
M1M1 Handout 2: Limits, Infinite Sequences and Series
This sheet has a brief summary of some important properties. More details next term.

(1) An infinite sequence is an ordered list of numbers or terms, which we write as
{un} for n = 0, 1, 2 . . . The numbers un may be complex or real.

(2) The sequence {un} has a limit U , if, for all n sufficiently large, |un−U | is arbitrarily
small. In that case we say the sequence converges, and write

un → U as n → ∞ , or lim
n→∞

un = U .

If the sequence does not tend to a limit, we say it diverges. For example, if un = 1/n,
then un → 0 as n → ∞. The sequence {rn}, where r is given, has the limit

lim
n→∞

rn =

{
0 if |r| < 1

∞ if |r| > 1

[Note: “∞” is not really a limit – it’s one way a sequence can diverge. We may use the
shorthand “= ∞” to mean “is arbitrarily large in modulus,” but it’s sloppy notation.]
If |r| = 1, the sequence does not converge unless r = 1, when it has the limit 1.

(3) Let f(x) be a function of a real variable x. If for every sequence {xn} → a as n → ∞,
the sequence f(xn) → L, then we say the limit of f(x) as x → a exists, and lim

x→a
f(x) = L.

If in addition f(a) = L, we say f(x) is continuous at a.

(4) Limits behave well under addition and multiplication, so that if an → A, and bn → B,
then (an + bn) → (A+B) and (anbn) → AB. Also, if bn = f(an), where the function f is
continuous at A, then B = f(A).

(5) Polynomials in n are dominated as n → ∞ by their largest power of n. Thus

lim
n→∞

(
np + a1n

p−1 + . . .+ ap
nq + b1nq−1 + . . .+ bq

)
=


0 if p < q

1 if p = q

∞ if p > q

Exponentials dominate polynomials. For example, lim
n→∞

n100(1.01)−n = 0.

(6) Any finite number of terms cannot determine whether a sequence converges.

(7) An infinite series is the sum of all the terms in an infinite sequence. We interpret

this infinite sum by defining a sequence of “partial sums,” sn =
n∑

r=0
ur. If the sequence

{sn} → S (finite) as n → ∞, we say that the infinite series converges to S, and write

∞∑
n=0

un = S .

Otherwise, we say that the series is divergent. The study of infinite series is a difficult
topic, full of traps, especially when the terms may be either positive or negative.



(8) For a series
∞∑

n=0
un to converge, it is necessary that lim

n→∞
un = 0, i.e. the terms must

tend to zero as n → ∞. Note this condition is not sufficient to show convergence.

(9) Absolute convergence: We say that the series
∑∞

n=0 un is absolutely convergent
if
∑∞

n=0 |un| is convergent. If a series is absolutely convergent then it is also convergent,
and it is legitimate to reorder terms and perform other “sensible” operations on it.

(10) The comparison test. Suppose that an and bn are real and an > bn > 0. Then

(i) if
∞∑

n=0
an is convergent then

∞∑
n=0

bn also converges.

(ii) if
∑∞

n=0 bn is divergent, then so is
∑∞

n=0 an.

(11) The geometric series
∑∞

n=0 r
n converges if and only if |r| < 1. If r = 1 it increases

without limit, while if r = −1 it oscillates between 0 and 1.

(12) The harmonic series
∞∑

n=1

1
n diverges. More generally, the series

∞∑
n=1

1
ns , where s is

real, converges iff s > 1. The behaviour of this series when s is complex is related to the
most famous unsolved problem in mathematics, the Riemann hypothesis.

(13) The ratio test. Essentially using the comparison test with a geometric series we
can show that if

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = l , then the series

∞∑
n=0

an


converges if l < 1

diverges if l > 1

uncertain if l = 1

This test is very useful, but sometimes the ratio does not tend to a limit.

(14) Power series: If {an} is a given sequence, we can define a function f(x)

f(x) =
∞∑

n=0

anx
n , provided the series converges.

We use the ratio test, defining un = anx
n, to infer that if

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

R
then lim

n→∞

∣∣∣∣un+1

un

∣∣∣∣ = lim
n→∞

∣∣∣∣an+1 x
n+1

anxn

∣∣∣∣ = |x|
R

so that the series converges if |x| < R, diverges if |x| > R, and may do either if |x| = R.
This critical value of |x| is called the Radius of Convergence of the power series. R
exists even if the ratio test fails. Sensible manipulation of the series is valid for |x| < R.

(15) If |x| < R, we can differentiate the power series for f(x) term by term m times, and
then evaluate at x = 0 to find f (m)(0) = amm!. This leads to the Maclaurin series:

f(x) =
∞∑

n=0

f (n)(0)

n!
xn .

(16) A change of variable leads to the Taylor series for f(x+ h):

f(x+ h) = f(x) + hf ′(x) + 1
2h

2f ′′(x) + . . .
f (n)(x)

n!
hn +O(hn+1) .

This series is very useful when seeking approximations when h is small.


