Plot on the same diagram between z = 0 and x = 1 the two functions
fi(x) = sinmx fo(x) = 4z(1 — z)

indicating carefully which curve is which, and justifying the distinction.

Plot on the same diagram for x > 0 the functions

2
f3(z) = %tan’l x, fa(z) = tanh ?x’

indicating carefully which curve is which, and justifying the distinction.

Plot on the same diagram for x > 0 the functions

_x—l

f5(x) Zloga:, fﬁ(m)_ )

X

indicating carefully which curve is which, and justifying the distinction.

Evaluate the limit
lim [M} |

z—1

Calculate .
/0 (@)~ fu(a)] .

Extending the definitions of the functions to complex x in a standard way, find the
imaginary z-values (i) for which f3 is infinite and (ii) those for which f; is infinite.

For a given constant A, the function y(z) obeys the differential equation and
boundary conditions

(1 —a2%)y" — 2xy + My = 0, y(0)=1, #(0)=0.

Obtain an expression for the (n + 2) derivative, y"*?(x) in terms of lower
derivatives. Hence derive a series expansion for y(z) about z = 0 when A = 3,
giving terms up to and including z°.

Find the radius of convergence of the series in part (a).
Show that for certain special values of A the infinite series terminates as a polynomial.

If yo(x) is the solution when A = 0, and y,(z) the solution when A = 6, then evaluate

1
/ Yoy dx.
—1

the integral



The differentiable function f(z) has a root at + = « and f(0) # 0. For a given
constant k, a sequence of approximations to « is sought by means of the scheme

xo =0, Tpt1 = Tp +kf(x,) forn=0,1,2...
Use the Mean Value Theorem to show that
|z — o = K|z, — al,

for a value of K,, which depends on £ and a suitable value of the derivative of f.

What extra condition on f(x) makes it possible to choose k to guarantee that x,, — «
as n — oo?

If it is known that, for all z, 0 < f’(z) < M, what range of values of k will give
convergence?

Show that there always exists a value of k such that x,, = a as n — oo, even if we
don’t know what it is.

Newton’s method is similar to part (a), except that it uses a different value of k each
iteration,

T )
n

If f(x) is twice differentiable, use Taylor’s series with a remainder to show that

iL’OIO.

Ty — = Oz, — )

Discuss whether we can expect x,, — « in this case.

For n > 2 express the integral

w/4
I, = / tan” x dx
0

in terms of I,,_», and hence find I,, for odd or even integers n > 0 as a finite series.

Determine the limiting function

F(z) = lim tan" z for 0

n—o0
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Infer the limit of I,, as n — oo.

Deduce from the above that

+
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T=4—
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and obtain a similar series whose sum is log 2.

Obtain the series for 7 and log2 in part (c¢) directly, by considering the series for
log(1 + z) and 1/(1 + %), which you may quote.



Solutions [ALL UNSEEN, except where explicitly stated]

1. (a)

Both curves pass through (0,0), (1,0) with a maximum at (1/2,1). To distinguish
the two, one could note that f5(0) =4 > 7 = f{(0), or

1 1
| nae=2<i= [ pa 3]

Each curve is odd and asymptotes to +1 and f5(0) = f1(0) = 2/7. However f,
approaches 1 exponentially, whereas f3 does it algebraically. For example, for large
x consider f5 ~ 1/2? whereas f; ~ sech?(2z/7) ~ exp(—4x /7). [3]

Each is infinite at = = 0, passes through (1,0) with gradient 1. But for large z,
f5 slowly increases without limit but fg — 1. Alternatively, fs tends to —oo more
rapidly as = decreases to zero. [3]

Using de I’'Hopital’s rule, as the numerator and denominator are both zero at x = 1,
the required limit is

o= tie) -

lim
rz—1

- 75

The integrals are regular, so consider them separately.

5 5
2 2 5 2 10 1
/ Ztan ladr = [_x tan ™! :1:} — —/ * dr = —tan"'5 — —log 26.
0 T T o mJy 1422 T s

5 9 5
/ tanh 2% dz = Z [log COSh(Qx/ﬂ)] —_ log cosh(10/7)
0 ™ 0o 2
Thus
5 10 1 m
/ (fs — f1)dr = —tan'5 — — log 26 — = log cosh(10/7). [4]
0 ™ ™ 2

Now tanh(ixz) = itan(z) and tan(iz) = itanh(z). It follows that fy(x) is infinite
whenever 2z /7 = i(37 + nm) or at x = it7?(1 4 2n) [2]
Furthermore there are no values of x such that tanh z = +1, so that tan='(4) is also
singular, so that f3(=+4) is formally infinite. (Or consider the derivative 1/(1 + z?).)
2]

Total : 20



Differentiating n times by Leibniz, we have
(1 — 22y — 2nay™tD) — 2n(n — 1)/2y™ — 22yt — 2ny™ 4 \y™ =0,

or
(1= )y = 2n -+ 2y = [n(n + 1) = Ay, 4]

Substituting = 0, we have
y"2(0) = [n(n + 1) — Aly™(0). [1]

Now as ¢/(0) = 0, all odd derivatives vanish at 0, and the series only has even terms.
By repeated use of the above result, we have when A = 3

y(0) =1, ¢"(0)=-3, yW(0)=3y"(0)=-9, y©0)=17y"W(0)=—-9x17

(n) n
Y\ (0)x _ 3o 34 174 8

Looking at the ratio of adjacent terms, we have

y™2(0)2" 2/ (n+2)!|  |n(n+1) — A|z? )
‘ y™ (0)a /n! ' T mtDmyz 0w

By the ratio test, the series converges for |z| < 1 so the radius of convergence is 1.
[3]

Now if A = k(k + 1) for some positive integer k. then y*+2(0) = 0 as are all higher
derivatives. It follows that the series terminates as a polynomial (of order k — not
required). [3]
When A = 0, the series terminates after the first term, so that yo(z) = 1. When
A = 6, this corresponds to & = 2. The solution is y,(z) = 1 — 322, So the reuired
integral is

/_1 1(1 - 32%) dw = [x —x3] 11 =0. [4]

1
Total : 20



3.

(a)

We have f(a) = 0. The MVT states that there exists a value , between z,, and «
such that

&)@y —a) = flzn) — fla) = f(xn).
It follows that

Tnpr — 0 =T — @+ kf(&)[(2n — )] = [L+ Ef'(&)](zn — a).
so we may define
Kn=[1+kf(&), = |tnn—al =Kz, —al [5]

Clearly, K,, < 1iff =2 < kf'(§,) < 0. However, f'(¢,) may vary in sign for different
n, in which case, no single value of k suffices. If we require that f’ is of single sign
over the domain of interest, then we can choose k to be of opposite sign. We must
then choose |k| small enough such that 1 + kf’ > —1. Thusif 0 < f' < M, we will
choose 0 > k > —2/M. (5]

If we choose k = o/ f(xg), then x; = o and then x5 = a and so on. Clearly then
x, — «. As this value of k depends on «, we don’t know what it is, however.  [4]

The Taylor series with remainder states for some n and pu

fag) = f@)+H(zp—a) f'(a)+5(za—a)?f"(n)  and  f'(z,) = f(@)+(zn—a)f" (1)
Substituting in, we have

(zn — @) f'"(@) + Oan — @)?

Fla) + Oleg —a) O —a)

Tpy1 = T —
Or as required
($n+1 - O‘) = O(an - O‘>2 < A(xn - 04)2, [4]

for some A. Thus provided |z, — «| is small enough, |z,11 — a| will be smaller still.
So we expect Newton’s method to converge provided our starting point (z = 0) is
sufficiently close to the actual root (x = «). [2]

Total : 20



Writing tan? z = sec?z — 1, we have

w/4 1 /4 1
I, = / sec? ztan" 2o dr—1I, o = —— [tamn_1 x} Ly o=———1, 5 [3]

Thus if n is even

o I 2]
R T T

If n is odd, then

1 1 1 /4
I - _ L (—1)eD2 __/ tanz d
n—1 n—3jL (=1) 2 0 anar

Or /A1 1 1
1 ] —C_C4l4+ I,
[ ogcos;z:O 5 4+6+ n—lq:
e H02—1—3+1+» i—l— I [3]
e R B L B el

Now 0 < tanzx < 1 over this range. Furthermore, as n — oo, r™ — 0 for 0 < r < 1.
It follows that

F(z)=0  forz# im, F(3m)=1. [2]
We infer that I,, — 0 as n — oc. [1]

Rearranging the above series, we have therefore in the limit as n — oo,

g4 4 _4_ 4 _004(—1)7”71 9
m=1
and
1 1 L (—1)m
1%2_1—§+——— —Ej [3]

[SEEN] We have log(1 +z) = « — 32° + 32% + ... and substituting « = 1 gives the
correct formula. Now

1 :1—1’2+[L’4+ — / — $+1$5 !
1+ 22 14 22 o

giving
tan 11 = [4]

Total : 20



