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1. For a given real constant b, the function f(x) takes the form

f(x) =
x2 + 2bx+ 1

x2 − 1
for x2 6= 1.

(a) If y = f(x) and y is real, show that x is real only if some inequality relating y and b

holds. From this inequality, show that f(x) takes all real values as x varies, provided

b2 > 1.

(b) Express f(x) in partial fractions.

(c) In general, what is the meaning of the limit (if it exists)

L(d) = lim
x→d

[
g(x)− g(d)
x− d

]

?

Evaluate this limit if g(x) ≡ f(x) and d2 6= 1.
For which values of b does L(d) = 0 for some real value(s) of d?

(d) If f(x) =
∞∑

n=0

anx
n, give the value of an for each value of n.

(e) Give rough sketches of the curve y = f(x), in the 3 cases b > 1, b = 1, 0 < b < 1.

Verify that your sketches are consistent with parts (a) and (c).

[NB Part (e) of the question is worth more than the others.]

(f) For which values of b does the integral

∫ 100

0

f(x) dx exist?
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2. (a) Find all complex numbers z such that |z + i| = 2|z − i|.

(b) Express the function tan x in terms of u ≡ eix.

Hence, if p is real and p > 1, find all complex numbers z which satisfy

tan z = ip.

(c) While preparing this exam, I produced the following incorrect argument which falsely

“proves” that there are no solutions to part (b):

(1) For all A and B, we have

tan(A+B) =
tanA+ tanB

1− tanA tanB

(2) For all real y, we have tan(iy) = i tanh y.

(3) Suppose z = x+ iy, where x and y are real, and that tan z = ip, with p > 1. Then

tan(x+ iy) =
tan x+ i tanh y

1− i tan x tanh y
= ip.

(4) Multiplying up, we have

tan x+ i tanh y = ip+ p tan x tanh y.

Equating imaginary parts, we have tanh y = p

(5) But for real y, | tanh y| < 1, so there are no solutions to this problem if p > 1.

What was wrong with my argument? (The actual solution from part (b) may offer a hint.)
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3. (a) For non-negative integers m and n, we denotes by F (m,n) the integral

F (m,n) =

∫ 1

0

xm(1− x)n dx.

Show that for m > 1,

F (m,n) =

(
m

m+ n+ 1

)

F (m− 1, n)

and hence derive an expression for F (m,n) in terms of factorials.

Deduce that ∫ π/2

0

sin11 θ cos13 θ dθ =
(5!)(6!)

2(12!)
.

(b) For a given function f(x), the function y(x) satisfies the differential equation

dy

dx
− y tan x = f(x)

with the boundary condition y(1) = 0.

Obtain the solution in terms of a definite integral.

If f(x) = x3(1− x)6 sec x, show that

y(0) = −
1

840
.

4. (a) Evaluate the limit

lim
x→0

[ ∫ x
0
sin(t2) dt

sin x+ cos x− log(1 + x)− exp(x3)

]

.

(b) If t = tanh x, show that

x = 1
2
log

[
1 + t

1− t

]

.

Use the Mean Value Theorem for the function log(1 + x) to show that for t > 0

t > log(1 + t) >
t

1 + t
.

Show also that for 0 < t < 1,

t < − log(1− t) <
t

1− t

and deduce that for 0 < t < 1

t− 1
2
t2

1− t
> tanh−1 t >

t+ 1
2
t2

1 + t
.
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Solutions [ALL UNSEEN, except where explicitly stated]

1. (a) If y = f(x) then

y(x2 − 1) = x2 + 2bx+ 1 =⇒ x2(1− y) + 2bx+ (1 + y) = 0.

If this has a real root for x, we must have

(2b)2 > 4(1− y)(1 + y) ⇐⇒ b2 > 1− y2.

If this constraint is to be satisfied for all y, we must have |b| > 1. [2 marks]

(b)

f(x) = 1 +
2bx+ 2

x2 − 1
= 1 +

b+ 1

x− 1
+
b− 1
x+ 1

. [1 mark]

[Thus as x→ ±∞, f ∼ 1 + 2b/x which is greater/less than 1 according to the sign of
b/x. Near x = 1, f → ±∞, as determined by the sign of b+1

x−1 and so on. This is useful

for the curve plotting.]

(c) In general, L = g′(d), the derivative of g at x = d. If g = f , this is [1 mark]

L = f ′ = −
(b+ 1)

(d− 1)2
−
(b− 1)
(d+ 1)2

.

Now for L = 0 we must have
(
d+ 1

d− 1

)2
=
1− b
1 + b

.

This is positive provided |b| < 1. (From part (b), |b| = 1 does not work. Do not insist
they check this.) So L(d) = 0 for some d if |b| < 1. [2 marks]

(d) Expanding the denominator, we have

f(x) =
∞∑

n=0

anx
n = −(1 + 2bx+ x2)(1 + x2 + x4 + . . .)

By inspection, multiplying the two brackets gives a0 = −1 while if n is odd, an = −2b.
If n is even but non-zero, an = −1− 1 = −2. [3 marks]

(e) See attached sketches. The general shape suffices. i.e. approach asymptotes from the

right side, maximum and minimum somewhere, all values attained between x = ±1 if
|b| > 1. As b → −b, x → −x, so sketches for b < 0 are mirror images of b > 0 (not
required). Particularly good sketches (e.g. giving Max and Min points explicitly) may

compensate for a small error in another sketch. [9 marks]

(f) From part (b) the integrand has singularities like (x− d)−1 at d = ±1 but is otherwise
continuous. x = −1 is outside the range, but there is a term which is non-integrable at
x = 1. So the integral does not exist unless this term disappears, i.e. if b = −1. So
integral exists iff b = −1. [2 marks]
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2. (a) Writing z = x+ iy, so that z ± i = x+ i(y ± 1) we have

|z + i| = 2|z − i| =⇒ x2 + (y + 1)2 = 4(x2 + (y − 1)2)

3x2 + 3y2 − 10y + 3 = 0 =⇒ x2 + (y − 5
3
)2 = 16

9
. [5 marks]

This a circle centre (0, 5
3
) radius 4

3
.

(b) We have 2 cos x = eix + e−ix = u+ u−1 and 2i sin x = eix − e−ix Thus

tan x = −i

(
u2 − 1
u2 + 1

)

.

Thus if tan z = ip and v = eiz.

v2 − 1
v2 + 1

= −p =⇒ v2 =
1− p
1 + p

= −
p− 1
p+ 1

e2nπi. [2 marks]

where n is any integer. Thus if p > 1

v ≡ eiz = i

√
p− 1
p+ 1

enπi. [3 marks]

Taking logarithms, we have

iz = log i+ 1
2
log

(
p− 1
p+ 1

)

+ nπi

so that as i = exp(1
2
πi),

z = (n+ 1
2
)π − 1

2
i log

(
p− 1
p+ 1

)

. [5 marks]

(c) From the above solution we see that x = (n + 1
2
)π. It follows that tan x is infinite and

we had better be careful.

In step (3) we multiplied up by the denominator, which we see is actually infinite.

Multiplying by infinity is like dividing by zero – it must not be done. Instead, if we take

the limit as tan x → ∞ in step 3, we have i/ tanh y = ip, so that y = tanh−1(1/p).
This gives y = 1

2
log p+1

p−1 which agrees with part (a). [This last part is not required – an

observation that tan x is infinite and we cannot multiply by infinity suffices.][5 marks]
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3. (a)
∫ 1

0

xm(1− x)n dx =

[

−
xm(1− x)n+1

n+ 1

]1

0

+
m

n+ 1

∫ 1

0

xm−1(1− x)n+1 dx

=
m

n+ 1

∫ 1

0

(xm−1 − xm)(1− x)n dx.

Thus

F (m,n) =
m

n+ 1
(F (m−1, n)−F (m,n)) =⇒ F (m,n) =

m

m+ n+ 1
F (m−1, n).

[4 marks]

Continuing down to F (0, n),

F (m,n) =

(
m

m+ n+ 1

)(
m− 1
m+ n

)

. . .

(
1

n+ 2

)∫ 1

0

(1− x)n dx =
m!n!

(m+ n+ 1)!
[4 marks]

Putting x = sin2 θ, we have dx = 2 sin θ cos θ dθ and

F (m,n) = 2

∫ π/2

0

sin2m+1 θ cos2n+1 θ dθ.

Thus ∫ π/2

0

sin11 θ cos13 θ dθ = 1
2
F (5, 6) =

(5!)(6!)

2(12)!
. [2 marks]

(b) The integrating factor is I = exp[−
∫
tan x dx] = exp[log(cos x)] = cos x. [2 marks]

d

dx
(y cos x) = cos xf(x).

So that if we impose y(1) = 0

y(x) =
1

cos x

∫ x

1

cos(t)f(t) dt. [4 marks]

If f(x) = x3(1− x)6 sec x, then

y(0) =
1

1

∫ 0

1

t3(1− t)6 dt = −F (3, 6) = −
3!

10(9)(8)(7)
= −

1

840
. [4 marks]
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4. (a) sin t2 = t2 +O(t4) and

sin x+cos x−log(1+x)−exp(x3) = x− 1
6
x3+1− 1

2
x2−(x− 1

2
x2+ 1

3
x3)−(1+x3)+O(x4)

Thus

lim
x→0

[ ∫ x
0
sin(t2) dt

sin x+ cos x− log(1 + x)− exp(x3)

]

= lim
x→0

[
1
3
x3 +O(x5)

x3
[
−1
6
− 1
3
− 1
]
+O(x4)

]

= −2
9
.

(Or could use de l’Hôpital’s rule.) [5 marks]

(b) If t = tanh x, then

t =
ex − e−x

ex + e−x
=
e2x − 1
e2x + 1

This implies

e2x =
1 + t

1− t
=⇒ x = 1

2
log
1 + t

1− t
. [SEEN, 2 marks]

The MVT for log(1 + x) between x = 0 and x = t, states that there exists a ξ, for

0 < ξ < t such that
log(1 + t)− log(1)

t− 0
=
1

1 + ξ
. [2 marks]

But as 1/(1 + x) is a decreasing function,

1 >
1

1 + ξ
>
1

1 + t
=⇒ 1 >

log(1 + t)

t
>
1

1 + t
.

As t > 0 we can multiply the inequality by it, to obtain

t > log(1 + t) >
t

1 + t
. [3 marks]

Using the same function over the interval (−t, 0) [Alternatively, use log(1− t)], we have
there is an η in −t < η < 0 such that

log(1)− log(1− t)
0− (−t)

=
1

1 + η
and

1

1− t
>

1

1 + η
> 1.

Thus for 1 > t > 0
t

1− t
> − log(1− t) > t. [5 marks]

Adding the two inequalities, in the range where both apply (0 < t < 1) and noting that

2 tanh−1(t) = log(1 + t)− log(1− t),

t+
t

1− t
> 2 tanh−1 t > t+

t

1 + t

or
t− 1

2
t2

1− t
> tanh−1 t >

t+ 1
2
t2

1 + t
. [3 marks]

[Note: some may get into trouble subtracting inequalities, A > B and C > D does not

mean A− C > B −D but rather A−D > B − C. As all results are given, care must
be taken when marking that proper arguments are used.]
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