \tau = 0$.

Using only these results and others derived from the infinite series, show that

(i)
$$\cos^2 \theta + \sin^2 \theta = 1$$
, (ii) $\cos(\theta + \tau) = -\sin \theta$ (iii) $\cos(2\tau) = -1$
(iv) $\cos 4\tau = 1$ (v) $\cos(\theta + 4\tau) = \cos \theta$ for all θ .

2. The hyperbolic sine and cosine, denoted $\sinh x$ and $\cosh x$, are respectively the odd and even parts of the exponential function $\exp(x)$. Use this fact to write down the series expansions for $\sinh x$ and $\cosh x$.

The hyperbolic tangent, tanh x, is defined as

$$\tanh x = \frac{\sinh x}{\cosh x}.$$

Use the series expansions for sinh and \cosh to find the first 3 non-zero terms in the series expansion of $\tanh x$.

3. Derive the following expression for the inverse hyperbolic tangent

$$\tanh^{-1}x = \frac{1}{2}\log\left(\frac{1+x}{1-x}\right).$$

Use this expression to find the series expansion of $\tanh^{-1}x$.

4. Using well-known series expansions, but without using Maclaurin ideas, find the first three non-zero terms in the power series of:

(a) $(1+x)\exp(x)$; (b) $\sin(x+1)$; (c) $\exp(x)\log(1+x)$; (d) $\frac{1}{2-\exp(x)}$; (e) $\sec x$; (f) $\tan x$; (g) $\log(1+\exp(x))$; (h) $\cos(\sin(x))$.

[Remember – only expand in variables which are small as $x \to 0$]

5. Find the Maclaurin series for the function

$$f(x) = \frac{1}{x^2 + 3x + 2}.$$

[Hint - how can you render the repeated differentiation easier to perform?]

6. Find the first three non-zero terms of the Maclaurin series of the functions

(a) $\exp(x) \cos x$; (b) $\tan^{-1}(x)$; (c) $\sec x$.

Have you any ideas how you might find ALL terms in the series for (a) and (b) more easily?

Check that your result for (c) agrees with Q4.