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1. The function y(x) for x > 0 satisfies the ODE and boundary conditions

xy′′ = y, y(0) = 0, y′(0) = 1.

(a) Assuming the nth derivative y(n)(x) exists for every n, find a relation between y(n+1)(0)

and y(n)(0).

(b) Hence find the Maclaurin series for y(x), giving the general term.

(c) Calculate the Radius of Convergence of this series.

(d) Writing t = 2
√
x and y = tu(t), obtain a differential equation for u(t).

(e) Determine whether the functions y(x) and u(t) are even, odd or neither.

(f) Allowing x to be complex, we define
√
x to have a positive real part if possible. As x

starts from x = 4 and moves anticlockwise round the circle |x| = 4, what path does t

(as defined in part (d)) describe in the complex t-plane?

(g) Obtain a relation between y(1) and y′(1) and
∫ 1

0
y(x) dx.

2. (a) The functions f and g are continuous and g > 0 on the closed interval [a, b]. Prove that

∫ b

a

f(x)g(x) dx = f(ξ)

∫ b

a

g(x) dx, (1)

for some (unknown) ξ in [a, b]. [You may use various properties of integrals and

continuous functions without proof, but state clearly what properties you are assuming.]

(b) Assuming that (1) applies, deduce that

1
4
π <

∫ 1

0

dx

(1 + x2)
√
1− x2

< 1
2
π. (2)

(c) Why might part (a) not apply in this case? Justify, briefly, why the result (2) is

nevertheless true.

(d) Express sin2 θ and cos2 θ in terms of t = tan θ.

Hence or otherwise, evaluate the integral in part (b) exactly, and verify that (2) does

indeed hold.



3. (a) A triangle, T , has vertices (0, 0), (1, 1) and (1, 2). By using first vertical strips, and

then horizontal strips, calculate in two ways the double integral

∫ ∫

T

2xy dA.

(b) If ∂T denotes the boundary of T , find by any method the value of the integral

∫

∂T

ds

where s is the usual arclength.

(c) Obtain a general relation between the 2nd derivatives d2y/dx2 and d2x/dy2 and the

gradient dy/dx. Hence establish a relation between the curvatures

K1 =
d2y/dx2

(1 + (dy/dx)2)3/2
and K2 =

d2x/dy2

(1 + (dx/dy)2)3/2
.

For the case y = cosh x calculate K1 and K2 and verify the connection between them.

4. (a) A real cubic polynomial is written

f(x) = x3 + ax2 + bx+ c,

where a, b and c are real constants. Find a constant λ such that

g(y) ≡ f(y + λ) = y3 + dy + e,

and define the constants d and e.

By considering the location of turning points of g(y) or otherwise, determine when f(x)

has complex roots. (You may leave conditions in terms of d and e).

(b) Find the derivative of f(x) in part (a) from first principles, that is, from the formal

definition of the derivative.

(c) Suppose now that a, b and c may be complex, but f nevertheless has 3 real roots r1,

r2 and r3. Find the conditions on a, b and c for this to occur.

[Hint: First express a, b and c in terms of ri using the Fundamental Theorem of

Algebra or otherwise.]
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Solutions [ALL UNSEEN, except where explicitly stated]

1. (a) Differentiating n times by Leibniz, we have

xy(n+2) + ny(n+1) = y(n).

Thus at x = 0, using that all derivatives exist (and so are finite)

ny(n+1)(0) = y(n)(0). [2]

(b) This equation holds when n = 0. When n = 1, 2, 3 . . . we have y′′(0) = 1, y′′′(0) = 1/2,

y′′′′(0) = 1/3! and by inspection, y(n)(0) = 1/(n− 1)!. Thus

y =
∞
∑

n=0

xny(n)(0)

n!
=

∞
∑

n=1

xn

n!(n− 1)!
. [3]

(c) The ratio of adjacent terms is

xn+1/(n!(n+ 1)!)

xn/((n− 1)!n!)
=

x

(n+ 1)n
→ 0 as n → ∞ for all x.

As this limit is always less than 1, we conclude the series converges for all x, i.e. has

infinite Radius of Convergence. [2]

(d) If y(x) = tu(t), we have y′ = (tu′ + u)dt/dx = (tu′ + u)/x1/2. Differentiating again,

y′′ =
(tu′′ + 2u′)

x
− (tu′ + u)/2x3/2 =⇒ xy′′ = tu′′ + 2u′ − (tu′ + u)/t.

Thus

xy′′ = y =⇒ t2u′′ + tu′ − (t2 + 1)u = 0. [3]

(e) From part (b) we see y(x) is neither even nor odd. As x = t2/4, u(t) consists only of

odd powers of t and so is clearly odd. [1+1]

(f) If x is complex, we have to define
√
x carefully. If x = reiθ with −π < θ 6 π, then√

x = r1/2eiθ/2, ensures that the real part is positive or zero. If x = 4eiθ, then t = 4eiθ/2.

This describes only half of the circle of radius 4 centre t = 0. As x traverses the circle

anticlockwise, t starts from 4 and traverses a quarter of the same circle anticlockwise

until θ = π, when it jumps from +4i to −4i, and then continuing anticlockwise until

t = 4. [4]

(g) From the original ODE,

∫ 1

0

y dx =

∫ 1

0

xy′′ dx =
[

xy′
]1

0
−
∫ 1

0

y′ dx = y′(1)− y(1). [4]

integrating by parts and using the boundary conditions.

Total : 20



2. (a) [SEEN with g ≡ 1 only] A continuous function on a closed interval is bounded and

attains its bounds, so that there exist max and min values of f , M and m such that

M > f(x) > m =⇒ Mg(x) > f(x)g(x) > mg(x),

since g > 0. Inequalities can be integrated, so that

M

∫ b

a

g(x) dx >

∫ b

a

f(x)g(x) dx > m

∫ b

a

g(x) dx.

Thus

M > φ > m, where φ =

∫ b

a

fg dx

/
∫

g(x) dx .

Now a continuous function attains all values between its maximum and minimum values

somewhere. Thus there is at least one value of x where f(x) = φ. Call this value x = ξ,

and we deduce
∫ b

a

f(x)g(x) dx = f(ξ)

∫ b

a

g(x) dx, [7]

as required. [Note
∫

g dx 6= 0].

(b) Setting f = 1/(1 + x2) and g(x) = 1/
√
1− x2, we have

∫ 1

0
g(x) dx = sin−1 1 = 1

2
π.

Now f(x) is a decreasing function, so it attains its maximum, M = 1, when x = 0 and

its minimum, m = 1
2
when x = 1. It follows that the required integral lies between 1

4
π

and 1
2
π as required. [3]

(c) However, the conditions of part (a) required both f and g to be continuous on the closed

interval, whereas g is discontinuous (singular) at x = 1. So the theorem as stated does

not strictly apply. However, it does apply for b = 1− ε for any 0 < ε ≪ 1. Furthermore,

the integrand has a square-root singularity only, fg ≃ 1
2
√
2
(1− x)−1/2 near x = 1. This

is integrable, and so we expect the limit as ε → 0 to exist. [3]

(d) If t = tan θ, then 1 + t2 = sec2 θ and so

cos2 θ =
1

1 + t2
and sin2 θ =

t2

1 + t2
. [1 mark]

Substituting x = sin θ, we have

I =

∫ 1

0

dx

(1 + x2)
√
1− x2

=

∫ π/2

0

cos θ dθ

cos θ(1 + sin2 θ)
=

∫ π/2

0

dθ

1 + sin2 θ
.

Using the hint in the question, we substitute t = tan θ, to obtain

I =

∫ ∞

0

dt/(1 + t2)

1 + t2/(1 + t2)
=

∫ ∞

0

dt

1 + 2t2
=

1√
2

[

tan−1(t
√
2)
]∞

0
=

π

2
√
2
.

This lies between π/2 and π/4 as expected. [6]
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3. (a) The boundaries are the lines y = x, y = 2x and x = 1. Using vertical strips, we fix x

and first integrate between y = x and y = 2x, and then between x = 0 and x = 1:

I =

∫ 1

0

(
∫ 2x

x

2xy dy

)

dx =

∫ 1

0

[

xy2
]2x

x
dx =

∫ 1

0

3x3 dx = 3
4
. [3]

If we fix y, we see from the shape of the triangle that we have different upper boundaries

depending whether y < 1 or y > 1. The lower boundary is x = 1
2
y, while the upper is

either x = 1 or x = y

I =

∫ 1

0

(
∫ y

y/2

2xy dx

)

dy +

∫ 2

1

(
∫ 1

y/2

2xy dx

)

dy. [3]

This time,

I =

∫ 1

0

y(y2 − y2/4)dy +

∫ 2

1

y(1− y2/4)dy = 3
16

+ 3
2
− 15

16
= 12

16
= 3

4
. [2]

These agree, as expected.

(b) The integral is just the total perimeter, which is clearly
√
2 + 1 +

√
5. [2]

(c) [Relation between y′′ and x′′ SEEN on problem sheet.]

We have
dx

dy
=

(

dy

dx

)−1

.

On differentiation of this expression with respect to y and use of the chain rule

d2x

dy2
=

dx

dy

d

dx

(

dy

dx

)−1

= −dx

dy

(

dy

dx

)−2
d2y

dx2
= −

(

dy

dx

)−3
d2y

dx2
. [3]

Thus if we substitute in K2, for example,

K2 =
−d2y/dx2(dy/dx)−3

(1 + (dx/dy)2)3/2
= − d2y/dx2

[(1 + (dy/dx)2)]3/2
= −K1. [2]

If y = cosh x, then

K1 =
cosh x

(1 + sinh2 x)3/2
=

1

cosh2 x
. [2]

Now
dx

dy
=

1
√

y2 − 1
,

d2x

dy2
=

−y

(y2 − 1)3/2

So 1 + (dx/dy)2 = y2/(y2 − 1). Thus

K2 =
−y/(y2 − 1)3/2

y3/(y2 − 1)3/2
= − 1

y2
= −K1. [3]

These agree, as expected.
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4. (a) Now

f(y+λ) = (y+λ)3+a(y+λ)2+b(y+λ)+c = y3+y2(3λ+a)+y(3λ2+2aλ+b)+f(λ).

So we choose λ = −a/3 and then

d = b− 1
3
a2, e = 2

27
a3 − 1

3
ab+ c. [3]

Now g(y) = y3 + dy + e has complex roots iff f(x) does. If conversely g(y) has three

real roots, then between any two such roots by Rolle’s theorem there must be a zero of

g′(y) = 3y2 + d. This has roots iff d 6 0, namely y = ±α where α =
√

−d/3. So a

sufficient condition for complex roots to exist is d > 0 or a2 < 3b.

If there are turning points, by considering the general shape of the graph, we will have 3

real roots if g takes opposite signs at the turning points. If this happens, the product of

the two values is negative. Now g(±α) = ±2α3 + e. So for real roots, we require

g(α)g(−α) 6 0 =⇒ 27e2 6 −4d3.

Combining these results, we have complex roots if d > 0 or 27e2 > −4d3 or equivalently

just 27e2 > −4d3. [9]

(b) By definition

f ′(x) = lim
ε→0

[

f(x+ ε)− f(x)

ε

]

= lim
ε→0

[

3εx2 + a2εx+ bε+O(ε2)

ε

]

= 3x2 + 2ax+ b.

[3]

(c) If f(x) has roots ri, then

f(x) = x3 + ax2 + bx+ c = (x− r1)(x− r2)(x− r3).

This means c = −r1r2r3, a = −(r1 + r2 + r3) and b = r1r2 + r2r3 + r3r1. It follows

that a b and c must be real for all the roots to be real. Hence using part (a), we require

d 6 0 and −4d3 > 27e2 or equivalently −4d3 > 27e2. [5]
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