
1. (a) Plot on the same diagram between x = 0 and x = 1 the two functions

f1(x) = sinπx f2(x) = 4x(1− x)

indicating carefully which curve is which, and justifying the distinction.

(b) Plot on the same diagram for x > 0 the functions

f3(x) = 2
π

tan−1 x, f4(x) = tanh
2x

π
,

indicating carefully which curve is which, and justifying the distinction.

(c) Plot on the same diagram for x > 0 the functions

f5(x) = log x, f6(x) =
x− 1

x
,

indicating carefully which curve is which, and justifying the distinction.

(d) Evaluate the limit

lim
x→1

[
f1(x)− f6(x)

f5(x)− f2(x)

]
.

(e) Calculate ∫ 5

0

[
f3(x)− f4(x)

]
dx.

(f) Extending the definitions of the functions to complex x in a standard way, find the

imaginary x-values (i) for which f3 is infinite and (ii) those for which f4 is infinite.

2. (a) For a given constant λ, the function y(x) obeys the differential equation and

boundary conditions

(1− x2)y′′ − 2xy′ + λy = 0, y(0) = 1, y′(0) = 0.

Obtain an expression for the (n + 2)th derivative, y(n+2)(x) in terms of lower

derivatives. Hence derive a series expansion for y(x) about x = 0 when λ = 3,

giving terms up to and including x6.

(b) Find the radius of convergence of the series in part (a).

(c) Show that for certain special values of λ the infinite series terminates as a polynomial.

(d) If y0(x) is the solution when λ = 0, and y2(x) the solution when λ = 6, then evaluate

the integral ∫ 1

−1
y0y2 dx.



3. (a) The differentiable function f(x) has a root at x = α and f(0) 6= 0. For a given

constant k, a sequence of approximations to α is sought by means of the scheme

x0 = 0, xn+1 = xn + kf(xn) for n = 0, 1, 2 . . .

Use the Mean Value Theorem to show that

|xn+1 − α| = Kn|xn − α|,

for a value of Kn which depends on k and a suitable value of the derivative of f .

(b) What extra condition on f(x) makes it possible to choose k to guarantee that xn → α

as n→∞?

If it is known that, for all x, 0 < f ′(x) < M , what range of values of k will give

convergence?

(c) Show that there always exists a value of k such that xn → α as n→∞, even if we

don’t know what it is.

(d) Newton’s method is similar to part (a), except that it uses a different value of k each

iteration,

xn+1 = xn −
f(xn)

f ′(xn)
, x0 = 0.

If f(x) is twice differentiable, use Taylor’s series with a remainder to show that

xn+1 − α = O(xn − α)2.

Discuss whether we can expect xn → α in this case.

4. (a) For n > 2 express the integral

In =

∫ π/4

0

tann x dx

in terms of In−2, and hence find In for odd or even integers n > 0 as a finite series.

(b) Determine the limiting function

F (x) = lim
n→∞

tann x for 0 6 x 6 1
4
π.

Infer the limit of In as n→∞.

(c) Deduce from the above that

π = 4− 4
3

+ 4
5
− 4

7
+ 4

9
− . . .

and obtain a similar series whose sum is log 2.

(d) Obtain the series for π and log 2 in part (c) directly, by considering the series for

log(1 + x) and 1/(1 + x2), which you may quote.
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Solutions [ALL UNSEEN, except where explicitly stated]

1. (a) Both curves pass through (0, 0), (1, 0) with a maximum at (1/2, 1). To distinguish

the two, one could note that f ′2(0) = 4 > π = f ′1(0), or∫ 1

0

f1 dx = 2
π
< 2

3
=

∫ 1

0

f2(x) dx [3]

(b) Each curve is odd and asymptotes to ±1 and f ′3(0) = f ′4(0) = 2/π. However f4
approaches 1 exponentially, whereas f3 does it algebraically. For example, for large

x consider f ′3 ∼ 1/x2 whereas f ′4 ∼ sech2(2x/π) ∼ exp(−4x/π). [3]

(c) Each is infinite at x = 0, passes through (1, 0) with gradient 1. But for large x,

f5 slowly increases without limit but f6 → 1. Alternatively, f6 tends to −∞ more

rapidly as x decreases to zero. [3]

(d) Using de l’Hôpital’s rule, as the numerator and denominator are both zero at x = 1,

the required limit is

lim
x→1

[
f1(x)− f6(x)

f5(x)− f2(x)

]
= lim

x→1

[
f ′1(x)− f ′6(x)

f ′5(x)− f ′2(x)

]
=
−π − 1

1 + 4
= −1

5
(π + 1) [3].

(e) The integrals are regular, so consider them separately.∫ 5

0

2

π
tan−1 x dx =

[2x

π
tan−1 x

]5
0
− 2

π

∫ 5

0

x

1 + x2
dx =

10

π
tan−1 5− 1

π
log 26.

∫ 5

0

tanh
2x

π
dx = π

2

[
log cosh(2x/π)

]5
0

=
π

2
log cosh(10/π)

Thus ∫ 5

0

(f3 − f4) dx =
10

π
tan−1 5− 1

π
log 26− π

2
log cosh(10/π). [4]

(f) Now tanh(ix) = i tan(x) and tan(ix) = i tanh(x). It follows that f4(x) is infinite

whenever 2x/π = i(1
2
π + nπ) or at x = i1

4
π2(1 + 2n) [2]

Furthermore there are no values of x such that tanhx = ±1, so that tan−1(±i) is also

singular, so that f3(±i) is formally infinite. (Or consider the derivative 1/(1 + x2).)

[2]
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2. (a) Differentiating n times by Leibniz, we have

(1− x2)y(n+2) − 2nxy(n+1) − 2n(n− 1)/2y(n) − 2xy(n+1) − 2ny(n) + λy(n) = 0,

or

(1− x2)y(n+2) − (2n+ 2)xy(n+1) = [n(n+ 1)− λ]y(n). [4]

Substituting x = 0, we have

y(n+2)(0) = [n(n+ 1)− λ]y(n)(0). [1]

Now as y′(0) = 0, all odd derivatives vanish at 0, and the series only has even terms.

By repeated use of the above result, we have when λ = 3

y(0) = 1, y′′(0) = −3, y(4)(0) = 3y′′(0) = −9, y(6)(0) = 17y(4)(0) = −9 ∗ 17

so that

y(x) +
∞∑
n=0

y(n)(0)xn

n!
= 1− 3

2
x2 − 3

8
x4 − 17

80
x6 +O(x8) [5]

(b) Looking at the ratio of adjacent terms, we have∣∣∣∣y(n+2)(0)xn+2/(n+ 2)!

y(n)(0)xn/n!

∣∣∣∣ =
|n(n+ 1)− λ|x2

(n+ 1)(n+ 2)
→ x2 as n→∞.

By the ratio test, the series converges for |x| < 1 so the radius of convergence is 1.

[3]

(c) Now if λ = k(k + 1) for some positive integer k. then y(k+2)(0) = 0 as are all higher

derivatives. It follows that the series terminates as a polynomial (of order k – not

required). [3]

(d) When λ = 0, the series terminates after the first term, so that y0(x) = 1. When

λ = 6, this corresponds to k = 2. The solution is y2(x) = 1 − 3x2. So the reuired

integral is ∫ 1

−1
1(1− 3x2) dx =

[
x− x3

]1
−1

= 0. [4]
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3. (a) We have f(α) = 0. The MVT states that there exists a value ξn between xn and α

such that

f ′(ξn)(xn − α) = f(xn)− f(α) = f(xn).

It follows that

xn+1 − α = xn − α + kf ′(ξn)[(xn − α)] = [1 + kf ′(ξn)](xn − α).

so we may define

Kn = |1 + kf ′(ξn)|, =⇒ |xn+1 − α| = Kn|xn − α|. [5]

(b) Clearly, Kn < 1 iff −2 < kf ′(ξn) < 0. However, f ′(ξn) may vary in sign for different

n, in which case, no single value of k suffices. If we require that f ′ is of single sign

over the domain of interest, then we can choose k to be of opposite sign. We must

then choose |k| small enough such that 1 + kf ′ > −1. Thus if 0 < f ′ < M , we will

choose 0 > k > −2/M. [5]

(c) If we choose k = α/f(x0), then x1 = α and then x2 = α and so on. Clearly then

xn → α. As this value of k depends on α, we don’t know what it is, however. [4]

(d) The Taylor series with remainder states for some η and µ

f(xn) = f(α)+(xn−α)f ′(α)+1
2
(xn−α)2f ′′(η) and f ′(xn) = f ′(α)+(xn−α)f ′′(µ)

Substituting in, we have

xn+1 = xn −
(xn − α)f ′(α) +O(xn − α)2

f ′(α) +O(xn − α)
= α +O(xn − α)2

Or as required

(xn+1 − α) = O(xn − α)2 < A(xn − α)2, [4]

for some A. Thus provided |xn − α| is small enough, |xn+1 − α| will be smaller still.

So we expect Newton’s method to converge provided our starting point (x = 0) is

sufficiently close to the actual root (x = α). [2]
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4. (a) Writing tan2 x = sec2 x− 1, we have

In =

∫ π/4

0

sec2 x tann−2 x dx−In−2 =
1

n− 1

[
tann−1 x

]π/4
0
−In−2 =

1

n− 1
−In−2 [3]

Thus if n is even

In =
1

n− 1
− 1

n− 3
+ . . .− (−1)n/2

(
1−

∫ π/4

0

1 dx

)

Or
π

4
= 1− 1

3
+

1

5
+ . . .± 1

n− 1
∓ In [2]

If n is odd, then

In =
1

n− 1
− 1

n− 3
+ . . .− (−1)(n−1)/2

(
1

2
−
∫ π/4

0

tanx dx

)

Or [
− log cosx

]π/4
0

=
1

2
− 1

4
+

1

6
+ . . .± 1

n− 1
∓ In,

and so
1
2

log 2 =
1

2
− 1

4
+

1

6
+ . . .± 1

n− 1
∓ In [3]

(b) Now 0 6 tanx 6 1 over this range. Furthermore, as n→∞, rn → 0 for 0 < r < 1.

It follows that

F (x) = 0 for x 6= 1
4
π, F (1

4
π) = 1. [2]

We infer that In → 0 as n→∞. [1]

(c) Rearranging the above series, we have therefore in the limit as n→∞,

π = 4− 4
3

+ 4
5
− 4

7
+ 4

9
. . . =

∞∑
m=1

4(−1)m−1

2m− 1
[2]

and

log 2 = 1− 1

2
+

1

3
− 1

4
+ . . . =

∞∑
n=1

(−1)n+1

n
[3]

(d) [SEEN] We have log(1 + x) = x− 1
2
x2 + 1

3
x3 + . . . and substituting x = 1 gives the

correct formula. Now

1

1 + x2
= 1− x2 + x4 + . . . =⇒

∫ 1

0

dx

1 + x2
=
[
x− 1

3
x3 + 1

5
x5 − . . .

]1
0

giving

tan−1 1 = 1
4
π = 1− 1

3
+

1

5
− 1

7
. . . [4]
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